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Abstract: The major objective of this research is to study the planar dynamical motion of 2DOF of an
auto-parametric pendulum attached with a damped system. Using Lagrange’s equations in terms of
generalized coordinates, the fundamental equations of motion (EOM) are derived. The method of
multiple scales (MMS) is applied to obtain the approximate solutions of these equations up to the
second order of approximation. Resonance cases are classified, in which the primary external and
internal resonance are investigated simultaneously to establish both the solvability conditions and
the modulation equations. In the context of the stability conditions of these solutions, the equilibrium
points are obtained and graphically displayed to derive the probable steady-state solutions near
the resonances. The temporal histories of the attained results, the amplitude, and the phases of
the dynamical system are depicted in graphs to describe the motion of the system at any instance.
The stability and instability zones of the system are explored, and it is discovered that the system’s
performance is stable for a significant number of its variables.

Keywords: auto-parametric vibration; perturbation methods; resonance; fixed points; stability

1. Introduction

The motion of vibrating systems is regarded as one of the most significant motions
in mechanics because of its numerous applications in life, such as in building structures,
ships, rotor dynamics, sieves, pumps, compressors and transportation devices [1–3].

One of the most important systems is an auto-parametric one, which consists of at
least two nonlinearly connected subsystems. The first subsystem can be excited by an
external harmonic force when it is attached to a second one, which is known by an absorber.
Therefore, one can determine the principal parametric resonance of the second subsystem
(auto-parametric interaction) by reducing the response of the first subsystem, as seen
in [4–10].

Fractional calculus has been used extensively during the last two decades in many
branches of science and engineering [11–14]. In [11], the authors studied the dynamical
motion of a particle in a circular cavity with aid of fractional calculus. The obtained
fractional Hamilton’s EOM was explored using two approaches and was solved numer-
ically. In [12,14], the authors studied the problems of a spring pendulum and two rigid
pendulums having the same arm, connected with each other by a spring. The fractional
Euler-Lagrange’s equation was derived and solved numerically for some fractional or-
ders and initial conditions. The same concept of the fractional calculus is used in [13] to
investigate the governing equation of motion for a capacitor microphone.

The behavior of a nonlinear damping 2DOF for a dynamical vibrating system con-
nected with a spring is investigated in [7]. In [8], the authors studied a dynamical system
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of 4DOF consisting of an auto-parametric pendulum with a rigid body. The dynamic
response of auto-parametric system under the influence of kinematic excitation was inves-
tigated numerically and experimentally in [9]. The authors studied whether the motion
of the system was regular using plots. In [10], the authors studied the response of an
auto-parametric system consisting of a pendulum absorber attached to a damping oscil-
latory system. The approximate solution near resonance was obtained using the method
of harmonic balance [4]. The MMS was utilized in [15] to obtain the auto-parametric
conditions of a damped Duffing system connected with a pendulum. By virtue of this
technique, the solution of two coupled mass springs was obtained in [16]. The author
discussed new excitation conditions in the presence of auto-parametric resonance. The
auto-parametric resonance of a vibrating system under a third-order nonlinear coupling
term was investigated in [17]. The bifurcation and the stability of a similar system under
external forces was investigated in [18,19].

Moreover, MMS was utilized in [20] to obtain an autonomous system up to the third-
order of the motion of a suspended point of a spring on a circular path. The fourth-order
Runge-Kutta algorithm of ode45 solver [21] was applied in [22] to obtain the numerical
solutions of the problem of a vibrating rigid body using Matlab packages. The obtained
results were more consistent than previous works. The response of a harmonically damped
spring pendulum was investigated in [23]; its suspended point followed an elliptic rout
with a constant angular velocity. The MMS was utilized to obtain the resonance cases and
to establish equations of modulation that identified all feasible steady-state solutions. The
generalization of this model was presented in [24,25], where a rigid body was connected to
a spring in the presence of a linear force along the spring’s arm. In addition, there were
two moments, one at the point where the body connects to the spring and the other at
the point when the pendulum is suspended. The external resonances were studied, and
the solvability conditions were established. The comparison between both the numerical
solutions of the governing EOM and the approximate ones showed high consistency
between them. The oscillations of a spring pendulum in a fluid under the influence of
buoyancy and drag forces in the presence of a harmonically external force were presented
recently in [26]. The authors utilized the conditions of Routh-Hurwitz to investigate
the stabilities of the steady-state solutions. In addition, the nonlinear stability analysis
technique was used to determine the impact of various physical parameters on the motion.

