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Abstract: Magnetic anomaly detection (MAD) is used for detecting moving ferromagnetic targets. In
this study, we present an end-to-end deep-learning model for magnetic anomaly detection on data
recorded by a single static three-axis magnetometer. We incorporate an attention mechanism into
our network to improve the detection capability of long time-series signals. Our model has good
performance under the Gaussian colored noise with the power spectral density of 1/ f α, which is
similar to the field magnetic noise. Our method does not require another magnetometer to elimi-
nate the effects of the Earth’s magnetic field or external interferences. We evaluate the network’s
performance through computer simulations and real-world experiments. The high detection perfor-
mance and the single magnetometer implementation show great potential for real-time detection and
edge computing.

Keywords: deep learning; Gaussian colored noise; magnetic anomaly detection (MAD); three-
axis magnetometer

1. Introduction

Magnetic anomaly detection (MAD) is a passive method for detecting ferromagnetic
objects. If the geomagnetic field is taken as the normal field, the magnetic anomaly is the
relative magnetic field change produced by the appearance of ferromagnetic material, -
and the anomaly can be detected by the magnetometer. The MAD method is used to detect
the appearance of ferromagnetic targets in the continuous magnetic records measured by
the remote magnetometer [1].

Compared to magnetic anomalies caused by the ferromagnetic materials, factors
such as biology, water, and almost soils are nearly transparent in the geomagnetic field.
Moreover, the long-range passive observation device is easier to conceal from the target
side. Therefore, MAD has advantages in intrusion alert and hidden target detection [2].
When the distance to the target body is relatively far compared to its size, the magnetic
anomaly field, b, can be considered as a magnetic dipole field [3]:

Here,
→
m is the target magnetic moment, and

→
r denotes the vector from the target to

magnetometer. µ0 is the space’s permeability.

→
B
(→

m,
→
r
)
=
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m ·→r
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There are two challenges in the MAD task: (i) the target signal is generally much
weaker compared to the background noise. The target’s magnetic signal decreases with the
cube of distance, which makes MAD a method to extract weak signals. (ii) The background
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noise is complex. The geomagnetic field as background noise is variable, colored, and
similar to the target magnetic field. Its power spectral density is 1/ f α (0 < α < 2, and α
varies with time and position) [4].

There were two major categories in MAD, including the target-based approach and
noise-based approach, until now [5]. The orthogonal basis function (OBF) is the most
representative target-based method [6]. The signal-to-noise ratio (SNR) is improved by
matching multiple orthogonal basis functions with measured signals to the energy function.
Several studies suggest that OBF is very efficient in Gaussian white noise, but it needs to
be preprocessed in practical experiments, which undoubtedly increases the computation
cost [7]. The noise-based methods, such as minimum entropy filtering [8], the high-order
crossing magnetic anomaly method [9], and wavelet transform [10] suggested that the
background field obeys certain distributions and is changed mainly due to the presence of
ferromagnetic targets. Although these methods do not need prior information on targets,
their performance is limited under low SNR.

Recently, many researchers have tried to use machine learning, particularly deep
learning, to solve the MAD problem. For example, Fan extracted the target signal from
the OBF energy function through support vector machines [11] and identified the target
signal from the two-dimensional temporal frequency spectrum by using convolutional
neural networks (CNN) [12]. The problems of high computational cost and reliance on
Gaussian white noise remain to be solved. A researcher proposed a deep-learning model
called DeepMAD that offers some new insights [13]. It is an end-to-end framework, which
provides the possibility for real-time detection. However, it uses actual geomagnetic noise
as the dataset to train a five-layer CNN model, which lacks generalization. Moreover, the
CNN model cannot handle the relationship between local and global, and it can easily lose
the information of long periods.

Such approaches, however, have additional requirements for the signal when dealing
with a static magnetometer and a moving target. In order to eliminate the Earth’s mag-
netism and reject distant external interferences, the reference magnetometer should be
away from the target and under the same background noise as the measurement magne-
tometer. It requires data from both magnetometers before the signal processing. The above
methods need the differential signal because they lack focus on the extraction of the overall
features and attention to the target change areas. Rapid changing magnetic fields are easier
to pick out, and the signals change slowly as the target enters the detection range.

In recent years, deep learning has developed rapidly in time-series processing, which
provides new techniques for MAD. Recursive Neural Networks (RNNs) [14] can effec-
tively capture features of temporal data, but they have problems in modeling long-term
relationships. This problem is solved by introducing long and short-term memory net-
works, which are special kinds of RNNs. However, LSTM will lead to overfitting when
the sequence contains linear relationships or noise. Bi-directional LSTM (BiLSTM) [15]
further develops LSTM by combining forward and backward hidden layers, which can
utilize information from both directions. Currently, LSTM and BiLSTM have been applied
to text classification and other fields. In addition, the Attention Mechanism [16], which
is based on the human attention mechanism, was first used in machine translation tasks
and has now been extended to various research areas, such as image segmentation. It
can obtain weight by calculating the magnitude of the influence of each time point of
the input sequence on the output, and the obtained weight can be used in the attribution
analysis of the data. Nowadays, it is also widely used with LSTM and CNN to process
sequence data in a structure similar to U-Net [17]. This structure has been used in different
anomaly detection demands, such as social media [18], marine science [19], and natural
language processing [20].

