
applied  
sciences

Article

An Analysis of the Performance and Configuration Features of
MySQL Document Store and Elasticsearch as an Alternative
Backend in a Data Replication Solution

Doina R. Zmaranda 1,* , Cristian I. Moisi 2, Cornelia A. Győrödi 1,* , Robert Ş. Győrödi 1,* and Livia Bandici 3

����������
�������

Citation: Zmaranda, D.R.; Moisi,

C.I.; Győrödi, C.A.; Győrödi, R.Ş.;

Bandici, L. An Analysis of the

Performance and Configuration

Features of MySQL Document Store

and Elasticsearch as an Alternative

Backend in a Data Replication

Solution. Appl. Sci. 2021, 11, 11590.

https://doi.org/10.3390/

app112411590

Academic Editor: Evgeny Nikulchev

Received: 13 October 2021

Accepted: 3 December 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computers and Information Technology, University of Oradea, 410087 Oradea, Romania
2 Department of Computer Science and Information Technology, Faculty of Electrical Engineering and

Information Technology, University of Oradea, 410087 Oradea, Romania; moisi.ioancristian96@gmail.com
3 Department of Electrical Engineering, University of Oradea, 410087 Oradea, Romania; lbandici@uoradea.ro
* Correspondence: dzmaranda@uoradea.ro (D.R.Z.); cgyorodi@uoradea.ro (C.A.G.);

rgyorodi@uoradea.ro (R.Ş.G.)

Abstract: In recent years, with the increase in the volume and complexity of data, choosing a suitable
database for storing huge amounts of data is not easy, because it must consider aspects such as
manageability, scalability, and extensibility. Nowadays, the NoSQL databases have gained immense
popularity for their efficiency in managing such datasets compared to relational databases. How-
ever, relational databases also exhibit some advantages in certain circumstances, therefore many
applications use a combined approach: relational and non-relational. This paper performs a com-
parative evaluation of two popular open-source DBMSs: MySQL Document Store and Elasticsearch
as non-relational DBMSs; this comparison is based on a detailed analysis of CRUD operations for
different amounts of data showing how the databases could be modeled and used in an applica-
tion. A case-study application was developed for this purpose in Java programming language and
Spring framework using for data storage both relational MySQL and non-relational Elasticsearch and
MySQL Document Store. To model the real situation encountered in several developed applications
that use both relational and non-relational databases, a data replication solution that imports data
from the primary relational MySQL database into Elasticsearch and MySQL Document Store as
possible alternatives for more efficient data search was proposed and implemented.

Keywords: relational databases; non-relational databases; CRUD (create read update delete) opera-
tion; databases replication

1. Introduction

Nowadays, most applications are accessed by a large number of users and also have
to process a large amount of data in a short time, an important aspect that improves the
user experience and application performance being the use of an appropriate database. A
large variety of applications use relational databases that perform well when processing
a small amount of data, but when the volume of data increases, the relational model
proves to have serious limitations mainly due to a quite rigid schema that may become
an obstacle to change [1–3], and thus the need for a new approach has emerged, namely
non-relational databases.

Non-relational databases do not use a layout based on rows and columns; instead,
they use an optimized model according to the types of data that are stored, having a
flexible structure and allowing the storage of a large amount of data. A NoSQL database
sometimes ignores the principles of relational databases. The term NoSQL refers to non-
relational databases that provide a mechanism for storing and extracting data, having
a different strategy of executing the queries compared with a relational database [4].
The main methods of storage in non-relational databases are data storage in the form of

Appl. Sci. 2021, 11, 11590. https://doi.org/10.3390/app112411590 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3344-5714
https://orcid.org/0000-0002-7815-4355
https://orcid.org/0000-0002-7027-5750
https://doi.org/10.3390/app112411590
https://doi.org/10.3390/app112411590
https://doi.org/10.3390/app112411590
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411590
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411590?type=check_update&version=2


Appl. Sci. 2021, 11, 11590 2 of 23

documents, which is the most widespread approach, data stored in the form of column
families, key-value storage, and storage in the form of graphs [4].

A key feature of NoSQL systems is “shared nothing”, the main benefits being the
following: the ability to scale horizontally on multiple servers [5], the ability to replicate
and distribute data on multiple servers [6], an efficient use of indexes and RAM for efficient
storage, and the ability to dynamically add new attributes to data records [5]. A solution
can represent data distribution on multiple servers, which increases application availability
and fault tolerance [7].

Consequently, choosing a suitable database for a specific scenario is very important
in online applications mainly from the performance point of view. NoSQL databases
have many advantages but also, in certain circumstances, relational databases also could
represent a good solution; therefore, many applications may use a combined approach:
relational and non-relational.

Several opensource NoSQL alternatives are nowadays available, such as ElasticSearch,
MySQL Document Store MongoDB, CouchDB, Cassandra, Solr, and others. We chose for
this research ElasticSearch because it is a powerful RESTful modern search and analytics
engine. Additionally, since MySQL Document Store was recently released by Oracle in 2016,
we considered that it is important to perform an analysis of its performance compared to
other NoSQL databases; we also decided to use MySQL Document Store because the main
data source of the application is represented by MySQL, and in a real-world application they
could be used together very easily. Moreover, research which help the readers understand
the advantages and disadvantages of using MySQL Document Store by providing query
examples and performance measurements rarely found in current literature.

Consequently, this paper aims to make an analysis of the performance and configu-
ration features of non-relational databases MySQL Document Store and Elasticsearch as
an alternative backend option for applications. A case-study application was built for this
purpose and uses a combined architecture for data storage: a main relational database,
MySQL, and two types of non-relational databases, Elasticsearch and MySQL Document
Store, to improve searching capabilities. Based on this, the research is focalized on two
important aspects for both databases: aspects regarding configuring the processing within
Elasticsearch and MySQL Document Store for their integration in applications as alternative
data storage replicated from a primarily relational database and aspects regarding their
performance when realizing operations for different amounts of data. Thus, several impor-
tant aspects were addressed and highlighted in the paper: differences in response time and
complexity of CRUD operations, how the performance of the application can be influenced
by increasing the complexity of queries and the amount of data, and replication issues.