On the other hand, the vibrational motions must be controlled in engineering appli-
cations through the existence of active and passive absorbers to avoid disturbance and
devastation of the structures or the studied systems. Many works have studied such
motions, e.g., [23–31]. In [29,30], the authors investigated a system consisting of a simple
pendulum and a longitudinally tuned absorber. This system was subjected to an active
control, such as negative values of velocity and angular displacement or their squares or
even cubic values. The desired approximate solutions using MMS were obtained. The
system’s stability, as well as the effects of absorbers on its behavior, were investigated.
The behavior of 2DOF nonlinear spring pendulum was investigated in [31] at different
resonance conditions and in the presence of both active and passive control.

The remainder of this paper is as follows: In Section 2, the motion of a 2DOF dynamical
model consisting of a mass M coupled to a damped spring and attached to a rigid arm of
mass m and length l is explored. The inspected motion is examined in the presence of a
harmonic force F that acts on the other end of the arm. Employing Lagrange’s equations,
the EOM are derived. In Section 3, the MMS is used to achieve the solutions of the EOM
up to the second order of approximation. In Section 4, resonance cases of the system are
classified. Moreover, both the amplitude and phase variables are checked to investigate the
stability conditions of the steady-state solutions. In Section 5, a the results are presented
through a representation of the variations of the attained solutions for different parameters,
using plots to demonstrate the effect of applied forces and other settings on the motion of
the model under consideration. In Section 6, the system’s stability and instability areas are
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examined, in which it is found that the system’s behavior is stable for a large number of
variables. Finally, the manuscript ends with concluding remarks.

The significant impetus for this effort stems from its numerous scientific uses, includ-
ing instrumentation, addressing vibrations in railway vehicles, and the use of pendulum
dampers in a variety of applications.

2. Formulation of the Problem

Let us consider a dynamical model consisting of mass M connected with a spring of
stiffness k with linear stiffness k X. It is also attached to a linear damper with damping
coefficient b1 in translation. A uniform link of mass m and length l is hinged to M at the
upper end, with linear viscous damping b2 in rotation. The mechanical system is also
influenced by a horizontal external harmonic force F(t) at the lower end, as seen in Figure 1.
Therefore, the motion can be characterized by the generalized coordinates X(t) (translation
of M) and θ(t) (rotation of the link).
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Let L = T −V denote the Lagrange’s function, in which T and V are the preceding
model’s kinetic and potential energies that have the forms

T = 1
2 (m v2

C + M
.

X
2
+ IC

.
θ

2
),

V = 1
2 [k X2 + mgl(1− cosθ)],

(1)

where g denotes the gravitational acceleration, IC = (ml2/12) represents the inertia mo-
ment and vC is the velocity at C of the link. It is worthy to mention that the potential energy
V is the sum of potential energies due to the spring’s elongation and the gravitational force
of the link.

In the represented model, (X, θ) and (
.

X,
.
θ) denote the generalized coordinates of our

model and their corresponding generalized velocities. Consequently, Lagrange’s equations
have the forms

d
dt (

∂L
∂

.
X
)− ∂L

∂X = F(t)− b1
.

