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Abstract: Traffic sign recognition is a key module of autonomous cars and driver assistance systems.
Traffic sign detection accuracy and inference time are the two most important parameters. Current
methods for traffic sign recognition are very accurate; however, they do not meet the requirement for
real-time detection. While some are fast enough for real-time traffic sign detection, they fall short in
accuracy. This paper proposes an accuracy improvement in the YOLOv3 network, which is a very
fast detection framework. The proposed method contributes to the accurate detection of a small-sized
traffic sign in terms of image size and helps to reduce false positives and miss rates. In addition,
we propose an anchor frame selection algorithm that helps in achieving the optimal size and scale
of the anchor frame. Therefore, the proposed method supports the detection of a small traffic sign
with real-time detection. This ultimately helps to achieve an optimal balance between accuracy and
inference time. The proposed network is evaluated on two publicly available datasets, namely the
German Traffic Sign Detection Benchmark (GTSDB) and the Swedish Traffic Sign dataset (STS), and
its performance showed that the proposed approach achieves a decent balance between mAP and
inference time.

Keywords: YOLOv3; traffic sign detection; small objects detection; anchor box selection

1. Introduction

The recent advancements in technology moved our society towards an intelligent
transportation system. This allows humans to delineate the road conditions ahead of time
yielding lesser human error and accidents. Today’s modern cars incorporate Advanced
Driver Assistance Systems (ADAS) such as collision warning, human detection, de-raining
systems, and de-hazing systems. Hence, the quality of human daily life is improved. The
future commercial autonomous driverless cars or intelligent vehicles are likely equipped
with self-localization, scene understanding, path planning, and collision avoidance capabil-
ities. A car that can adjust its speed according to the speed limit sign on-road and navigate
to its destination safely is in demand. The prime requirement for such cars is an accurate
and real-time traffic sign recognition system.

Typically, the traffic sign recognition system is divided into two steps; (1) localization of
traffic signs from road view images, (2) classification of traffic signs to the specific categories.
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Vast research material pertaining to this field is available and researchers are able to achieve
high precision and recall values. For example, Serna [1] and Gupta [2] reported near
100% traffic sign detection accuracy on the German Traffic Sign Detection Benchmark
(GTSDB) [3]. However, its real-time recognition with resource-limited constraints in a real
scenario is still a challenging task.

Classical object feature extraction methods, such as gradients, color, and texture use
contour, color, and texture features to locate traffic signs. Nonetheless, these features in the
current demand are not promising. Such features change with illumination conditions, and
the presence of similar shapes or color objects in the background can cause false detection.
Hence, in today’s era, researchers are focused on convolutional neural network (CNN)
based features. CNN-based detectors include Region Proposals networks such as Fast
R-CNN [4], Faster R-CNN [5] and Mask R-CNN [6]. There are also single-pass image-based
CNN detectors such as Single Shot Multibox Detector [7] and YOLO [8]. Region Proposal-
based CNN detectors achieve higher accuracy but are slow in real-time bounding boxes
prediction. Single-pass image detectors provide better inference time, but are error-prone
and yield less accuracy.

For an autonomous car, inference time is as equally crucial as accuracy; this gives more
reaction time, to make timely and appropriate decisions to prevent fatal accidents. A 100%
accurate method is useless if it is not able to detect traffic signs in due time. Similarly, a
real-time detector with limited accuracy has no importance. Thus, researchers are working
to achieve optimal values for accuracy and inference time. This will make traffic sign
detection faster and precise. In this paper, we propose an improved single image pass
CNN-based YOLOv3 network framework for real-time traffic sign recognition, which is
more accurate and faster at detecting traffic signs than the state-of-the-art methods.

The main contributions of this paper focus on the framework of the YOLOv3 algorithm
and are summarized as follows:

• Tweaked YOLOv3 model for smaller object detection: YOLOv3 model uses multiple
DBL layers for object detection. For larger object size relative to image size, these
DBL layers are sufficient however, for a smaller object such as a traffic sign, useless
features are being learned. We propose pruning a few of those layers and validating
the rationale on GTSDB.
This improvement helped in extraction and saving fine details of traffic signs. In
addition, a new strategy for training and testing is proposed. Instead of using the
whole image at once, it was broken into patches and those patches were used for
training and testing. We report an increased accuracy of 14% from the default YOLOv3
accuracy, fewer false detections, and log-average miss rate. We also evaluated the
proposed network framework on two publicly available datasets, namely GTSDB
(German Traffic Sign Detection Benchmark) and STS (Swedish Traffic Sign) dataset [9],
giving 16% and 5% rise in mAP, respectively.