The paper is organized as follows: in Section 1, a short introduction that describes
theoretical concepts and emphasizes the motivation of the paper is presented followed by
Section 2 that reviews the related papers. The description of the case-study application
architecture and databases and the test methods are presented in Section 3, and the experi-
mental results obtained are described and analyzed in Section 4. A detailed analysis and
discussion regarding the performance tests over different complexity of queries and data
volumes and over-replication issues are carried out in Section 5. Finally, some conclusions
are drawn.

2. Related Work

Currently, there are many studies that have been conducted to compare relational and
non-relational databases based on different metrics. There are a lot of databases, especially
the NoSQL ones such as MongoDB, Elasticsearch, Redis, Neo4j, and Cassandra [5,8,9] for
storing large volumes of data, and choosing the most suitable databases for an application
can be difficult. In [9] the authors presented a performance analysis of Elasticsearch and
CouchDB on image data sets using the LINUX platform. The analysis is based on the
results carried out by operations on both document-oriented databases and shows that



Appl. Sci. 2021, 11, 11590 3 of 23

CouchDB is more efficient than Elasticsearch for insert, update, and delete operations but
for the select operation, Elasticsearch performs much better than CouchDB.

The authors propose in [1], a comparison and testing of Elasticsearch and MySQL
databases, using the Spring Data framework. The comparison is completed by searching
values in larger key-value datasets.

Elasticsearch was initially developed as a system for full-text search in large volumes
of unstructured data. At present, Elasticsearch is a full-fledged analytical system with
various capabilities [10]. In [10], possible sources of Big Data and problems related to its
processing are analyzed. A system based on the Elasticsearch engine and MapReduce
model is proposed as the solution to the user verification problem.

In [11] Mathe and al. compare the performance of Elasticsearch, OpenTSDB (based on
HBase), and InfluxDB NoSQL databases, using the same set of machines and the same data.
Using the LHCb Workload Management System (WMS), based on DIRAC [11] as a use
case they set up a new monitoring system, and in parallel with the current MySQL system,
they stored the same data into the databases under test. Shah N et al. presented in [12]
a solution to effectively address the challenges of real-time analysis using a configurable
Elasticsearch search engine.

Inserting and querying JSONs for Big Data for databases such as Cassandra, Mongo,
PostgreSQL, CoachDB, MariaDB, and Elasticsearch concluded with the recommendation
for Cassandra and Elasticsearch usage for searching and analytics, as described in [13].

The way that Cassandra, another NoSQL database open-source with a wide-column
store based on BigTable and DynamoDB concepts, benefit from the combination of BigTable
and DynamoDB systems and exhibits optimizations for write access is described in [14].
In [15], the authors perform an analysis implementation process of column-oriented data
stores of the NoSQL databases: BigTable and Cassandra, with respect to various issues
such as features, integrity, indexing, distributions, and design.

As highlighted above, choosing an appropriate database for storing huge amounts of
data is not trivial, as one must take into account different aspects such as manageability,
scalability, and extensibility. Moreover, even if several comparison studies exist in the
literature, we cannot identify studies that are involved in the comparison to the MySQL
Document Store database.

In this idea, this paper performs a comparative evaluation of two popular open-source
DBMSs: MySQL Document Store and Elasticsearch as a non-relational DBMS.

3. The Application Architecture and Databases
3.1. Application Architecture

To be able to make a comparison between the benefits of using Elasticsearch instead of
MySQL Document Store, a case-study application that aims to present an architecture for
an application of selling cars was developed; the application was further used to perform
different queries and to compare the efficiency of data processing. Even if the comparison
was made on a particular example, this does not restrict the generality of the concepts
presented due to the fact that similar structures to those used in the implementation could
be found in most current applications.

The application was developed in Java programming language using the Spring
framework and uses for data storage a main source represented by a relational MySQL
database and, as alternative sources, both Elasticsearch and MySQL Document Store to
improve searching capabilities. The back-end part of the application is composed of
three microservices and has the role of exposing operations through which the data will
be processed to perform performance tests; the access to microservices was completed
through a web application made in Angular that runs inside a browser and which allows
the creation of connections between the application components using HTTP requests, as
shown in Figure 1.



Appl. Sci. 2021, 11, 11590 4 of 23

Figure 1. Communication scheme.

The first microservice uses a relational database and represents the main source for
importing data from relational MySQL into the other two microservices, Elasticsearch and
MySQL Document Store, which will be used as alternatives for searching the data. The
Elasticsearch and MySQL Document Store microservices provide operations for processing
data that will be compared in terms of performance. Within Elasticsearch and MySQL
Document Store microservices, the same document structure is used, and in order to
compare their efficiency, various operations on the data were performed.

Due to the fact that monitoring the performance of the application of the various oper-
ations performed is an important aspect, we decided to use Prometheus and Grafana [16].
Prometheus is an open-source monitoring system which offers the possibility to define



Appl. Sci. 2021, 11, 11590 5 of 23

metrics for the operations that will be monitored. Based on the defined metrics, we created
a dashboard in Grafana to monitor the performance of operations.

To be able to communicate with MySQL, MySQL Document Store, and Elasticsearch,
the dependencies for Transport Client 7.6.0, Elasticsearch 7.6.0, and MySQL Connector
8.0.19 were specified in the pom.xml file. Additionally, in the application.yml file, the
connection attributes for MySQL must be specified, while for Elasticsearch a configuration
class will be created which allows to specify different settings for Elasticsearch.

In order to use MySQL Document Store, X Plugin was enabled and a connection was
created to the database. The operations executed in MySQL Document Store will use the
APIs defined for the Collection class, which belongs to the MySQL connector library.

For the operations performed in MySQL, Spring Data JPA (Java Persistence API)
was used, while for data processing in Elasticsearch, the APIs provided by the Transport
Client were reused. The application also offers a data replication mechanism that imports
data from relational MySQL into the other two microservices, Elasticsearch and MySQL
Document Store.

3.2. Using Relational MySQL

Developing the application using relational MySQL database involves the structure
presented in Figure 2, where the car_announcement entity has a @OneToOne relationship
with the exterior_spec, interior_spec and engine_detail entities and a @OneToMany relationship
with the sensor_detail and car_image entities. Additionally, exterior_spec and interior_spec
entities have a @OneToMany relationship with the car_option entity, while engine_detail has
@OneToOne relationship with the transmission_detail entity (Figure 2).