X,
d
dt (

∂L
∂

.
θ
)− ∂L

∂θ = F(t)l cos θ − b2
.
θ,

(2)

where F(t) = F∗ cos(Ωt) with an excitation frequency Ω and amplitude F∗.
Substituting (1) into (2), one obtains the following governing equations

(M + m)
..
X +

1
2

ml(
..
θ cos θ −

.
θ

2
sin θ) + kX + b1

.
X = F∗ cos Ωt, (3)
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m
3

l2
..
θ +

m
2

l(
..
X cos θ + g sin θ) + b2

.
θ = F∗l cos Ωt cos θ, (4)

It is obvious that the previous two equations represent second-order differential
equations for the generalized coordinates X and θ.

Let us consider the following parameters

τ = ω1t, ξ(τ) = X(τ)
l , (M + m) = J, f = F∗

Jlω2
1
, µ = m

2J ,

c1 = b1
Jω1

, c2 = b2
Iω1

, ω2
1 = k

J , p = Ω
ω1

, I = ml2
3 ,

α = Jl2
I , K = ω2

ω1
, ω2

2 = gml
2I .

(5)

to convert (3) and (4) into the following forms

..
ξ(τ) + c1

.
ξ(τ) + ξ(τ) + µ[

..
θ(τ) cos θ(τ)−

.
θ

2
(τ) sin θ(τ)] = f cos(pτ), (6)

..
θ(τ) + c2

.
θ(τ) + µα

..
ξ(τ) cos θ(τ) + K2 sin θ(τ) = f α cos(pτ) cos θ(τ). (7)

We limit our research to small deflections, so the trigonometric functions cos θ and
sin θ can be approximated to 1 and θ, respectively, to yield

..
ξ(τ) + c1

.
ξ(τ) + ξ(τ) + µ[

..
θ(τ)−

.
θ

2
(τ)θ(τ)] = f cos(pτ), (8)

..
θ(τ) + K2θ(τ) + c2

.
θ(τ) + µα

..
ξ(τ) = f α cos(pτ). (9)

Now, let us introduce a small parameter (0 < ε� 1) according to

c1 = εĉ1, c2 = εĉ2, µ = εµ̂, f = ε2 f̂ . (10)

Substituting (10) into (8) and (9), we obtain the following forms of the EOM:

..
ξ(τ) + εĉ1

.
ξ(τ) + ξ(τ) + εµ̂ [

..
θ(τ)−

.
θ

2
(τ)θ(τ)] = ε2 f̂ cos(pτ), (11)

..
θ(τ) + K2θ(τ) + εĉ2

.
θ(τ) + εµ̂α

..
ξ(τ) = ε2 f̂ α cos(pτ). (12)

The above Equations (11) and (12) represent second-order nonlinear differential equa-
tions in terms of ξ and θ.

3. The Announced Method

In this section, the MMS perturbation technique will be utilized to solve the governing
EOM (11) and (12) up to the second order of approximation. Therefore, we need only three
time scales, having the forms T0 = τ, T1 = ετ, and T2 = ε2τ. According to the procedure
of MMS, we express ξ and θ in powers of ε as

ξ = ξ0(T0, T1, T2) + εξ1(T0, T1, T2) + ε2ξ2(T0, T1, T2) + . . . ,
θ = θ0(T0, T1, T2) + εθ1(T0, T1, T2) + ε2θ2(T0, T1, T2) + . . . .

(13)

Here, T0 and T1, T2 are the fast and slow time scales, respectively. The time derivatives
included in (11) and (12) are expressed according to the following operators:

d
dτ = D0 + εD1 + ε2D2 + . . . ,

d2

dτ2 = D2
0 + 2εD0D1 + ε2(2D0D2 + D2

1) + . . . ,
(14)

where Dn = ∂
∂Tn

; n = 0, 1, 2.
Substituting (13) into (11) and (12), using (14), and grouping the coefficients of equal

powers of ε in both sides yields the next three sets, containing the following six partial
differential equations (PDEs):
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Order of ε0

D2
0ξ0 + ξ0 = 0,

D2
0θ0 + K2θ0 = 0.

