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Abstract: The momentum wheel is a key component of the satellite attitude control system and
has a direct impact on the reliability and overall life of the satellite. The momentum wheel has the
characteristics of a high reliability, long life, and complex failure mechanics, which leads to expensive
maintenance and a low reliability of the test sample. Therefore, it is challenge to implement an
accelerated life test. The traditional life data statistical method has great difficulty in solving the
reliability analysis of the momentum wheel. A reliability calculation method based on copula
function for multi-degradation is proposed. Firstly, the key factors affecting the reliability of the
momentum wheel are analyzed, and the lubricant residual quantity and current are selected as the
degradation quantity. Secondly, the wiener process is used to model the degradation of a single
degradation quantity, and the edge distribution function of the momentum wheel reliability is
obtained. Considering that the correlation between multiple degradation quantities has a non-
negligible influence on the reliability analysis result, the copula function is introduced to describe
the correlation, and the edge distributions are fused to obtain the joint distribution function of the
momentum wheel reliability.

Keywords: reliability; degradation; copula function; wiener process; momentum wheel

1. Introduction

With the development of modern equipment to complexity, reliability research is
facing more and more challenges, for example the multi-state [1], common cause fail-
ures [2,3], survival signature [4], epistemic uncertainty [5,6] and multi-degradation of
complex systems should be taken into consideration when conducting reliability model-
ing and analysis. In the satellite orbiting process, due to gravity gradient torque, solar
radiation moment, aerodynamic torque, and geomagnetic torque, attitude deviation will
occur. To this end, the attitude control system is required to play a controlling role to
overcome the interference of the ambient torque and eliminate the attitude measurement.
The deviation between the actual attitude and the desired attitude is given. The momentum
wheel is the main execution part of the satellite three-axis stability control system, which
generally includes four parts: bearing assembly, motor assembly, housing assembly and
wheel assembly. The life cycle of the momentum wheel directly affects the service life of
the satellite. Accurate calculation of the reliability of the momentum wheel is important to
improve the reliability of the satellite and to extend the service life of the satellite.

Because the mechanism of momentum wheel failure is complex and expensive, it is
difficult to carry out a large-scale accelerated life test. Therefore, there is no mature mo-
mentum wheel failure mechanism model. For this type of object, using the equipment
degradation data to establish its performance, the degradation model is a widely used life
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prediction method [7]. Existing research shows that in satellite attitude control systems,
momentum wheel failure is related to many factors [8]. Seasonal changes in the external
environment, bearing temperature, failure of the lubricant system, micro-vibration, current,
speed, and other factors may affect the life of the momentum wheel [9]. The existing
data-based residual life prediction methods mostly consider only the effect of a single
degradation amount on the remaining life. In reality, the life of the momentum wheel is
influenced by multiple factors. For example, [10] studied the physical properties of lubri-
cant failure, established a lubricant wear model to predict the life of the JB-3 momentum
wheel bearing assembly and [11] took the momentum wheel bearing temperature as the life
characteristic of the momentum wheel and used it. Empirical mode decomposition extracts
time trends, establishes the degradation model of momentum wheel, and performs on-orbit
momentum wheel life prediction; [12] uses the RVM-PF-based prediction method and takas
momentum wheel bearing temperature and other indicators as life cycle characteristics of
momentum wheel, completing the establishment of the momentum wheel degradation
model and its life prediction; [13] analyzed the data of a model of five momentum wheel
bearing temperature telemetry data, its shaft temperature performance degradation trend
modeling, used to predict the momentum wheel remaining life. Moreover, [14] pointed out
that the key to the failure of the momentum wheel is the remaining oil quantity of the oil
supply system. The failure mechanism of the momentum wheel lubrication is studied to
obtain the life reliability curve of the satellite momentum wheel. In addition, [15] studies
the momentum wheel shaft. As a result of the test data, it was found that the slow rising
trend of the current data was caused by the increase in bearing friction. A time series model
of momentum wheel currents was established. Based on its performance degradation char-
acteristics, momentum wheel life prediction curves were deduced. Ref. [16] was based on
two similar models of momentum wheel product data, assuming that their lifetimes obey
Weibull distribution, and the Weibull distribution was estimated. The shape parameters de-
scribe the degree of similarity in the life distribution between similar products of different
models; [17] gives test results of momentum wheel life tests under conditions of high-
temperature edge lubrication, seasonal changes, temperature, and micro-vibration; [18]
established the network topology between the shaft temperature, current and momentum
wheel component failure modes, and used the Bayesian network to model the reliabil-
ity of the momentum wheel. Refs. [19,20] used the multi-source information fusion to
estimate the residual life and useful life of a momentum wheel in a satellite, respectively.
Ref. [21] collected 450 original frictional torque data of satellite momentum wheel bearings
by experiment to predict its dynamic reliability. Ref. [22] conducted the finite element
analysis under multiple coupling operating conditions and frictional heat on momentum
wheel bearings and established the reliability model of bearings based on stress-strength
interference. Ref. [23] proposed a custom detector based on the requirements specific to
attitude control, which can autonomously monitor motor health to detect degradation and
failure for real-time on-orbit recovery to maximize attitude control lifetime.