Figure 2. Relational database structure.



Appl. Sci. 2021, 11, 11590 6 of 23

Most of the applications have a complex database structure, and by using the database
representation of the tables shown in Figure 2, we wanted to analyze how this structure
together with the relationships between the tables influence the performance of the appli-
cation when the amount of data increases. Additionally, with this database structure we
wanted to suggest when a non-relational approach is worth being used because, when the
data structure is too simple, it could be possible for a non-relational database not to bring
any performance improvement and only add extra processing time.

The main disadvantage of this hierarchy of entities is that, with the increase of the
database, the extraction of this information may require more time due to the necessary
joins between the specified tables, and thus the performance of the application can decrease
significantly, in contrast to the non-relational approach where extracting data could be
faster because each document contains all the data necessary for each entity.

Therefore, many applications also use non-relational databases, which contain relevant
information from the relational database in a JSON format and involves the implementation
of a mechanism that ensures that the data is correctly replicated from the relational database.

3.3. Using Non-Relational Elasticsearch and MySQL Document Store

Elasticsearch is a search engine where the information is stored in the form of docu-
ments and has been created to store, retrieve, and make data management, having its own
mechanism for queries. Elasticsearch is a document-based search engine, and each entry is
a structured JSON document [8].

Elasticsearch is a near-real-time search platform that allows data search as soon as the
document was indexed. Elasticsearch allows dividing the data between several clusters,
which makes it possible to support high-performance operations [1]. Each cluster represents
one or more servers that store information and provide the ability to search for data. A
cluster can have many nodes, in which each node represents an Elasticsearch instance [12].
A node is a single server that holds part of the data and participates in the data indexing
and querying processes. The parts between which data is divided are called shards. Shards
come in two types—master and replica. The master allows both read and write operations,
while the replica is read only, and is an exact copy of the master. Such a structure ensures
the stability of the system, since in the event of a master failure, the replica becomes a
master [10]. In the developed application, a single node cluster was used and distributed
the documents in a single shard with no replicas.

MySQL Document Store allows storing rows from relational tables in the JSON
format within collections. It allows developers through the X Dev API to work with
relational tables and JSON document collections. The X DEV API provides an easy-to-use
API for performing CRUD operations, being optimized and extensible for performing
these operations.

MySQL Document Store offers flexibility in developing applications with non-relational
databases as well as traditional SQL database applications. This eliminates the need for a
separate non-relational database. Developers can use relational data and JSON documents
in the same database as well as in the same application.

Elasticsearch allows the indexing of data in JSON format, which is much easier to view
and process as opposed to the rows in each table. An index is a collection of documents
that have similar characteristics and assume that their name is unique to be able to perform
the search, delete, and update operations.

In the developed application, in order to be able to compare the efficiency of the
queries, multiple columns from car announcements were indexed both in Elasticsearch as
well as in MySQL Document Store to have the following structure:



Appl. Sci. 2021, 11, 11590 7 of 23

"_id":"10006",
"price":8900,
"carMake":"Audi",
"carType":"USED",
"carModel":"A4",
"carImages":[],
"engineDetail":{

"power":"184",
"fuelType":"DIESEL",
"serialNumber":"55",
"emissionClass":"Euro 5",
"engineCapacity":2000,
"transmissionDetail":{

"serialNumber":"123121",
"transmissionType":"AUTOMATIC"

}
},
"exteriorSpec":{

"color":"blue",
"carBody":"SEDAN",
"numberOfDoors":5,
"exteriorOptions":[
]

},
"interiorSpec":{

"numberOfSeats":4,
"interiorOptions":[
],
"airConditioningType":" AUTOMATIC "

},
"sensorDetails":[

{
"sensorType":"LIGHT_SENSOR",
"sensorPosition":"FRONT"

}
],
"kilometresNumber":189000,
"carAnnouncementNo":10006,
"firstRegistrationYear":"2010"

The above structure represents the non-relational alternative to the relational one
presented in Figure 1. The main benefit of using Elasticsearch and MySQL Document Store
in this case is that it avoids making joins between all the tables mentioned above.

3.4. One Way Data Replication Solution

Another aspect that we followed in performing the comparative analysis between
the two technologies, Elasticsearch and MySQL Document Store, is represented by the
replication of the main relational database. This approach offers the possibility of using an
alternative for more efficient data search and is useful in many categories of applications.

For this purpose, a data replication solution was proposed and implemented within
the developed application and involves importing data from the main application database,
relational MySQL, and indexing in Elasticsearch and MySQL Document Store.

Due to the fact that the architecture of the project is based on microservices, in order
to import the data from relational MySQL into the other microservices, Kafka [17] was
used by configuring a topic which will contain JSON objects. Kafka is used to build
real-time streaming data pipelines and applications that adapt to the data streams. It
combines messaging, storage, and stream processing to the allow storage and analysis of
both historical and real-time data [17].



Appl. Sci. 2021, 11, 11590 8 of 23

Figure 3 shows the process of data replication through a REST service that has the role
of uploading the data stored in relational MySQL and transmitting it to Kafka through a
Kafka Producer.

Figure 3. Data replication process.

When the data reaches Kafka, the two consumers who belong to different groups will
start reading JSON objects to store them as documents.

An important aspect in this process is the way consumers are configured. In this repli-
cation process, it is desired to consume all the objects reached in Kafka by both consumers,
and by assigning different groups it is ensured that each consumer will read all the JSON
objects within the partitions. In the data replication process, all the car_announcements
stored into relational database will be sent to Kafka using a Kafka Producer, which will
write the data into a specific topic.

In order to send the data to Kafka, we will use the KafkaTemplate which provides a
set of methods for sending messages. Example of use:

public void sendCarAnnouncement(CarAnnouncementDTO carAnnouncementDTO) {
this.kafkaTemplate.send(“car”, carAnnouncementDTO);

}
}

Once the information has reached Kafka, it will be processed by the two consumers
within the Elasticsearch and MySQL Document Store microservices. Example of use:

@KafkaListener(topics =“car”)
public void consume(CarAnnouncementDTO carAnnouncementDTO) {

service.processCarAnnouncement(carAnnouncementDTO);
}



Appl. Sci. 2021, 11, 11590 9 of 23

Therefore, in Elasticsearch, received objects will be transmitted to the Bulk Processor
by creating an IndexRequest object. Using Bulk Processor, the replication process is very
fast and the processing of indexing requests is performed without the need to implement
additional functionalities. On the other hand, when using MySQL Document Store, it is
necessary to implement a strategy that takes over the received JSON objects for processing
in the form of groups of documents and indexing them using three threads in order to
optimize performance.