(15)

Order of ε

D2
0ξ1 + ξ1 = µ̂θ0(D0θ0)

2 − 2D0D1ξ0 − ĉ1D0ξ0 − µ̂D2
0θ0,

D2
0θ1 + K2θ1 = −2D0D1θ0 − ĉ2D0θ0 − αµ̂D2

0ξ0.
(16)

Order of ε2

D2
0ξ2 + ξ2 = −2D0D1ξ1 − (2D0D2 + D2

1)ξ0 − ĉ1(D0ξ1 + D1ξ0)
−µ̂(D2

0θ1 + 2D0D1θ0) + µ̂[2θ0D0θ0D0θ1 + 2θ0D0θ0D1θ0

+θ1(D0θ0)
2] + f̂ cos(pT0),

D2
0θ2 + K2θ2 = −2D0D1θ1 − (2D0D2 + D2

1)θ0 − ĉ2(D0θ1 + D1θ0)

−αµ̂(D2
0ξ1 + 2D0D1ξ0) + α f̂ cos(pT0).

(17)

It is worthy to notice that the system in Equations (11) and (12) can be approximated
by the above systems in Equations (15)–(17) of PDEs, which can be solved successively.
Solutions of these equations starting from the zero approximation equations can be inserted
into the next higher orders of approximation. Equations of system (15) are mutually
independent homogenous equations. Consequently, their solutions are harmonic and can
be expressed in their exponential forms as

ξ0 = A(T1, T2)eiT0 + A(T1, T2)e−iT0 , (18)

θ0 = B(T1, T2)eiKT0 + B(T1, T2)e−iKT0 , (19)

where A, B are determinable complex functions from the elimination of the secular terms
and A, B are the corresponding complex conjugate.

It is obvious that the solutions of (16) and (17) depend on the solutions of (18) and (19)
to some extent. Therefore, substituting (18) and (19) into the system of Equation (16), we
remove the produced secular terms to gain the removable conditions in the forms

2D1 A + ĉ1 A = 0, (20)

2D1B + ĉ2B = 0. (21)

Therefore, the first-order approximations of the solutions have the forms

ξ1 =
µ̂B3K2

(9K2 − 1)
e3iKT0 − µ̂K2B(BB + 1)

(K2 − 1)
eiKT0 + CC, (22)

θ1 =
αµ̂A

(K2 − 1)
eiT0 + CC. (23)

where CC stands for the complex conjugate of the preceding terms. This symbol allows
presentation of the long term and thus will be used frequently.

Substituting the solutions (18), (19), (22), and (23) into the system of Equation (17) and
eliminating terms leads to secular ones, yielding

2iD2 A + D2
1 A + ĉ1D1 A− µ̂2αA

(K2 − 1)
(1 + 2BBK2) = 0, (24)

2iKD2B + D2
1B + ĉ2D1B +

µ̂2K4αB
(K2 − 1)

(1 + BB) = 0. (25)
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Based on the above, the second-order approximations of the solutions become

ξ2 = iµ̂B3K
(9K2−1)2 (3K2 ĉ1 − ĉ2)e3iKT0 + µ̂2 AB2α(K+2)

4(K2−1)(K+1) ei(1+2K)T0

+ µ̂2B2
αA(K−2)

4(K2−1)(K−1) ei(1−2K)T0 − iµ̂K
(K2−1)2 [BK2(ĉ1 − 2ĉ2BB + ĉ1BB)

−ĉ2B2B(2K2 − 1)− ĉ2B]eiKT0 + f̂
2(1−p2)

eipT0 + CC,

(26)

θ2 = iµ̂α

(K2−1)2 (K2 ĉ1 − ĉ2)AeiT0 − 9µ̂2αB3K2

8(9K2−1) e3iKT0

+ α f̂
2(K2−p2)

eipT0 + CC.
(27)

Substituting (18), (19), (22), (23), (26), and (27) into (13) allows obtaining the desired
approximate solutions.