To date, the reliability modeling of momentum wheel has been mainly based on
physics of failure (PoF). However, because the current momentum wheel failure mechanism
model is not yet clear, the traditional PoF-based reliability model is not accurate enough to
some extent. With the rapid development of prognostics health management (PHM) in
recent years, system reliability modeling and evaluation are often combined with PHM.
For a momentum wheel, it is more convincing and closer to engineering practice to conduct
a reliability analysis through monitoring data such as degradation data. Therefore, based
on performance degradation data of the momentum wheel, and considering that there
is more than one performance degradation inside the system, this research proposes a
reliability modeling and analysis of multi-degradation of a momentum wheel. Moreover,
according to actual experience and failure analysis of the momentum wheel, it can be
confirmed that there is a correlation between different performance degradations; therefore,
it is necessary to quantity the correlation to accurately conduct reliability research on
momentum wheels.
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The structure of this paper is organized as follow. In Section 2, key factors affecting
the life of the momentum wheel are analyzed, and the correlation between different
performance degradations is explained. In Section 3, the modeling method based on
Wiener process is introduced. In Section 4, the Copula-based multi-degradation reliability
modeling method is presented. In Section 5, a case study on reliability modeling and
analysis of a momentum wheel is conducted. In Section 6, some conclusions are obtained.

2. Key Factors Affecting the Life of the Momentum Wheel

Analysis of engineering practices and a large number of tests have shown that the
main cause of failure in the rail momentum wheel is the failure of its lubrication system
and bearing failure. There are three major influencing factors for lubrication system
failure: metal wear, cage wear, and lack of lubricant. For bearing, bearing geometry,
material selection, environmental factors, etc., are some causes of bearing failure [24].
The failure mode of the bearing and the main failure mode of the momentum wheel are
given in [12,25]. In the case of excessive oil supply to the bearing and excessive lean
oil, the shaft temperature will continue to be high, the current telemetering value will
increase, and the speed will decrease. When the motor drive current is short-circuited or
open-circuited, the current telemetry value fluctuates, the speed drops, and the relationship
between the control command and the current value is disordered. After analysis, the shaft
temperature, current, speed, and other performance data have complex relationships
with the momentum wheel failure modes. Refs. [17,26] give the results of monitoring the
rotational speed, current, and temperature, and found that there is a close relationship
between the three. When one of the variables changes, the other two quantities also change.
(1) The existing literature has conducted in-depth studies on the relationship between
the remaining amount of lubricant and the remaining life of the momentum wheel and
(2) there is a clear correspondence between the remaining amount of lubricant and the shaft
temperature, current and speed. However, there are no research results on how to describe
the relationship between them. In this paper, lubricant residual quantity and current are
selected as degradation variables, and momentum life wheel residual life prediction model
based on multi-degradation quantity is established.