• Regressive anchor box selection: While analyzing the traffic sign size distribution in
the German and Swedish traffic sign training set, we noticed that the majority of the
traffic sign sizes are smaller and concentrated in the range from 20 pixels to 40 pixels.
The base technique in YOLOv3 uses k-means clustering to select the anchors.
We propose to make this selection adaptive using a regression model. We designed a
cost function that adds more weight (by assigning higher numbers of clusters) to the
bounding box size distribution where a majority of the traffic signs are concentrated.
This helps us to select most of the anchors from the pixel value range that contains
most of the traffic signs sizes and lesser anchors from the lesser concentration regions.
The cost function helps the regression model to adapt the traffic sign sizes for any
dataset. As a result, the detection accuracy of the traffic signs on GTSDB was further
increased by 2% in addition to the increased accuracy achieved with the tweaked
YOLOv3 detector. We noted that the increase in 2% accuracy was due to the perfect
placement of anchors on test samples. The proposed model is adaptive and can be
used with any object.
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• Focal loss: In this research, we also investigated the effect of incorporating focal
loss [10] as Objectness score. We note that the hyper-parameters in focal loss are
object shape as well as size-dependent. The optimal values for alpha and gamma for
traffic signs have also been determined. Our proposed method achieved higher mean
Average Precision (mAP) and equal Log Average Miss Rate (LAMR) as compared
with the Focal loss implemented YOLOv3 detector.

The rest of the paper is organized as follows: Section 2 discusses some recent related
works. Sections 3 and 4 discuss the proposed methodology and experimental results,
respectively. Finally, Section 5 concludes the paper.

2. Related Work

Traffic sign recognition has been a hot research field for the last decade. It is an
essential module for autonomous cars and an automatic driver assistance system (ADAS).
Various approaches have been pitched for accurate and real-time traffic sign detection.
Since traffic signs follow standard color and shape, prime approaches have been based on
color and shape detection. Researchers exploited the use of these features to detect and
recognize traffic signs. Gupta and Choudhary [2] proposed a traffic sign detection and
recognition framework based on Grassmann Manifolds. It uses HSV color segmentation
for detection.

The authors in [11] enhanced red and blue channels of an RGB image. Histogram of
Oriented Gradient (HOG) was applied and an SVM and KNN classifier was used to classify
the traffic sign and non-traffic sign regions. Yang et al. in [12] proposed a Colour Probability
Model to determine the color distribution of traffic signs. In this work the authors used
Ohta space [13] instead of RGB space. The authors in [14] incorporated the constrained
Hough Transform to determine the shape of traffic signs. Other methods such as the Radial
symmetry detector [15] used traffic sign appearance features. It should be noted that the
color and shape-based detectors are not promising for traffic sign detection in real-time
road scenarios, since these features are affected by illumination, weather conditions, and
occlusions. Moreover, background objects with similar shapes and colors may trigger
false detections.

Some research works addressed the aforementioned issues using its standard shape
and color as its unique identity. The authors in [16] used different channels of shape
and color features for traffic sign detection. The researchers in [17] managed traffic sign
detection by extracting a region of interest (ROIs) with the help of Maximally Stable
Extremal Regions (MSERs) [18].

The recent developments in deep learning proved that CNN is more effective towards
traffic sign detection than handcrafted features. CNN-based detectors consist of two
categories: two-stage and single-stage detectors. The former detection technique is more
robust in detecting traffic signs with higher accuracy than the later one. Jia Li et al. [19]
proposed a three-stage traffic sign recognition system. This system was composed of
three main components i.e., Faster RCNN [3] detector, Hough transform for localization
refinement, and CNN-based classifier. The authors in [1] Serna et al. used Mask RCNN [6]
for traffic sign detection and localization. They also proposed CNN based classifier to
predict more than two traffic signs. The system was able to achieve 96.16% mAP in the
GTSDB dataset [3] with the processing speed of 3.3 FPS. Although the performance of the
algorithm in [1] is outstanding, 30 FPS is required for real-time detection. Single-stage
detectors can achieve real-time traffic sign detection.