4. System’s Stability

The aim of this research is to look into the system’s stability using Equations (11) and (12)
and through investigating the simultaneous primary external resonance p = 1, p = K and
one of the internal resonance cases K = 1, 3K = 1 at the second approximation. Therefore,
the detuning parameters σj (j = 1, 2) are considered in the following way [32]:

p ≈ 1 + σ1, 1 ≈ K + σ2. (28)

Substituting (28) into (16) and (17) and omitting the secular terms, the following
solvability conditions are obtained for the second-order approximations:

− 2iD2 A +
ĉ2

1 A
4

+
µ̂2αA

(K2 − 1)
(1 + 2BBK2) +

1
2

f̂ eiσ1T1 = 0, (29)

2iKD2B−
ĉ2

2B
4

+
µ̂2K4αB
(K2 − 1)

(1 + BB) +
iαµ̂

(K2 − 1)
(ĉ2 − ĉ1K2)Aeiσ2T1 = 0. (30)

We can analyze the above two equations through expressing A and B in the following
polar forms:

A =
1
2

a(T2)eiδ(T2), B =
1
2

b(T2)eiγ(T2), (31)

where a, b and δ, γ represent the amplitudes of the motions and their corresponding phases.

θ1(T1, T2) = σ̂1(T1)− δ(T2),
θ2(T1, T2) = σ̂2(T1) + δ(T2)− γ(T2);

σj = εσ̂j (j = 1, 2).
(32)

Let us define the following modified phases. Substitution of (31) and (32) into (29)
and (30) yields

−i
.
a + a

.
δ + 1

8 aĉ2
1 +

αaµ̂2

4(K2−1) (2 + b2K2) + f̂
2 (cos θ1 + i sin θ1) = 0,

−iK
.
b + b

.
γ + 1

8 bĉ2
2 −

αµ̂

8(K2−1) [µ̂K4b(b2 + 4) + 4ia(ĉ2 − K2 ĉ1)

×(cos θ2 + i sin θ2)] = 0.

(33)

Multiplying (33) by ε2, then using (10) and (32) and separating the real and imaginary
parts in each side of the resultant equations, we obtain the following modulation equations
of the amplitudes and phases:
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a
.
θ1 = aσ1 +

ac2
1

8 + µ2αa
4(K2−1) [2 + (Kb)2] + 1

2 f cos θ1,
.
a = 1

2 f sin θ1,
.
b = aµα

2K(K2−1) (K
2c1 − c2) cos θ2,

b
.
θ2 = b(σ1 + σ2)− b

.
θ1 +

bc2
2

8 −
αµ

2(K2−1) [µbK4( b2

4 + 1)
+a(K2c1 − c2) sin θ2],

(34)

where dots are the differentiation with respect to τ. Focusing on the previous system of
Equation (34), we can see that it identifies the amplitudes a, b and the modified phases
θ1, θ2 of the investigation of the considered simultaneous resonances cases.

For the steady motion, we have
.
a =

.
b =

.
θ1 =

.
θ2 = 0 [33], which correspond to the

equilibrium points of system (34). Therefore, one obtains

f =
c2

1
4
+ 2aσ1 +

µ2αa
2(K2 − 1)

[2 + (Kb)2, (35)

aµα

2(K2 − 1)
(c2 − K2c1) =

µ2K4αb
8(K2 − 1)

(b2 + 4)−
c2

2b
8
− b(σ1 + σ2). (36)

These equations are solved numerically using the Newtonian method [34] through
Matlab programs [21,35] to represent the relation between the amplitudes a and b graph-
ically in order to obtain the possible steady-state solutions close to the resonance. Since
the investigated resonances appear simultaneously, then Equations (35) and (36) should
be considered as a set of nonlinear equations relative to the variables a and b. It is worth
mentioning that the numbers of possible amplitudes (solutions) range from at least one to
seven at most. This variation is strongly dependent on the considered parameters, as can
be seen in Figures 2–4.
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An interesting evaluation of the stability criteria involves investigation of the effects
of minor deviations from steady-state solutions. Therefore, we consider

a = a10 + a11, b = b10 + b11,
θ1 = θ10 + θ11, θ2 = θ20 + θ21.