As the main indexes describing the performance degradation of the momentum
wheel, lubricant residual quantity and current have common impression factors such as
the temperature inside the system. It can be further concluded that there is a correlation
between different performance degradations, which would cause a huge error in reliability
modeling and analysis if it is ignored. To take the correlation into consideration during
the analysis process, the Copula function, a professional solution to problems of failure
correlation, is introduced in this research. The Copula functions and reliability calculation
procedure are illustrated in Section 4 in detail.

3. Establishing a Degenerate Model
3.1. Modeling Ideas

Let X(t) denote the amount of degradation of the long-lived product. The growth law
of product degradation can be represented by the average function E[X(t)] of the degrada-
tion amount. Due to changes in the environment and individual characteristics, the actual
degradation process and growth law of the product is a random process. The process is
well described by the Wiener process. If X(t) is satisfied:

X(t) = µt + σB(t) (1)

where µ is the drift coefficient, σ is the diffusion coefficient, and B(t) is the Brownian
motion, then the product degradation process obeys the linear drift Wiener process. At this
point, X(t) satisfies the following properties:

(1) The incremental amount of degradation at any time obeys the normal distribution,
that is ∆X = X(t + ∆t)− X(t) ∼ N

(
µ∆t, σ2∆t

)
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(2) The increments in any two disjoint periods are independent of each other. The cor-
responding mathematical description is as follows: for any 0 < t1 < t2 <. . .< tn,
then X(t1)− X(t0), X(t2)− X(t1) , . . . , X(tn)− X(tn−1) are independent;

(3) X(0) = 0, and X(0) is continuous at t = 0.

3.2. Failure Distribution

According to the definition of degraded failure, the failure distribution of long-life
products is the time distribution of degraded performance degradation to failure threshold
l for the first time, i.e.,

T = inf{t|X(t) ≥ l, t ≥ 0} (2)

which is
P{T ≥ t} = P{X(τ) < l(0 ≤ τ < t), X(t) ≤ l, X(0) = 0} (3)

Let the distribution density of X(t) at time t be gx(x, t).

P(X(τ) < l(0 < τ < t), X(t) ≤ x) =
∫ x

−∞
gx(ξ, t)dξ (4)

Let the probability density function of the product failure probability distribution be
f (t), according to the definition:

f (t) = − ∂
∂t P(T ≥ t)

= − ∂
∂t P(X(τ) < l (0 ≤ τ < t), X(t) ≤ l)

= − ∂
∂t

∫ l
−∞ gx(ξ, t)dξ; t > 0

(5)

Find gx(x, t) in the formula to find f (t). When studying the distribution of the
Wiener process at the time of first arrival [27], by defining an absorption column when the
degradation amount reaches the failure threshold, the form of gx(x, t) is given using the
Kolmogorov forward equation. gx(x, t) is

gx(x, t) =
1

σ
√

2πt

{
exp

[
− (x− µt)2

2σ2t

]
− exp

[
2µl
σ2 −

(x− 2l − µt)2

2σ2t

]}
(6)

Then,
f (t) = − d

dt

∫ l
−∞ gx(ξ, t)

= − d
dt

[
Φ
(

l−µt
σ
√

t

)
− exp

(
2µl
σ2

)
Φ
(
−l−µt

σ
√

t

)]
= Φ

(
µt−l
σ
√

t

)
+ exp

(
2µl
σ2

)
Φ
(
−l−µt

σ
√

t

)
; t > 0

(7)

where Φ(x) = 1√
2π

∫ x
−∞ e−

ξ2
2 dξ is the standard normal distribution function, and Φ(x) is

its density function.
The failure distribution function for the degeneration model is

F(t) = Φ
(

µt− l
σ
√

t

)
+ exp

(
2µl
σ2

)
Φ
(
−l − µt

σ
√

t

)
; t > 0 (8)

The unknown parameters of the failure distribution function are the drift parameter
µ and the variance coefficient σ. The degradation failure threshold l can generally be
given based on engineering experience combined with the failure mechanism of long-life
products. Now, we only need to find the estimated value of unknown parameters to get
the product’s failure distribution function, and then obtain more reliability information.
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3.3. Parameter Estimation

Assume the data form
{

Xij; i = 1, 2 , . . . , m; j = 1, 2 , . . . , n
}

, where Xij represents the
performance degradation value obtained from the j-th sample of the i-th measurement and
the initial performance degradation is 0.