Single-stage detectors determine bounding box coordinates and classification scores
simultaneously in a single run hence, improving inference speed for detectors. Single-stage
detectors by their architectures were designed to avoid region proposal or sliding windows.
Lee and Kim [20] proposed a traffic sign detection system that used Single Shot Detector [7]
to output precise boundary corners of the detected traffic sign. The authors in [21] used the
SSD model with Feature Pyramid Network [22] for multi-scale traffic sign detection. To
overcome the low inter-class variation in traffic signs, a lower-level feature map was used
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for classification. The authors of [23] used Gaussian modeling to determine the uncertainty
in bounding box coordinates predicted by YOLOv3, which was further used to enhance
the detection accuracy. A modified YOLOv3 based traffic sign recognition system was
proposed in [24], obtaining an average precision of 52.32% for LSITSD [25] test images with
higher inference time than state-of-the-art systems.

Overall, most of the proposed detectors are either accurate or fast. However, the need
of a good trade-off between accuracy and processing time is still required. Since these are
crucial parameters of a detection system, which demands further research to investigate
an optimal way for precise traffic sign detection in minimum time. Furthermore, accurate
detection of a small traffic sign is also important. Traffic signs have standard sizes but their
apparent sizes vary with the distance between the camera and the sign. The farther a sign,
the smaller it appears; the closer a sign, the bigger it appears. Therefore, for the accurate
detection of faraway traffic signs, there is a dire need for appropriate anchor boxes.

3. Proposed Method

YOLOv3 is a state-of-the-art single-pass fast object detection network. It processes
a complete image at once by implicitly using contextual information about shape, size,
and structure. YOLOv3 network is an amalgam of residual and feature pyramid networks
which significantly benefits detection and classification-related tasks. Nonetheless, it still
lags in terms of detection accuracy of smaller objects with reference to image size. For
COCO dataset [26], it attained 31% mAP [27] with an inference time of 29 ms equivalent to
34.5 frames per second, which is a real-time performance. But due to its low mAP, it cannot
be used as a real-time object detector. Furthermore, the COCO dataset includes objects of
larger size that cover typically 50–70% of the image area. On the other hand, traffic signs
appear much smaller in an image, covering only 2–5% of an image. In YOLOv3, K-means
clustering is used to determine best-fit anchor boxes for a particular data set.

Furthermore, the random selection of initial K-means centroids in YOLOv3 sometimes
results in good accuracy and at times it is worse. Hence, multiple executions are required to
determine the optimal values. Anchor boxes’ size and scale have a major effect on Average
Precision. Unlike Faster RCNN, it is not trained for a region of interest (ROIs). Rather the
network fits the chosen anchor boxes over the objects to be detected in different segments
of the image. This anchor box fitting over an object takes a long time with anchor boxes of
improper sizes and scales. Besides, sometimes it misses out on true detections and outputs
much false detection, leading to lower Average Precision values.

To manage smaller object detection with higher accuracy and lower false detections
due to improper bounding box placement, we propose an improved YOLOv3 network
along with the anchor box selection method. The block diagram of the proposed method is
shown in Figure 1. There are two improvements in the YOLOv3 network; the network lay-
ers pruning and replacement of the default anchor box algorithm with the regression-based
anchor box selection. In addition, the input image is divided into patches of 400 × 400 pix-
els and passed through the improved network for traffic sign detection. The output patches
are consolidated into the original input image size and redundant detections were removed
through a non-maximum suppression block.

3.1. Regressive Anchor Box Selection

As detection accuracy is dependent on the correct localization of an object inside an
image, optimal size and shape of anchor boxes are necessary. The designer of YOLOv3
proposed to use the K-means clustering for anchor box selection. This method takes into
account the ground truth boxes dimension very well but fails to comprehend the ground
truth distribution density. It could be noted that the distribution of ground truth bounding
box dimensions are different in all datasets. Some may have a majority of bounding boxes
dimensions lesser than 20 pixels or some greater than 60 pixels. A reasonable approach
would be to assign majority anchor boxes in the higher concentration range of the bounding
box dimension and vice versa to achieve better localization.