(37)

where a10, b10, θ10, θ20 and a11, b11, θ11, θ21 are the solutions of (34) and the corresponding
perturbations that are supposed to be very small relative to its predecessors.

Substitution of the variables (37) into the modulation Equation (34) yields

a10
dθ11
dτ = a11σ1 +

a11c2
1

8 + µ2α

4(K2−1) [a11(2 + (Kb10)
2)

+2K2b10b11a10]− 1
2 f θ11 sin θ10,

da11
dτ = 1

2 f θ11 cos θ10,
db11
dτ = µα

2K(K2−1) (c2 − K2c1)(a10θ21 sin θ20 − a11 cos θ20),

b10
dθ21
dτ = b11[σ1 + σ2 +

c2
2
8 −

µ2K4α

2(K2−1) (1 +
3
4 b2

10)]− b10
dθ11
dτ

+ µα

2(K2−1) (c2 − K2c1)(a11 sin θ20 + θ10θ21 cos θ20).

(38)

It must be remembered that the perturbation terms a11, b11, θ11, and θ21 are unknown
functions, and we can express their solutions in the form cjeλT , in which cj (j = 1, 2, 3, 4)
are constants and λ represents the eigenvalue congruent to the unknown perturbations
that can be obtained from the real parts of the roots. If the solutions at the steady-state
a10, b10, θ10, and θ20 are considered as approximately stable, then the real components of
the roots of the next characteristic equation must be negative [36]

λ4 + Γ1λ3 + Γ2λ2 + Γ3λ + Γ4 = 0, (39)

where

Γ1 = f
2a10

sin θ10 +
µαa10

2b10(K2−1) (K
2c1 − c2) cos θ20,

Γ2 = 1
16K(K2−1)2a10b10

{
4 f Kαµ(K2 − 1)(K2c1 − c2)θ10 cos θ20 sin θ10

− f K(K2 − 1)b10 cos θ10[2αµ2(2 + K2b2
10) + (K2 − 1)(c2

1 + 8σ1)]
−αµa2

10 sin θ20(K2c1 − c2)
{

αµ2K2[4K2 + b2
10(4 + 3K2)]

−(K2 − 1)[8(σ1 + σ2) + c2
2]
}
},

Γ3 = f αµ(K2c1−c2)

32K(K2−1)2b10

{
−K cos θ10 cos θ20[4Kαµ2b2

10 + 2αµ2(2 + K2b2
10) + (K2 − 1)

×(c2
1 + 8σ1)]− sin θ10 sin θ20[K4αµ2(4 + 3b2

10)− (K2 − 1)(c2
2 + 8(σ1 + σ2))]

}
,

Γ4 = f αµ(K2c1−c2) cos θ10

256K(K2−1)3

{
−16K2α2µ3(K2c1 − c2)a10 +

sin θ20
b10

[2αµ2(2 + K2b2
10)

+(K2 − 1)(c2
1 + 8σ1)][αK4µ2(4 + 3b2

10)− (K2 − 1)(c2
2 − 8(σ1 + σ2))]

}
.

It is obvious that the above coefficients Γj (j = 1, 2, 3, 4) depend on many parameters,
such as a10, b10, θ10, θ20, K, c1, c2, α, and f .

Based on the criterion of Routh-Hurwitz [20], the conditions of stability of the steady-
state solutions can be written in the form

Γ1 > 0, Γ3(Γ1Γ2 − Γ3)− Γ4Γ2
1 > 0,

Γ1Γ2 − Γ3 > 0, Γ4 > 0.
(40)

5. Simulation of the Results

We next investigate the influence of the parameters ω1, ω2, c1, and c2 on the investi-
gated dynamical model’s motion, taking into account the above sections.