For the model parameters, the maximum likelihood estimation method can be used
to obtain the estimation values µ̂ and σ̂ of the parameters µ and σ. The increment of the
degradation amount follows the normal distribution N

(
µ∆t, σ2∆t

)
, so using the long-life

product degradation data
{

Xij; i = 1, 2 , . . . ; j = 1, 2 , . . .
}

, the performance degradation
increment between the measurement times of the j-th product is

∆zij = Xi+1,j − Xi,j(i = 1, 2 , . . . , m; j = 1, 2 , . . . , n) (9)

From the incremental data of product degradation, the likelihood function of the
unknown parameters µ and σ can be obtained.

L(µ, σ) =
n

∏
j=1

m

∏
i=1

1√
2π∆tσ

exp

[
−
(
∆zij − µ∆t

)2

2σ2∆t

]
(10)

Using equations {
∂ ln(L(µ,σ))

∂µ = 0
∂ ln(L(µ,σ))

∂σ = 0
(11)

can obtain the estimation of µ̂ and σ̂:
µ̂ =

m
∑

i=1

n
∑

j=1
∆zij

n
m
∑

i=1
∆ti

σ̂ =

√
m
∑

i=1

n
∑

j=1

(∆zij−µ∆ti)
2

∆tij

(12)

Substituting the obtained parameter estimates into the formula, the corresponding
failure distribution function can be obtained.

4. Momentum Wheel Reliability Calculation Based on Copula Function
4.1. Several Copula Functions

The single degenerate quantities of the equipment are independent of each other.
According to the mutually independent random variable theory in probability theory, the
residual distribution function of the equipment remaining life obtained under the single
degenerate quantity is multiplied, and the joint distribution function of the remaining life
of the equipment can be obtained. If the correlation of the single-degenerate quantities of
the equipment is known, that is, the correlation coefficient and the covariance are known,
the joint distribution of the remaining life of the equipment can be obtained through the
covariance matrix in the mathematical statistics. If the correlation of the single-degenerate
quantities of the equipment is unknown, neither of the above two methods are feasible [12].
In engineering practice, the correlation between degenerate variables is often unknown.
Given the marginal distribution of individual degenerative quantities, how to determine
their joint distribution becomes a very important issue. There is a correlation between the
residual amount of lubricant in the satellite’s momentum wheel and the current, but the
correlation coefficient is unknown. In view of this situation, this paper chooses Copula
function to derive the joint distribution function of the remaining life of the equipment.

Table 1 shows three widely used binary copula functions, where u and v, are the
residual lifetime marginal distribution functions of the momentum wheel corresponding to
the remaining lubricant quantity and current, i.e., u = F1(t), v = F2(t); γ is the correlation
coefficient, when γ at the lower boundary value, the random variable u, v tends to be
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independent. When γ takes the upper boundary value, the random variable u, v tends to
be completely correlated.

Table 1. The three most common binary copula functions.

Model Parameter γ Range Cγ(u,v)

Gumble [1, ∞) exp
{
−
[
(− ln u)γ + (− ln v)γ] 1

γ

}
Clayton [−1, ∞)/{0} max

[(
u−γ + v−γ − 1

)− 1
γ , 0
]

Frank (−∞, ∞)/{0} − 1
γ ln

[
1 + (e−γu−1)(e−γv−1)

e−γ−1

]

The selection of Different Copula functions significantly influences the description of
the correlation between variables. The probability density of the Frank Copula function has
symmetry and can be used to describe the correlation between variables with symmetric
structures. It is not appropriate to describe the correlation between asymmetric structures of
variables; the Gumbel Copula function mainly describes the features with strong tail-related
features. The correlation between the variables cannot capture the correlation between
the tails of the variables; the Clayton Copula function emphasizes that the variables have
stronger characteristics of the lower tail, and the change of the correlation of the variables
at the upper tail is not sensitive.