Appl. Sci. 2021, 11, 11555 5 of 17

Figure 1. Proposed block diagram for small objects (traffic signs) in an image. The dotted rectangle is the proposed technique
and the shaded blue blocks are proposed modifications.

To achieve this we analyzed the bounding box dimension distribution of the GTSDB
training set as shown in Figure 2. The figure shows bounding box dimensions on the x-axis
and the probability of the y-axis. The probability on the y-axis underlines the majority
bounding box concentration areas. Furthermore, the figure also shows the fitted cost
function on to the bounding box distribution. The cost function can be explained with the
following Equations (1) and (2).

W = S × CF (1)

CF = e
−d(p,q)

αn (2)

d(p, q) =

√
m

∑
i=1

(qi − pi)2 (3)

where W be the probability-weighted number of clusters, S represents a peak value for a
maximum number of clusters, CF represents the cost function, n is the number of histogram
probabilities, α is a hyper-parameter, and d(p, q) represents the Euclidean distance between
the current histogram probability and lowest histogram probability of the bounding boxes
dimensions as shown in the Equation (3).

(a) (b)

Figure 2. Distribution of traffic sign Bounding Boxes dimension with fitted cost function on the training set of GTSDB
(a) Distribution of X Bounding Box dimension with fitted cost function (b) Distribution of Y Bounding Box dimension with
fitted cost function.
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The fitted cost function on to the bounding box distribution represents the amount of
focus our proposed algorithm would have for finding the anchor boxes. It should be noted
that higher concentration areas have a higher focus than the lower concentration areas of
the bounding box distribution. In the proposed method, we translated the focus as the
amount of probability-weighted clusters W to exist and S define a maximum number of
clusters that may form. Hence, the nearer we are towards the high concentration area, the
more clusters are to be formed and vice versa. Once probability-weighted clusters from
Equation (1) are formed, the Median is calculated. In the higher concentration regions, large
numbers of clusters are formed to accommodate more anchors than the lower concentration
regions. We then fitted a linear regression model using least-squares in the acquired Median
values from the clusters as shown in Figure 3.

(a) (b)

(c) (d)

Figure 3. Regression models for finding the anchor boxes. (a) regressive model predictions for anchors when omega is 4
(b) regressive model predictions for anchors when omega is 7 (c) regressive model predictions for anchor when omega is 9
(d) regressive model predictions for anchors when omega is 11 (Omega represents number of elements per cluster).

By conducting experiments, we found that changing the number of elements per
cluster also influences the subsequent anchor boxes. We denote this term as Omega and
empirically found that when Omega is four, the algorithm yields the highest traffic sign
detection accuracy. Finally, we predict the anchors from the linear model by taking random
samples in the range from the lowest bounding box dimension to the highest bounding box
dimension. Seventy percent of random samples were taken from the higher concentration
regions and the remaining thirty percent from the lower concentration region. The split
70–30% was acquired by adding up the probabilities of higher concentration region (from
pixel 18 to 50) and lower concentration region (from pixel 51 onwards). In Figure 3, it is
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observed that for all the values of Omega, Median cluster values in the higher concentration
regions are more in number than lower concentration regions.

The nine anchors obtained from the proposed regressive anchor selection scheme give
us the detection accuracy of 93.09% on the GTSDB. We note that the proposed method
learns the sizes of bounding box dimensions (i.e., minimum and maximum values) from
the training set. In addition, it also learns the object dimension i.e., horizontal, vertical,
or square object, which enables us to find the most pertinent anchors necessary for object
detection and localization.

3.2. YOLOv3 Coupled with Patch-Wise Detection Strategy

YOLOv3 is a convolutional neural network that finds objects at three different scales
of input image similar to the feature pyramid network. YOLOv3 uses the darknet-53
network as a feature extractor and additional seven convolutional layers at each stage for
detection. The output feature map of the deepest level is upsampled at a stride of two and
concatenated with a shallower feature map for detecting smaller objects in an image. This
upsampling takes place twice in the network to locate different size objects in an image.
The YOLOv3 network is shown in Figure 4a, where each convolutional layer is followed
by batch normalization and Leaky ReLU activation function represented by the DBL block.