Parts of Figure 2 represent the variation of the solutions ξ and θ via τ during the speci-
fied time intervals [0, 100] s and [0, 200] s . These figures are calculated when ω1 takes the
different values ω1(= 2.5, 2.7, 2.8) s−1 at ω2 = 2.1 s−1, c1 = 0.02, c2 = 0.03 m−2. Figure 3
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gives an indication of the behavior of the solutions ξ and θ when ω2 = 2.1 s−1, ω2 = 2.2 s−1,
and ω2 = 2.3 s−1, with the same previous data of c1 and c2.

On the other side, the time histories that are reported in Figure 4 are computed when
ω2 = 2.2 s−1 at different values of c1(= 0.03, 0.04, 0.05) for the solutions ξ and θ. On the
other hand, is based on calculations for different values of c2(= 0.01, 0.02, 0.03) m−2 for ξ
and θ.

An inspection of Figure 2a shows that when ω1 increases from 2.5 s−1 to 2.8 s−1 with
the constancy of the other parameters, periodic waves for the solution ξ are obtained, and
the number of oscillations decreases with the notable increment of the amplitudes. This
means that through variation of time τ from 0 to 100 s , the horizontal motion of mass m
is stable. On the other hand, the behavior of θ has a periodic form during the same time
interval, and there is a slight variation of the amplitude; see part (c) of the same figure.
This conclusion encourages us to expand the interval time of motion to [0, 200] s , as seen
in parts (b) and (d) for the elongation ξ and the rotating angle θ, respectively. The waves
included in part (b) behave as a periodic form, with the tendency to decrease the amplitude
along the considered time interval, while the manner of θ has decay behavior, as is obvious
from part (d).

The time histories reported in Figure 3 for the solutions ξ and θ are computed when ω2
has different values, and they are plotted when τ ∈ [0, 100] s and τ ∈ [0, 200] s . Similarly,
it is obvious that the behavior of the attained waves varies between periodicity and decay.
By focusing on parts (a) and (c) of Figure 3, it is clear that when ω2 increases, the number
of oscillations increases and their amplitudes decrease. On the other side, the number of
fluctuations has the same behavior, with the increasing of the amplitude as illustrated in
part (b) of Figure 3. The plots included in part (d) of the same figure reveal that when ω2
increases, the steadiness of the amplitude (to some extent) during the considered time
interval θ is observed. Therefore, the investigated motion is stable. On the other side, the
variation of ξ via τ when c1 has distinct values is plotted in Figure 4, in which the impact
of different values of c1 becomes slight for the waves that describe ξ, as indicated in parts
(a) and (b), while there is no significant change of θ waves, as seen in parts (c) and (d) of the
same figure.

According to the calculations depicted in Figure 5, we conclude that with the shift
of values of c2 from 0.01 to 0.03 through the value 0.02, there is a slight variation of
the observed elongation waves. However, there is no variation of the rotating angle θ,
as Equation (35) does not depend on c2, while Equation (37) depends directly on the
same parameter.

After grasping the previous analysis, we investigate the behavior of the phases and
amplitudes of the achieved solutions when one of the parameters ω1 or cj (j = 1, 2)
changes with the constancy of the others. Therefore, it should be noted that when ω1 and
ω2 have different values, we notice a fluctuating effect on the amplitude a of the horizontal
elongation ξ, as observed in parts (a) and (b) of Figure 6, while the amplitude b of the
rotating angle θ fluctuated during the considered time interval according to the values of
ω1 and ω2, as in parts (c) and (d), respectively. Moreover, the corresponding phases θ1 have
excellent impact, as specified in parts (a) and (b) of Figure 7, due to the variations of ω1 and
ω2, respectively. On the other side, the impact of ω1 and ω2 on the waves reveals a sharp
increment in θ2 behavior, as seen from Figure 7c,d.
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Figure 7. Behavior of the phase angles δ and γ concerning the horizontal elongation ξ and the
rotation angle θ respectively: (a,c) for different values of ω1 and (b,d) for different values of ω2.