4.2. Reliability Calculation Based on Copula Function

After determining the marginal distribution of the remaining life of the momentum
wheel under each single degeneration, the Copula function is used to calculate the joint
distribution function of the remaining life of the momentum wheel. The procedure is
described as follows:

(1) The lifetime marginal distribution F1(t) of the known residual quantity of the lubri-
cant and the lifetime failure margin distribution F2(t) of the current, let U = F1(t),
V = F2(t).

(2) The Copula function contains an unknown parameter γ, so parameter estimation is
needed. Since the margins of lubricant residuals and currents are known, the Canoni-
cal maximum likelihood method (CML) is used to estimate the parameters γ.

γ̂ = argmax
n

∑
i=1

ln c(ui, vi; γ) (13)

(3) Calculate Copula density function cγ(u, v) and Copula distribution function Cγ(u, v).

(4) Calculate the momentum wheel residual life probability function R(t) based on the
Copula distribution function according to the joint probability distribution formula in
probability theory.

R(t) = P(y1(t) ≥ D1, y2(t) ≤ D2)
= 1− P(y1(t) < D1)− P(y2(t) > D2)
+P(y1(t) < D1, y2(t) > D2)
= 1− F1(t)− F2(t) + Cγ(u, v)
= R1(t) + R2(t) + Cγ(u, v)− 1

(14)

where F1(t) and F2(t) are the momentum wheel failure distribution functions based
on the remaining quantity of lubricant and the current; R1(t) and R2(t) are the
corresponding momentum wheel reliability functions; Cγ(u, v) is the Copula joint
distribution function.
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5. Analysis of Examples
5.1. Reliability Function Based on Lubricant Residual Quantity

In this paper, the data of the remaining lubricant in [10] are used to establish the
degradation trajectory model. The remaining amount of lubricant data is simulated by the
ground test to simulate satellite airborne conditions and is obtained after an interval of
time by dissecting momentum wheels, infrared spectroscopy, and other methods. Table 2
shows the quality change data of the bearing lubricant system, including the initial value
of lubricant quality, the measured value of the eighth month, and the measured value of
the 11th month.

Table 2. Change in weight of bearing lubricant system.

No. Suttle Initial
Weight

The Weight in the First
Anatonmic Analysis

The Weight in the Second
Anatonmic Analysis

1 36.334 41.560 41.521 41.497
2 36.356 41.727 40.526 40.456
3 36.350 41.730 41.681 41.306
4 36.344 41.525 41.305 41.227
5 36.345 41.344 41.179 41.076

Mean 36.346 41.577 41.242 41.112

Dealing with test data, the data of the bearing lubrication system’s degradation is
input into Equation (12), and the estimated results of the corresponding parameters are
then obtained. {

û = 0.04225
σ̂ = 0.46730

Substituting the parameter estimates into the equation, the reliability of the mission
time t is estimated by û, σ̂2 as

R(t) = F(t) = 1− F
(
t; µ̂; σ̂2)

= Φ
(

l−µ̂t
σ̂
√

t

)
− exp

(
2µ̂l
σ̂2

)
Φ
(
−l−µ̂t

σ̂
√

t

) (15)

According to expert analysis, failures can be considered only when the weight of
the oil supply system is close to dry weight. At this point, the failure threshold of the
remaining lubricant is determined. By substituting the relevant parameters and the failure
threshold estimated above into Equation (15), the reliability curve of the remaining amount
of lubricant can be obtained and is shown in Figure 1.
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5.2. Reliability Function Based on Current Data

In this paper, the current data in [28] is used to establish the degradation trajectory
model. Table 3 shows the current degradation data.

Table 3. Degradation data of momentum wheel current.

Time/Month 1 2 3 4 5

0 0.000 0.000 0.000 0.000 0.000
4 0.077 0.083 0.182 0.100 0.182
8 0.154 0.167 0.182 0.200 0.273

12 0.385 0.250 0.364 0.400 0.546
16 0.615 0.667 0.727 0.700 0.818

Similarly to the lubricant residual quantity, the corresponding parameter can be
estimated through Equation (12) {

û = 0.0441
σ̂ = 0.2392

The reliability functions for currents are shown in Figure 2.
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5.3. Copula-Based Multi-Degradation Reliability Calculation

In this paper, the Frank Copula function is used to analyze the correlation between the
residual quantity of lubricant and the edge distribution function of the current. The data
obtained above are substituted into the formula, and the reliability function based on
Copula function can be obtained and shown in Figure 3.