Figure 4 represents the times obtained for importing data from MySQL by sending it to
Kafka and processing within the microservices Elasticsearch and MySQL Document Store.

Figure 4. Data replication times.

Within the Elasticsearch microservice, car announcement objects received from Kafka
will be indexed in Elasticsearch by using Bulk Processor, which eliminates the need to
implement a strategy for data processing, while in MySQL Document Store it is required to
implement such a strategy in order to process and index received objects.

Based on the results obtained and taking into consideration that the time differences
are very small, it can be stated that both alternatives are very fast in the data replication
process. Additionally, both implemented solutions may have better processing times when
using multiple threads or by increasing the number of consumers within the groups, but
this depends on the hardware capabilities.

One of the benefits of Bulk Processor is that it allows configuring the size of bulk re-
quest, the number of indexing requests, or the time frame at which indexing will take place.

4. Performance Tests

To carry out a comparative study between the advantages and disadvantages of using
Elasticsearch instead of MySQL Document Store, a series of operations were performed on
the two databases to analyze the response times according to the performed operation. All
tests were performed on the same computer having the following properties: Operating
System–Ubuntu 16.04, 32 GB RAM, Intel Core I7 7820HQ processor (2.9 GHz), 500 GB HDD.
The database comparison involved testing performance time for all the CRUD (Create, Read,



Appl. Sci. 2021, 11, 11590 10 of 23

Update, Delete) operations over the two non-relational variants: MySQL Document Store
and Elasticsearch. The size on disk of the three databases (relational MySQL, Document
Store, Elasticsearch) as the amount of data changes is shown in Figure 5.

Figure 5. Disk memory usage.

In order to record the time required to perform these operations, the Instant and
Duration classes were used. The Instant class, which belongs to the Java runtime library,
can be used by maintaining the time when the execution started in a variable. Then, using
the between method of the Duration class defined in the Java runtime library, the time
in seconds or milliseconds can be obtained by subtracting the initial time from the time
obtained after performing the operation.

In order to obtain the most accurate processing times for each operation, 10 successive
measurements were performed relative to the number of documents, and in the tables
showing the times corresponding to the executed operation, the average of the times has
been recorded; lower values were better.

4.1. INSERT Statement

The testing of the insertion operation was performed by defining the structure of the
entities, respectively, of the documents in Elasticsearch so that the data can be processed
by sending a JSON object to a Rest service. In order to test the data insertion operation,
multiple tests were performed, starting from the insertion of 30,000 records to the inser-
tion of 2,000,000 records. For the insertion process, we provide JSON objects based on
REST requests.

We decided to use car_announcements because it represents a complex structure through
which various queries can be tested, but also due to the fact that its representation in
the relational database involves several tables that offer the possibility to analyze the
application performance depending on the number of records.

Initially, 30,000 documents will be inserted, after 60,000 car announcements followed
by 100,000. To have the most accurate times, the insertion process will continue by adding
500,000 car announcements, followed by the insertion of 1,000,000 car announcements, and
finally 2,000,000 car announcements will be inserted to distinguish performances.



Appl. Sci. 2021, 11, 11590 11 of 23

Due to the fact that MySQL Document Store does not have a Bulk API that works
with large data sets, in order to be able to process the data in parallel, ExecutorService will
be used, which will execute multiple tasks, each containing 500 documents.

To index multiple documents, Elasticsearch has the Bulk API that provides a number
of operations exposed by rest services, being optimized to work with large data sets. This
API eliminates the need to write additional code to process data, simplifying application
logic and reducing development time. Additionally, using the BulkProcessor class is enough
to create an IndexRequest object based on the indexed document, and the actual indexing
process will be conducted by BulkProcessor.

Thus, the insert statement has the syntax presented in Table 1:

Table 1. INSERT statements.

MySQL
Document Store

Collection cars = session.getSchema(schemaName).getCollection(CARS);
session.startTransaction();

carAnnouncementDTOS.stream().forEach(carAnnouncementDTO-> cars.
addOrReplaceOne(carAnnouncementDTO.getCarAnnouncementNo(), gson.toJson(carAnnouncementDTO)));

session.commit();

Elasticsearch

IndexRequest indexRequest = new IndexRequest(indexName) .id(String.valueOf
(carAnnouncementDTO.getCarAnnouncementNo())) .source(gson.toJson

(carAnnouncementDTO), XContentType.JSON);
bulkProcessor.add(indexRequest);

Based on the results obtained in the data insertion process, it can be seen that Elastic-
search is much faster than MySQL Document Store in both cases of using one (Figure 6)
and three threads, respectively (Figure 7). This idea is very well highlighted by the insertion
of 2,000,000 documents, where the time differences are very large.

Figure 6. Insert statement using a single thread.

Another important aspect that influences processing times is the way of inserting data.
As can be seen in the results obtained in both cases, the use of three threads improved the
processing times, but for MySQL Document Store the processing times did not decrease as
significantly as they did for Elasticsearch. This can be caused by the fact that the data is
inserted in the MySQL Document Store through a task that runs at an interval of 6 s and
executes several transactions to avoid a large amount of data in memory.



Appl. Sci. 2021, 11, 11590 12 of 23

Figure 7. Insert statement using three threads.

Elasticsearch is also built on Apache Lucene, which is much faster and able to handle
larger amounts of data than MySQL Document Store. Another advantage of Elasticsearch
in the insertion process is that it has the Bulk API. It is very well optimized, being built to
process large amounts of data. The simplicity with which it can be integrated and config-
ured within applications is another advantage, because the integration and configuration
time is very short.

Another important factor that contributes to improving the performance of Elastic-
search is that data should not be replicated due to the fact that a single node is used. Using
a multi-node Elasticsearch cluster would have introduced additional processing times, but
one advantage would have been that any node can replace another node when it is no
longer available, increasing data availability.