Generally, traffic signs are smaller objects compared with other objects in an image. In
the 1360 × 800 pixels images of GTSDB, the largest traffic sign is 128 × 128 pixels. Hence,
traffic signs occupy only 1.5% of the total image pixel area. The deeper networks learn
about an object’s subtle appearance and its texture while the shallower layers learn about
strokes and shape features of an object image. In the case of the traffic sign detection, those
fine appearance and texture features are less important than shape features. Therefore, the
natural idea for the detection of small objects like traffic signs is to use an output feature
map of forefront layers and avoid deeper layers. In short, traffic layers signs do not need a
deeper network, as their size is small. Therefore, we propose to reduce the network length
to a customized value in order to detect the traffic signs of different sizes with a lesser
miss rate.

We reduced the stack of five DBL layers at each detection level to two DBL layers, to
make the network shallow as shown in Figure 4b. This reduction of the DBL block stack at
each detection stage yielded lesser false positives and lowered the log-average miss rate
(LAMR). Henceforth, improving mean Average Precision and overall performance of the
YOLOv3 network. Therefore, we conclude that for smaller objects like traffic signs, five
DBL layers are redundant in the network, and since traffic signs are small objects in road
scenes, the output feature map of deeper networks is not required.

During the experiments, we noted while training and testing the network that the
input image size was taken as 416 × 416 pixels. The input image to the network was scaled
to 416 × 416 pixels and then it was forwarded to the network. It should be noted that
rescaling a large image (e.g., 1360 × 800 pixels image in GTSDB) to the small dimensions
of 416 × 416 pixels, makes small objects such as traffic signs very tiny as shown in Figure 5.
This results in the loss of discriminative features, hence, it becomes difficult for the trained
network to detect such minute objects.
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(a)

(b)

Figure 4. Network models (a) original YOLOv3 network (b) tweaked YOLOv3 network – modifications are highlighted
with blue dotted squares.

To cope with this, we propose to break the input image into patches. Splitting the
image in patches was also proposed in [28], which helped to speed up the detection process
in terms of FPS. This technique was also used in [29] to detect vanishing points, yielding
six times speed up the detection process and increased detection accuracy by 5.6%. In
our proposed method, the patch-wise input strategy solved the problem of disappearing
small objects while retaining the essence of the road scenario. This prevents smaller object
features from being lost due to image resizing and helps in improving the detection speed.

The network was trained with patches of training images of size varying from
400 × 400 pixels to 800 × 800 pixels. These patches are obtained from the bounding
box annotations. The dimensions acquired from the annotation were extended 400 pixels
in all four directions. A maximum limit constraint was applied in some cases when this
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extension exceeded original image dimensions. After the patch extraction, the annotations
were re-calculated and saved in a .CSV file.

Figure 5. Effect of larger image resizing on traffic sign features.

As an example, consider an image of size 1360 × 800 pixels image shown in Figure 6a,
it has one traffic sign with bounding box annotations [763, 426, 812, 473]. Its extended
coordinates will be [363, 26, 1212, 873]. All of the coordinates are within dimension limits
of the training image except the last one exceeds 800. Therefore, it is constrained to 800.
The patch obtained from the aforementioned image is shown at the bottom of Figure 6a.

Similarly, the test images were forward into the network in the form of patches of
size 400 × 400 pixels as illustrated in Figure 6b. A 400 × 400 pixels-sized window slides
over the entire image with a stride of 100 pixels. The portion of the image captured in the
window is cropped and saved as shown at the bottom of Figure 6b. The window slides
to the next position with a stride of 100, as shown by the blue border square image. This
image patch-wise cropping continues until the window reaches the right border of the
image. A new position was attained in the y-direction with a stride of 100 as shown by
the green square in the image. The sliding and cropping continue along the x-axis. This
process was repeated until the complete image was covered by the sliding window. These
patches were forwarded into the network for detection. Once the detection is complete, the
patches were recombined into a single image to re-create the original test image.