The Frank Copula joint distribution curve and the two edge distribution curves in the
comparison show that for the same research object momentum wheel, the lubricant-based
momentum wheel life prediction curve conforms to the life degradation of mechanical
components, while the current-based momentum wheel life prediction conforms to the
life degradation of electronic components. The curve corresponds to the life degradation
of the electronic device. However, there is a certain difference in the momentum wheel
life predicted by the two. Therefore, it is necessary to establish a multi-degenerate joint
distribution function for the momentum wheel. In this figure, the momentum wheel
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reliability curve based on the Frank Copula function is consistent with the lubricant-based
momentum wheel life prediction curve before 55 months, and then is similar to the current-
based momentum wheel life prediction curve. This situation shows that in the early stage
of the operation of the momentum wheel, the life degradation has a lot to do with the
lubricant. With the passage of time, the degradation of the momentum wheel life is more
related to the degradation of the life of electronic components. Compared with single
degradation reliability curve, the Copula-based multi-degradation reliability curve is more
consistent with the actual operation of the momentum wheel.
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Figure 3. Momentum wheel reliability function curve based on frank copula function.

If ignoring the correlation between two performance degradations of the momentum
wheel, R1(t) and R2(t) can be considered independent, and the reliability of the momentum
wheel can be calculated by Equation (16).

R′(t) = R1(t) · R2(t) (16)

The comparison between Couple-based reliability function and independent reliability
function is shown in Figure 4. In this figure, the Couple-based reliability curve is consistent
with the independent reliability curve before 65 months, but after 65 months, it is obvious
that the reliability analysis results without the consideration of correlation between these
2 performance degradations are more conservative. This conclusion of the comparison
fully conforms with the general rule of reliability research considering multiple failure
correlation, which further confirms the importance of considering the multi-degradation
correlation in reliability modeling and analysis of complex electromechanical coupling
systems, for example, the momentum wheel.
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6. Conclusions

In this paper, the reliability of the momentum wheel is studied using the degenerate
modeling based on the wiener stochastic process. The main factors affecting the reliability
of the momentum wheel are analyzed and the momentum wheel degeneracy model with
single degradation and multiple degradation is established. Compared with the existing
methods, the main innovation of this paper is its proposition of a momentum wheel degra-
dation model based on the multi-degenerate variables of the Wiener stochastic process.
When the correlation between the two degradation quantities is unknown, the Copula func-
tion is used to fuse the two. The edge distribution gives a joint distribution of momentum
wheel reliability. The results show that the edge distribution of lubricants and currents is
obtained through the Wiener random process degradation modeling method, and then
the Copula function is used to calculate the joint distribution. The resulting momentum
wheel degradation model is consistent with practical engineering experience. It would be a
good reference for the reliability calculation of equipment with multiple degeneracy and
unknown correlation between variables.

Due to the lack of momentum wheel degradation data under the same working condi-
tions of the same model, an empirical study of the prediction method cannot be completed
yet. In the process of single degradation modeling, the common degenerative process of
the Wiener stochastic process is used to construct the degradation trajectory function of
the two residuals of lubricant residual quantity and current. However, in practical applica-
tions, there are other factors that have a significant impact on the life of the momentum
wheel. For example, we would further study how to use the modeling and analysis of
the performance degradation process when considering the impact of environmental, use,
and manufacturing factors on the life and reliability of moving parts (for example, analysis
of the cyclical rise mechanism of bearing temperature). In addition, further theoretical and
experimental research is needed.

In summary, this research provides a new idea for the reliability modeling and analysis
of the momentum wheel, and the proposed method can be further applied in complex
electromechanical coupling systems with a high reliability, long life and monitorable
degradation data.
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