However, even if the times obtained for Elasticsearch and MySQL Document Store are
accurate, these times can be easily influenced by the actions conducted in the application.
In another train of thought, these insertion times can vary from application to application
based on the operations executed within the application.

4.2. Select Statement

To test the efficiency of data selection operations, multiple queries will be performed
to distinguish the performance of Elasticsearch and MySQL Document Store. Additionally,
through these queries the performance of the two databases in various scenarios was
compared, from applying simple filters to applying combinations of filters on the data.

4.2.1. Simple Select Statement by Id

A simple select statement by id has the syntax presented in Table 2 and the perfor-
mance results obtained are described in Figure 8.

Table 2. SELECT statements by id.

MySQL Document Store schema.getCollection(CARS).getOne(id);

Elasticsearch client.prepareGet(indexName, CAR, carId).execute().actionGet();



Appl. Sci. 2021, 11, 11590 13 of 23

Figure 8. Simple select statement by id.

4.2.2. Simple Select Statement with One Search Criterion

In the document selection operation applying a single search criterion, ten car an-
nouncements were extracted that have air conditioning according to the conditions selected
in the search form. The select statement when only one search criterion was involved
has the syntax presented in Table 3 and the performance results obtained are described in
Figure 9.

Figure 9. Simple select statement with one search criterion.



Appl. Sci. 2021, 11, 11590 14 of 23

Table 3. SELECT statements with one search criterion.

MySQL Document Store schema.getCollection(CARS).find(“interiorSpec.airConditioningType in [[‘automatic’, ‘
automatic_2_zones’]”)’]”).sort(“_id”) .limit(10) .execute();

Elasticsearch

{“size”: 10,
“query”: {“terms”: {

“interiorSpec.airConditioningType”: [“automatic”,“automatic_2_zones”]
}},

“sort”: [{“_id”: {“order”: “asc”}}]
}

4.2.3. Select Statement with Two Search Criteria

The operation of selecting documents applying two search criteria has the role of
extracting through a pagination that will contain a maximum of 10 elements with all the
announcements with cars for sale that have the brand and model selected in the search
form. The select statement which involves two search criteria has the syntax presented in
Table 4, and the obtained performance results are described in Figure 10.

Table 4. SELECT statements with two search criteria.

MySQL Document Store schema.getCollection(CARS).find(“carMake = ‘Audi’ and carModel = ‘A4’”) .sort(“_id”) .limit(10)
.execute();

Elasticsearch

{ “size”:10,
“query”:{
“bool”:{
“must”:[

{“match”:{“carMake”:{“query”:“Audi”}}},
{“match”:{“carModel”:{“query”:“A4”}}}

]}},
“sort”:[{“_id”:{“Order”:“asc”}}]

}

Figure 10. Select statement with two search criteria.



Appl. Sci. 2021, 11, 11590 15 of 23

4.2.4. Complex Select Statement with Four Search Criteria

In the selection operation applying four search criteria, ten ads with cars for sale will
be extracted that have the make, model, price, and year of registration according to the
conditions selected in the search form. A more complex select statement that uses four
search criteria is presented in Table 5, and the obtained performance results are described
in Figure 11.

Table 5. SELECT statements with four search criteria.

MySQL Document Store
schema.getCollection(CARS).find(“carMake = ‘Audi’ and carModel = ‘A4’ and price >= 6000 and

price <= 15,000 and firstRegistrationYear >= ‘2009’ and
firstRegistrationYear <= ‘2013’”).sort(“_id”) .limit(10) .execute();

Elasticsearch

{ “size”:10,
“query”:{
“bool”:{
“must”:[

{“match”:{“carMake”:{“query”:“Audi”}}},
{“match”:{“carModel”:{“query”:“A4”}}},

{“range”:{“price”:{
“from”:“6000”,“to”:“15000”,

“include_lower”:true,
“include_upper”:true }}},

{“range”:{“firstRegistrationYear”:{
“from”:“2009”,“to”:“2013”,

“include_lower”:true,
“include_upper”:true }}}

] }
},

“sort”:[{“_id”:{“order”:“asc”}}]}

Figure 11. Complex select statement with four search criteria.

Based on the results obtained from the selection operations presented above, it can be
seen that both Elasticsearch and MySQL Document Store are very fast in the data search



Appl. Sci. 2021, 11, 11590 16 of 23

process. Response times are relatively close, but in some cases Elasticsearch has higher
response times than MySQL Document Store.

Performing an analysis of the response times according to the number of criteria
applied in the search process, it can be seen that those for MySQL Document Store are
kept constant without having a significant increase when applying several criteria. This
statement is also valid for Elasticsearch, but in the selection operation with four search
criteria there was an increase in response times until there were 100,000 documents.

Starting from 500,000 documents, the times obtained have a better response time
compared to previous selection operations. This decrease in response times can be caused
by the fact that Elasticsearch assigns a higher score to documents that are returned for
various search criteria. A bool query will combine the scores obtained for all queries
to return the documents that best match the search criteria. Considering that the time
differences are at the level of milliseconds, and the times obtained in the data selection
process are very good, it can be stated that both were very fast in the data selection process
and are very good alternatives for searching data, bringing a major benefit to performance.

Another important aspect is not only the fact that the response times were not influ-
enced by the increase of the number of documents, but also the fact that the time differences
between the time when 30,000 documents and 2,000,000 documents were stored are very
small. An important detail is also that sorting in MySQL Document Store is performed
on a field with the index associated. Thus, to further highlight the importance of an in-
dex, Figure 12 shows the search times obtained by the MySQL Document Store on a field
without an associated index, according to the statements from Table 6.

Figure 12. Select statement with two search criteria without index on MySQL Document Store.

Making a comparison between the times obtained in Figure 10, where also two
searching criteria were used, a huge difference between the times obtained in the two cases
can be seen. To avoid these very long processing times, when using MySQL Document
Store it is very important to create indexes for the fields that will be used in the data
search process.

Based on this, Elasticsearch has another advantage due to the fact that it is not neces-
sary to create indexes for the fields used in the document because each document structure
that describes one or more tables in a relational database represents an index.



Appl. Sci. 2021, 11, 11590 17 of 23

Table 6. SELECT statements with two search criteria without index on MySQL Document Store.