(a) (b)

Figure 6. Patch-wise detection strategy (a) train image patch (b) test image patches.
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The proposed patch-wise training helped in retaining the fine features of traffic signs,
which were lost because of the re-sizing of an input image to a lesser number of pixels. The
proposed method improved recall percentage by 20% and subsequent detection accuracy
by 13% as compared with the default rescaling.

3.3. Focal Loss as Objectiveness Score

YOLOv3 computes four-loss functions namely: object confidence loss, classification
loss, bounding box centroid, and width-height loss. Bounding box width-height loss
is computed using a mean of square errors between predictions and labels. Other loss
functions are computed using Binary Cross-Entropy (BCE) loss. In the proposed network,
the loss function for confidence score loss is computed using the focal loss function [10].
Focal loss is considered an effective loss function for the detection of small-sized objects
or when there is an imbalance of different class samples. Traffic signs appear smaller
than the other objects in an image size of 1360 × 800. Hence, there exists a great deal of
class imbalance among the samples of traffic signs and background objects. Therefore, we
conclude that it is appropriate to use the Focal loss function for traffic signs.

Focal loss function in Equation (5) is a modified version of binary cross-entropy loss
as shown in Equation (4):

BCE loss = − log(pt) (4)

FL = αt(1 − pt)
γ × (− log(pt)) (5)

where αt is hyperparameter and γ is focusing or modulating parameter, the optimal values
of which are required to be determined empirically. Lin et al. [10] suggested optimal values
for both parameters based on COCO dataset [26]. This dataset contains regular-sized
objects with reference to the image, while traffic signs appear much smaller than those
objects, the optimal values of 0.25 and 2 for alpha and gamma, respectively, fail. We adopted
the experimentation process of [10] and found the optimal value of hyper-parameter alpha
for the traffic signs by keeping gamma constant. Then by using each obtained value of
alpha, gamma was varied, yielding an optimal gamma value. Hence, experiments prove
that for traffic signs, these parameters have an optimal value of 0.75 and 1 for alpha and
gamma, respectively, as shown in Figure 7.

(a) (b)

Figure 7. Effect of varying alpha and gamma on mAP (a) when gamma is set to 1 and alpha is varied (b) when gamma is
varied keeping optimal value of alpha equal 0.75 constant.
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4. Experimental Results and Discussion

The proposed approach is implemented using Keras with Tensorflow backend using
GitHub repository [30] as a base algorithm. The experiments were performed on Google
CoLab, utilizing Tesla T4 GPU with 16 GB memory and 12 GB RAM. The proposed network
was evaluated from six different aspects: mAP, precision, recall, false positives, log-average
miss rate, and inference time.

The network training process can be divided into two steps; first, the Darknet53
network was fixed and the rest of the network was trained for ten epochs with a batch
size of thirty-two keeping the learning rate to 1 × 10−3. Then after obtaining a stable
loss, the complete network was trained for fifty epochs with a batch size of eight, and the
learning rate was reduced to 1 × 10−4. The Adam algorithm is used for loss functions
optimization with a learning rate decay of 0.1 per three epochs for constant validation data
set loss. Training and testing images were given as patches to the network as discussed
in Section 3.2.

4.1. Datasets

The proposed network was trained and tested on two different datasets, namely:
German Traffic Sign Detection Benchmark (GTSDB) and Swedish Traffic Sign (STS). GTSDB
is a widely used data set, containing 600 training images and 300 testing images of size
1360 × 800 pixels. The size of traffic signs in the images ranges from 16 × 16 pixels to
128 × 128 pixels. While the number of traffic signs in an image varies from 0 to 6. The
dataset includes traffic signs of three superclasses: danger, mandatory, and prohibitive.

STS is a more complex and bigger data set than GTSDB, with 20,000 images of size
1280 × 960 pixels, among those 20% are annotated. The size of the traffic sign in an image
varies from 12 × 12 pixels to 156 × 156 pixels. The dataset was gathered from Swedish
highways and cities road with a 1.6-megapixel camera. The dataset can be divided into
three superclasses: danger, mandatory, and prohibitive. In experiments, Part0 of Set1 is
used as a training set and Part0 of Set2 is used as the test set, considering only visible
traffic signs.