Another concrete example involves the variations of a, b, and θj (j = 1, 2) according
to different values of cj. The corresponding plots are included in Figures 8 and 9. The
amplitude a does not vary with cj as well as θ1, which are portrayed in parts (a) and (b) of
the same figures. Alternatively, the variation becomes clear with the amplitude b, while it
becomes slight with the second phase θ2.
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Based on this discussion, we conclude that the model’s motion is stable and chaos-free.

6. Analysis of the Stability

The Routh-Hurwitz approach to the non-linear stability [37] is used in this section to
explore the stability of the investigated auto-parametric system. A damped spring and the
external force have a good impact on the behavior of this system. Therefore, in addition to
the simulations of the system’s non-linear evolution, the stability requirements are applied.
It is found that the frequency ω and the damping coefficient c1 play a significant role in
these requirements.

To achieve this purpose, system stability diagrams of the system of Equation (34) can
be created using specific activity with different values of the system’s parameters. The
variation of the modified amplitudes a and b are plotted versus the detuning parameter
σ1 in Figures 10–13 to reveal the stability and instability zones of the possible fixed points
and to show the frequency response curves at different values of ω and c1 in which the
solid curves describe the stable ranges of fixed points, while the dashed curves show the
unstable ranges.

Figures 10 and 11 show the influence of σ1 on the frequency response curve at
c1 = 0.03, σ2 = 0.003, and ω1(= 2.5, 2.7, 2.8), in which the stable and unstable areas
of fixed points for the distinct values of ω1, as seen in both figures, are−0.1 ≤ σ1 ≤ −0.052,
−0.1 ≤ σ1 ≤ −0.068, −0.1 ≤ σ1 ≤ −0.079 and −0.052 < σ1 ≤ 0.1, −0.068 < σ1 ≤ −0.1,
−0.079 < σ1 ≤ 0.1, respectively. Figures 12 and 13 present the frequency response curves
when ω1 = 2.5, σ2 = 0.003 and c1(= 0.03, 0.04, 0.05) for the amplitudes a and b via the
detuning parameter σ1. It is notable that there are different ranges of stability and instability
areas for the mentioned values of the damped coefficient c1. These ranges can be classified
according to the following values: the stability areas at c1 = 0.03, c1 = 0.04, and c1 = 0.05
are −0.1 ≤ σ1 ≤ −0.051, −0.1 ≤ σ1 ≤ −0.08, and −0.1 ≤ σ1 ≤ −0.098, respectively. The
instability areas at the same values of c1 are −0.051 < σ1 ≤ 0.1, −0.08 < σ1 ≤ 0.1, and
−0.098 < σ1 ≤ 0.1.
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It is observed that there is a high resonance between the frequencies in the range
−0.1 ≤ σ1 ≤ 0.1 of the examined areas, which leads to a significant rise in the amplitudes
of the steady-state solutions.
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7. Concluding Remarks

The motion of the 2DOF auto-parametric pendulum model consisting of a mass M
attached to a damped spring and connected with a rotating rigid arm (of mass m and
length l) under the action of an external force on the other end of the arm was studied.
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The governing EOM were obtained utilizing Lagrange’s equations. The MMS was used
to achieve the second-order approximate solutions of these equations and to locate the
resonances of the system. The cases of simultaneously primary external and internal
resonances were examined. The modulation equations were developed in the framework
of the solvability conditions. The variables of phase and amplitude were used to study
the solutions at the steady state. The requirement of stability of the steady-state solutions
was obtained using the Routh-Hurwitz criterion. The portrayal representation of the time
histories of the acquired solutions was used to evaluate the influence of various parameters
on the dynamical behavior of the considered model. The stability and instability zones of
the system were explored, in which it was shown that the system’s performance was stable
for some of its variables. The acquired results are more consistent with those obtained
in [15] (in the absence of both the pendulum and the acting force on the dynamic model),
indicating that the current study should be viewed as a generalization of past work while
asserting the novelty of the investigated model and the obtained results. The obtained
results can be applied to the vibration damping of many mechanical areas, both linear
and angular.
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