MySQL Document Store schema.getCollection(CARS).find(“carMake = ‘Audi’ and carModel = ‘A4’”)
.sort(“carAnnouncementNo”) .limit(10) .execute();

Elasticsearch

{ “size”:10,
“query”:{
“bool”:{
“must”:[

{“match”:{“carMake”:{“query”:“Audi”}}},
{“match”:{“carModel”:{“query”:“A4”}}}

]}},
“sort”:[{“carAnnouncementNo”:{“Order”:“asc”}}]

}

Based on the results obtained, it can be stated that an index is essential when using
MySQL Document Store. The time differences are major in this case because MySQL
Document Store has to go through all the documents one by one to check if they meet the
selection condition.

4.3. UPDATE Statement
Simple Update Operation by Id

In order to test the update operation, a query will be performed that aims to change
different values of a car announcement based on its unique identifier. The update statement
that realizes a simple update operation by id is presented in Table 7, and the obtained
performance results are described in Figure 13.

Table 7. Simple UPDATE by id statements.

MySQL Document Store cars.replaceOne(carAnnouncementNo, gson.toJson(carAnnouncementDTO));

Elasticsearch client.prepareUpdate(index, type, carAnnouncementNo)
.setDoc(gson.toJson(carAnnouncementDTO), XContentType.JSON).execute();

Figure 13. Simple update operation by id.

In the update process, Elasticsearch will retrieve the existing document in order to
apply the changes, and after that it will index the new document received during the update
operation. At the end of the operation, the old document will be marked for deletion.



Appl. Sci. 2021, 11, 11590 18 of 23

In MySQL Document Store, the update operation will filter the collection to find the
document which has the corresponding id, and after that it will update the document value.

For both alternatives, Elasticsearch and MySQL Document Store, the existing indexes
will be used to find and change the value of the document.

Based on the results obtained after performing the data modification operation, it
can be seen that Elasticsearch is faster, but considering that the processing times are at the
level of milliseconds, it can be also stated that MySQL Document Store was very fast in the
update operation.

4.4. DELETE Statement

Testing of the delete statement operation was realized by executing two delete opera-
tions which aimed to remove different amounts of car announcements from the database.
The delete statement that realizes a simple delete operation by id is presented in Table 8,
and the obtained performance results are described in Figure 14.

4.4.1. Delete Operation by Id

Based on the results obtained in the operation of deleting a car announcement by id
and taking into account the fact that the processing times are at the level of milliseconds, it
can be stated that both alternatives are relatively fast in the process of deleting data by id,
with a slight superiority for ElasticSearch. For both alternatives, the deletion process uses
the internal index, and thus it is no longer necessary to browse documents.

Table 8. Simple DELETE by id statement.

MySQL Document Store cars.removeOne(id);

Elasticsearch client.prepareDelete(index, type, id).execute();

Figure 14. Delete operation by id.

4.4.2. Delete Multiple Documents

A more complex statement that deletes multiple documents is presented in Table 9,
and the obtained performance results are described in Figure 15. During the process of
deleting multiple car announcements by id, for every amount of data 30 car announcements
were deleted and major time differences can be noticed between Elasticsearch and MySQL
Document Store.



Appl. Sci. 2021, 11, 11590 19 of 23

Table 9. DELETE multiple documents statements.

MySQL Document Store cars.remove(“carAnnouncementNo between {lower} and {upper}”).execute();

Elasticsearch

DeleteByQueryRequest delete = new DeleteByQueryRequest(index)
.setQuery(QueryBuilders.rangeQuery(“carAnnouncementNo”)

.gte(lower).lte(upper));
client.execute(DeleteByQueryAction.INSTANCE, delete).actionGet();

Analyzing the initial times and times obtained by increasing the number of indexed
documents, Elasticsearch proves to be more capable to work with large amounts of data,
while MySQL Document Store has a significant increase in processing times as the number
of indexed documents increases.

The main difference is the way DeleteByQueryRequest works. Thus, Elasticsearch
performs multiple requests to search for documents to be deleted. Once the documents are
found, a delete request is executed for each batch of documents, while MySQL Document
Store must browse the documents to identify if they meet the condition. Using Bulk API
is a major advantage offered by Elasticsearch due to the fact that it can process a large
amount of data.

A possible justification for major differences between processing times both for delete
but also for update operations is represented by the differences between how replaceOne
and removeOne operations were implemented in MySQL Document Store and Elastic-
Search, with those in MySQL Document Store extra checks being completed before updat-
ing or removing a document. When executing these operations, MySQL Document Store
will check if the corresponding document exists for the provided id, while for the update
operation an extra check is made to verify that the newly received document has no value
provided for the _id field.

Figure 15. Delete multiple documents.

Judging only by the times presented in Figures 14 and 15, it could leave an impression
that deleting one by one will be faster. However, when deleting one by one we have to take
into consideration the fact that time will increase because for each operation there will be
a separate transaction executed and this is a bit different that in the case when we delete
30 documents, a process that is executed inside a single transaction. The main difference
between times is made by the fact that MySQL Document Store is slower than Elasticsearch
in finding the document to delete, as shown in Figure 8.



Appl. Sci. 2021, 11, 11590 20 of 23

5. Analysis and Discussion

Both Elasticsearch and MySQL Document Store are easy to install and configure.
Regarding scalability, ElasticSearch is very easy to scale horizontally, being built to always
be available. Nodes can be added to a cluster to increase capacity, and Elasticsearch
automatically distributes data and load to all available nodes. On the other side, MySQL
Document Store uses the advantages of MySQL Group Replication and InnoDB Cluster to
achieve high availability. The documents are reproduced by all members of the group and
the transactions are synchronized.

From the functionality and complexity point of view, ElasticSearch offers many APIs
that can be used and eliminates the need to write extra code to process large amounts of
data, being very easy to integrate and use. On the other side, MySQL Document Store
provides APIs for create, read, update, and delete operations but requires extra code to
process large amounts of data.

Regarding the performance of CRUD operations, Table 10 presents a synthesis of the
results obtained.

Table 10. Synthesis of CRUD operations performance.