4.2. Regressive Anchor Box Selection

Experiments were performed on the default YOLOv3 network and the proposed
tweaked YOLOv3 network with two sets of anchor boxes. The first set was obtained from
the default YOLOv3 anchor box selection algorithm. And the second set was obtained
from the proposed regressive anchor box selection algorithm for the GTSDB dataset. Both
sets of anchor boxes were tested on the default and the proposed YOLOv3 network. Here
by default YOLOv3 network, we mean the default method of image resizing, and the
proposed YOLOv3 network includes pruned network with patch-wise technique. The
comparative results are depicted in Table 1. Results show that for the proposed Regressive
algorithm the recall percentage and AUC have improved, and the proposed tweaked
network model helps in obtaining near to 100% recall percentage for the tuned network as
shown in Table 1.

Table 1. Comparison of anchor box algorithms and YOLOv3 network model.

Anchor Box Selection Algorithm Evaluation Metric Default YOLOv3 Network Proposed YOLOv3 Network

Default-Kmeans Recall percentage 77.23% 96.83%
AUC 75.57% 91.82%

Ours-Regressive Recall percentage 85.32% 98.13%
AUC 78.34% 93.09%
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4.3. Updating Network Layers

Experiments were performed on the YOLOv3 network using GTSDB dataset for
finding the optimal number of layers for traffic sign detection. The effect of removing
redundant DBL layers in the network is illustrated in Figure 8, in terms of Mean Average
Precision (MAP) and Average Precision for each category. The results follow a Gaussian
trajectory; where mAP for the network improves with a reduction of DBL layers and
reaches a maximum value of 93.09%, then moving further there is a drop in mAP values.
The updated network was evaluated on STS Dataset, resulting 5% rise in mAP than the
original model as shown in Figure 8. Figures 9 and 10 illustrate Precision-recall curves of the
original and proposed YOLOv3 algorithm for all three classes of GTSDB and STS Dataset,
respectively. Here by original YOLOv3 algorithm, we mean default method of image
resizing and proposed algorithm includes pruned network with patch-wise technique. For
this experiment, regression anchor boxes are used.

Training the network with image patches helped to achieve better mAP and inference
time. Resizing a 1360 × 800 image to 416 × 416 pixels can vanish the pixels of a traffic sign.
The effect of the proposed training method on the network accuracy (mAP) and inference
time is illustrated in Figure 11. The experiments were performed using the proposed
training technique and the results in terms of mAP and inference time were compared with
the default YOLOv3 network. The proposed approach is 7.5 times faster in detection speed
than the generalized rescaling method often used by the default YOLOv3 method.

Table 2 compares the Average Precision results of different state-of-the-art methods for
the GTSDB dataset. Among all, our method outperforms in terms of accuracy and inference
time. Our proposed network model can detect even the blurred sign beside the visible ones.
It also successfully detected small size traffic signs from the test images. Figures 12 and 13
shows some qualitative detection result samples from STS and GTSDB dataset, respectively.

(a) (b)

Figure 8. (a): Effect of network layers on Average Precision for GTSDB dataset. (b): Effect of layers
pruning on Average Precision and mean Average Precision for STS dataset.

(a) (b) (c)

Figure 9. Precision-recall curves of STS dataset for Original and proposed YOLOv3 network (a) Danger class (b) Mandatory
class (c) Prohibitory class.
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(a) (b) (c)

Figure 10. Precision-recall curves of GTSDB dataset for Original and proposed YOLOv3 network (a) Danger class (b) Manda-
tory class (c) Prohibitory class.

Figure 11. Effect of training technique on mAP and inference time for GTSDB dataset.

(a) (b)

(c) (d)

Figure 12. Detection results on STS Dataset (a) traffic sign recognition in different illumination condi-
tions, (b) Small size traffic sign recognition, (c) A partial view traffic sign recognition, (d) Variable
size Traffic Signs in an image.
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(a) (b)

(c) (d)

Figure 13. Detection results on GTSDB dataset; (a–c) Small size traffic sign recognition, (d) Blurred
traffic sign recognition.

Table 2. Comparison with state-of-the-art methods for GTSDB dataset.

Methods mAP Inference Time

SSD + FPN + ITA [20] 80.30% -
Faster RCNN-Mobilenets [19] 84.50% 0.13 s
Mask RCNN [1] 96.16% 0.32 s
Ours 93.09% 0.04 s

4.4. Focal loss Implementation

Focal loss is a modified version of Cross-Entropy (CE) loss. It is widely used in object
classification problems. CE loss can be used for n number of object classes. For n = 2,
CE loss is named as Binary Cross-Entropy (BCE) loss, comprising of only two labels for
the two object classes. In addition, a network’s accuracy can also be determined by the
Log-Average Miss Rate (LAMR) evaluation metrics. It is computed by averaging the miss
rate on the false positive per image (FPPI) ranging from 10−2 to 100.

Experiments prove that the optimal values of alpha and gamma suggested in [10]
for object detection do not remain valid for the Traffic sign dataset. Table 3 states average
precision values for different values of gamma and alpha. For CE loss (γ = 0), it failed
quickly since the network was diverging during training, even for the range 0 < γ < 1.
Hence, γ was initiated to 1 to find an optimal value for α. The optimal values of α range
from 0.5 to 0.75 for the traffic sign dataset as deduced from Table 3. The maximum achieved
mAP for α = 0.75, when γ = 1, with 0.01 mean LAMR of all three super-classes, while for
α = 0.5 there is a slight decrease in mAP by 0.71% with mean LAMR of 0.04.

While keeping alpha constant and increasing the value of hyper-parameter gamma,
the mAP decreases as shown in Table 3; hence it can be stated that for traffic sign dataset
0.75 and 1 are optimal values of hyper-parameters alpha and gamma, respectively. By
using the obtained hyper-parameter values of alpha and gamma, the network accuracy
declined by 0.68%. Therefore, we concluded that the proposed tweaked network with
regressive anchor box selection technique outperforms the focal loss adjusted network in
the small size traffic sign detection.



Appl. Sci. 2021, 11, 11555 15 of 17

Table 3. mAP results for focal loss implementation on GTSDB dataset. Top result in each class are
highlighted in bold.

Gamma Alpha Danger Mandatory Prohibitory mAP Mean Lamr

0 0.25, 0.50, 0.75 - - - - -
1.0 0.25 97.92% 57.92% 95.20% 83.68% 0.16
1.0 0.50 97.61% 97.61% 93.62% 91.70% 0.04
1.0 0.75 98.30% 85.01% 93.92% 92.41% 0.01
1.0 0.80 91.17% 82.55% 95.77% 89.83% 0.07
1.0 0.85 97.82% 73.21% 95.50% 88.84% 0.16
1.0 0.99 90.00% 74.22% 94.70% 86.31% 0.09
1.2 0.75 96.75% 70.95% 91.45% 86.38% 0.05
1.5 0.75 93.63% 85.52% 94.96% 91.37% 0.04

Ours 94.49% 90.06% 94.72% 93.09% 0.11

5. Conclusions

This paper addresses the problem of an accurate and real-time traffic sign recognition
system. We propose a regressive anchor box selection algorithm that suggests the best-
fit anchor set obtained majorly from the higher concentration traffic sign regions of the
dataset. The obtained anchors improve precision-recall percentage and thus mean Average
Precision of the network. Furthermore, we propose a modified YOLOv3 network, which is
faster and more accurate than the state-of-the-art methods. The pruning of higher-level
feature map benefits include reducing false positives and lowering log-average miss rate.
The proposed network and approach for anchor box determination aids in obtaining a
decent balance between accuracy and inference time.

Although focal loss adjustments help in detecting smaller objects in an image, they
do not work for our modified network. Our proposed network is robust enough to detect
small traffic signs without focal loss adjustment implementation. It also discovered that the
optimal values of alpha and gamma for the traffic sign dataset are 0.75 and 1, respectively.
The proposed method is evaluated on GTSDB [3] and STS [9] datasets. Experiments show
that the proposed method is more real-time, accurate, robust, and competitive than the
state-of-the-art methods.
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Abbreviations
The following abbreviations are used in this manuscript:

BCE Binary cross entropy
lamr log-average miss rate
mAP mean Average Precision
FPPI False Positive Per Image
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