Elasticsearch MySQL Document Store

Data insertion (INSERT)

Make full use of the Bulk API features. The code for indexing
documents is simple and easy to understand. Processes large
amounts of data much faster offering many possibilities of data
processing configuration. The use of three threads brings a
significant improvement: average insertion times based on the
number of documents using a single thread based on the
number of documents is 0.069 ms; average insertion time using
three threads is 0.032 ms.

Document insertion is completed through multiple batches,
each batch being inserted through a transaction. Data
processing and insertion is slower compared to Elasticsearch.
The use of three threads does not produce a significant
improvement compared to Elasticsearch: average insertion
times based on the number of documents using a single thread
is 0.37 ms; average insertion time using three threads is 0.26 ms.

Data search (SELECT)

It is not necessary to create indexes for the fields used in the
document since each document structure represents an index.
Good searching performance, slightly affected by the number of
searching criteria, average time obtained being 53.7 ms by
applying a single search criterion, 56.3 ms by applying two
search criteria, and 55.9 ms by applying four search criteria.

It is important to create indexes for the columns used in the
search or sorting processes. Search time performance is better
compared to Elasticsearch and slightly affected by the number
of searching criteria, the average time obtained being 45.9 ms by
applying a single search criterion, 44.9 ms by applying two
search criteria, and 41.85 ms by applying four search criteria.

Data modification (UPDATE)

Makes full use of the features provided by Bulk API. Retrieve
the existing document to apply the changes and, after that,
index the new document received during the update operation,
the old document being marked for deletion. Exhibits very
good processing time: the average time to change the value of a
document is 12.6 ms.

Good processing times but slower compared to Elasticsearch.
The average time to change the value of a document is 57.4 ms.

Data deletion (DELETE)

Very good processing times. Proves to be much more capable of
working with large amounts of data.
The main difference is made by using Bulk API and the way
DeleteByQueryRequest works. Elasticsearch performs multiple
search requests for documents to be deleted. After finding the
documents, a delete request is executed for each batch of
documents. The average time required to delete a document by
id is 5.1 ms; the average time required to delete 30 documents by
id is 56.9 ms.

Good processing times but much slower compared to
Elasticsearch. MySQL Document Store has a significant increase
in processing times as the number of documents increases: it
must browse the documents to identify if they meet the
condition. The average time required to delete a document by id
is 25.1 ms. The average time required to delete 30 documents by
id is 855.6 ms.

Speaking about data replication issues, as shown from the data replication solution
implemented in the case study, ElasticSearch allows the use of BulkProcessor to process



Appl. Sci. 2021, 11, 11590 21 of 23

large amounts of data, with no additional implementations required, just BulkProcessor
integration and configuration.

Consequently, it offers many possibilities to configure the way of data processing
and simplify the application logic because the indexing process is performed by BulkPro-
cessor, which will receive the indexing requests. Therefore, ElasticSearch exhibits very
good performance, the average replication time being 1270 s. On the other side, MySQL
Document Store requires the implementation of a data processing strategy and implies
writing extra code to replicate data. The resulting implemented solution generally does not
offer as many configuration possibilities as BulkProcessor. However, it also exhibits very
good performance, close to Elasticsearch, the average time obtained to replicate data being
1274.8 s.

Although the processing times are very good in both cases, comparing the replication
methods, it is possible, due to the fact that MySQL Document Store does not offer a Bulk
Api, that MySQL Document Store may require more memory.

6. Conclusions

Efficient data management within applications is an important aspect and choosing
a database to store large amounts of information is very important. In this paper, a
comparative study was conducted between the capabilities of Elasticsearch and MySQL
Document Store in terms of performance, complexity, features, and configuration issues.

The architecture of the case-study project used for this research is based on microser-
vices; consequently, the paper addresses important aspects regarding the complexity of
developed architecture but also issues regarding configuring the processing within the
microservices in Elasticsearch and MySQL Document Store as well as replication aspects
that allow both databases to be integrated and used in applications together with a rela-
tional database.

Based on the results obtained from performance tests, it can be stated that both non-
relational databases used for storing data in the form of documents are very fast, showing
very good performance in terms of the operations analyzed in the paper.

From the point of view of the integration and data insertion processes, it can be stated
that Elasticsearch represents a more complex approach because it provides a series of APIs
that facilitate the application development process. This statement is also supported by
the insertion times obtained as well as by the effort required to implement a data insertion
solution in parallel.

In terms of the results obtained in the data selection process, MySQL Document Store
proves to be the fastest solution in most cases. When using the MySQL Document Store it is
very important to analyze the columns used in the selection process to define appropriate
indexes. Unlike Elasticsearch, where it is not necessary to define an index for a field,
MySQL Document Store requires defining these indexes to perform better, thus leading to
a relatively higher complexity in implementation.

The process of modifying the data uses internal indexes to change the value of the
documents. Based on the results obtained after performing the data modification operation,
it can be stated that Elasticsearch is the faster alternative.

In the process of deleting data, Elasticsearch proves to be by far the fastest alternative
in most cases. This is because, in case of deleting multiple documents, Elasticsearch makes
full use of the features provided by Bulk API, performing multiple requests to search
for documents to be deleted and, after that, executing a delete request for each batch of
documents. MySQL Document Store must browse the documents to identify if they meet
the condition.

The architecture presented in the case-study application proves that both non-relational
alternatives could be integrated into a real-life application as alternative data storage and
replicated with a primarily relational database, where in this case is MySQL. Elasticsearch
exhibits a simpler integration and replication approach, which is mostly completed by using
BulkProcessor integration and configuration without additional implementation. MySQL



Appl. Sci. 2021, 11, 11590 22 of 23

Document Store requires the implementation of a data replication strategy and writing
extra code to replicate data where in this case, the resulting solution offering not as many
configuration possibilities as BulkProcessor. However, based on the results obtained by
comparing replication times for both alternatives, it was noticed that the time differences
were very small, and it consequently can be stated that both alternatives are very fast.

One of the drawbacks of the study is that it does address only a one-way data replica-
tion solution that involves importing data from the main application database, relational
MySQL, and indexing in Elasticsearch and MySQL Document Store. Some applications
require a two-way synchronization solution, where synchronization is triggered when
values are changing. Consequently, further development of the research will address a
two-way data replication solution which involves synchronizing the data during updating
or deletion. Additionally, scaling Kafka, using Elasticsearch cluster with data replication
and nodes configuration, and using MySQL cluster for higher data availability will also be
approached in further updates of this study.

Author Contributions: Conceptualization, D.R.Z., C.I.M. and C.A.G.; methodology, D.R.Z. and
C.A.G.; software, C.I.M.; validation D.R.Z., C.A.G. and R.Ş.G.; resources C.A.G. and L.B., writing—
original draft preparation, D.R.Z., C.I.M. and C.A.G.; writing—review and editing, C.A.G. and R.Ş.G.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Seda, P.; Hosek, J.; Masek, P.; Pokorny, J. Performance Testing of NoSQL and RDBMS for Storing Big Data in e-Applications. In

Proceedings of the 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG), Yi-Lan, Taiwan, 22–25
April 2018; pp. 22–25.

2. Győrödi, C.; Győrödi, R.; Sotoc, R. A comparative study of relational and non-relational database models in a Web-based
application. Int. J. Adv. Comput. Sci. Appl. 2015, 6, 78–83. [CrossRef]

3. Győrödi, C.A.; Dumşe-Burescu, D.V.; Zmaranda, D.R.; Győrödi, R.Ş.; Gabor, G.A.; Pecherle, G.D. Performance Analysis of NoSQL
and Relational Databases with CouchDB and MySQL for Application’s Data Storage. Appl. Sci. 2020, 10, 8524. [CrossRef]

4. Buck, A.; Wasson, M.; Wilson, M. Non-Relational Data and NoSQL. Available online: https://docs.microsoft.com/en-us/azure/
architecture/data-guide/big-data/non-relational-data (accessed on 21 August 2021).

5. Cattell, R. Scalable SQL and NoSQL data stores. ACM Sigmod Rec. 2011, 39, 12–27. [CrossRef]
6. Gormley, C.; Tong, Z. Elasticsearch: The Definitive Guide: A Distributed Real-Time Search and Analytics Engine; O’Reilly Media, Inc.:

Sevastopol, CA, USA, 2015.
7. Hinman, M.L.; Gheorghe, R.; Russo, R. Elasticsearch in Action, 1st ed.; Manning Publications Shelter Island: New York, NY, USA,

2015; ISBN 978-1617291623.
8. Akca, M.A.; Aydoğan, T.; İlkuçar, M. An analysis on the comparison of the performance and configuration features of big data

tools Solr and Elasticsearch. Int. J. Intell. Syst. Appl. Eng. 2016, 4, 8–12. [CrossRef]
9. Gupta, S.; Rani, R. A comparative study of Elasticsearch and CouchDB document oriented databases. In Proceedings of the 2016

International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–27 August 2016; Volume 1.
10. Voit, A.; Stankus, A.; Magomedov, S.; Ivanova, I. Big Data Processing for Full-Text Search and Visualization with Elasticsearch.

Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2017, 8, 12. [CrossRef]
11. Mathe, Z.; Ramo, A.C.; Stagni, F.; Tomassetti, L. Evaluation of NoSQL databases for DIRAC monitoring and beyond. J. Phys. Conf.

Ser. 2015, 664, 042036. [CrossRef]
12. Shah, N.; Willick, D.; Mago, V. A framework for social media data analytics using Elasticsearch and Kibana. Wirel. Netw. 2018, 11,

1–9. [CrossRef]
13. Panche, R.; Ilijoski, B.; Tojtovska, B. Comparing Databases for Inserting and Querying JSONs for Big Data. ICT Innovations 2019,

Web Proceedings. Available online: https://proceedings.ictinnovations.org/attachment/paper/518/comparing-databases-for-
inserting-and-querying-jsons-for-big-data.pdf (accessed on 24 August 2021).

14. Kalid, S.; Syed, A.; Mohammad, A.; Halgamuge, M.N. Big-data NoSQL databases: A comparison and analysis of “Big-Table”,
“DynamoDB”, and “Cassandra”. In Proceedings of the IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing,
China, 10–12 March 2017; pp. 89–93. [CrossRef]

http://doi.org/10.14569/IJACSA.2015.061111
http://doi.org/10.3390/app10238524
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
http://doi.org/10.1145/1978915.1978919
http://doi.org/10.18201/ijisae.271328
http://doi.org/10.14569/IJACSA.2017.081211
http://doi.org/10.1088/1742-6596/664/4/042036
http://doi.org/10.1007/s11276-018-01896-2
https://proceedings.ictinnovations.org/attachment/paper/518/comparing-databases-for-inserting-and-querying-jsons-for-big-data.pdf
https://proceedings.ictinnovations.org/attachment/paper/518/comparing-databases-for-inserting-and-querying-jsons-for-big-data.pdf
http://doi.org/10.1109/ICBDA.2017.8078782


Appl. Sci. 2021, 11, 11590 23 of 23

15. Chary, M.P.; Kumar, S. A Survey on Implementation of Column-Oriented NoSQL Data Stores (Bigtable and Cassandra). Int. J.
Comput. Eng. Res. Trends 2015, 2, 463–469.

16. Getting Started with Grafana and Prometheus. Available online: https://grafana.com/docs/grafana/latest/getting-started/
getting-started-prometheus/ (accessed on 31 August 2021).

17. Narkhede, N.; Shapira, G.; Palino, T. Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale; O’Reilly Media, Inc.:
Sevastopol, CA, USA, 2017; ISBN 9781491936160.

https://grafana.com/docs/grafana/latest/getting-started/getting-started-prometheus/
https://grafana.com/docs/grafana/latest/getting-started/getting-started-prometheus/

	Introduction 
	Related Work 
	The Application Architecture and Databases 
	Application Architecture 
	Using Relational MySQL 
	Using Non-Relational Elasticsearch and MySQL Document Store 
	One Way Data Replication Solution 

	Performance Tests 
	INSERT Statement 
	Select Statement 
	Simple Select Statement by Id 
	Simple Select Statement with One Search Criterion 
	Select Statement with Two Search Criteria 
	Complex Select Statement with Four Search Criteria 

	UPDATE Statement 
	DELETE Statement 
	Delete Operation by Id 
	Delete Multiple Documents 


	Analysis and Discussion 
	Conclusions 
	References