In this study, we introduce a new end-to-end deep-learning model for MAD. An
attention mechanism module was incorporated in the model to assist the CNN. This
improved the ability to identify the target signal in the input time series. The attention
mechanism in deep learning was inspired by human focus patterns. Humans will scan
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the global environment and focus their attention on a certain area to analyze it when
confronted with a complex image. Our model was simulated through two levels of
attention mechanisms. One level globally detected the range of possible targets. Another
one locally picked up the exact time point when the target appears. The training and
detection processes are as follows. First, the network is trained by a training set of computer
numerical simulations. Secondly, the model will output the probability of the presence
of magnetic anomalies at each time point from the three-component magnetic signal
recordings in the field experiment. Finally, the threshold value as needed is selected to help
the detection. The main advantages can be summarized as follows:

1. The observation system is simple because there is no need for another magnetometer
to calculate the differential signal.

2. There is no need to make assumptions about geomagnetic noise and record it in
advance. Targets can be detected in colored noise with low SNR.

3. The computational cost is mainly concentrated in the model training phase. Due
to low computational complexity for practical applications, it is suitable for edge
computing and real-time detection.

2. Methods
2.1. Network Design and Architecture

Magnetic signals are sequential time series consisting of different local (targets pres-
ence) and more global (e.g., instrument background noise and daily variation of magnetic
field) features. Hence, we can consider MAD as a classification problem at each time
point. Traditionally, recurrent neural networks have been used for such sequence mod-
eling. Relatively long-duration magnetic signals require downsampling prior to feeding
to the recurrent layers to decrease the computational complexity. Here, we introduce
several modules in our model. The general architecture is based on U-Net, which has
presented an excellent performance in the segmentation task. The U-Net network structure
is symmetrical and resembles the letter U. The most important advantage of U-Net for our
network design is that it can build a very deep encoder by downsampling. Traditionally,
recurrent neural networks (RNN) have been used for such sequence modeling; however,
downsampling prior to the recurrent layers is imperative to manage the computational
complexity when input is relatively long duration signals. Moreover, U-Net’s skip layers
can help keep detailed information.

Our deep-learning model for MAD consists of an encoder and decoder, including
1D convolutions, residual connections (Res CNN) [21], bi-directional long-short-term
memories (BiLSTM), and a transformer (Figure 1).

Since excessively long sequences in the self-attentive mechanism cause computation
to increase exponentially, we carried out downsampling through max-pooling layers. We
added three skip connection layers to extract convolutional features at different levels.
These features were accepted through the concatenate layers in the decoder for learning
the picking task hierarchically. In this way, the magnetic field signal was transformed from
a sequence in the time domain into a high-dimensional feature representation.

Next, we processed these expressions by two attention modules. The first global
attention module guided the network attention to the part where the target appeared
by assigning different weights. The second local attention module is the last part of the
encoder. It mainly transmits the signal of the target appearance to the decoder. After
passing through a very deep encoder, the signal reaches the bi-directional long short-term
memory (BiLSTM) blocks. Long short-term memory (LSTM) is a specific type of RNN
generally used in modeling longer sequences. The main element in the LSTM cell is a
memory cell. At each time step, the LSTM cell receives an input, outputs a hidden state,
and updates the memory cell according to the gate mechanism. Compared with the regular
RNN, the LSTM could keep the long-period information, which is helpful for the attention
mechanism. BiLSTM is used to assist the attention module in distinguishing long sequence
signal features by incorporating time-positional information. As shown by the brown
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squares in Figure 1, the double arrows indicate the recurrence direction of the BiLSTM.
Decoders then use this information to map the high-level features by a sequence of target
existence probabilities.

Figure 1. Our network architecture. The different types of network layers are shown in the illustration.
The input is the magnetic field signal measured by the magnetometer and the output is the probability
of magnetic anomaly detection at each sampling point. The details of each block are provided in the
methods section. The convolutional layers read as: number of kernels, kr, kernel size.

2.2. Data Preparation

The data used in this paper are obtained by simulation. The establishment of the data
is divided into two parts: one is the background noise data, and the other is the magnetic
anomaly data generated by the moving target. By combining data from these two parts,
we obtain the labeled training and testing data set.

2.2.1. Magnetic Anomaly Signal

According to (1), when the magnetometer is fixed, the simulation of the target magnetic
anomaly is determined by several parameters, including magnetic dipole moment, distance
vector and sampling rate.

We limited the magnetic dipole moment and speed to a specific range for simplicity
without losing generality. The settings for simulation parameters are listed in Table 1. Due
to the three-axis magnetometer, the signal of each axis differs in different directions. The
magnetic anomaly signals are generated following Equation (1) and Table 1. We simulated
a series of magnetic dipoles passing through the magnetometer straight from different
directions. The data length for each simulated signal is 300 s. Figure 2 shows a typical
signal waveform plot.

Table 1. Parameters used for signal simulation.

Parameters Value

Speed (Km/h) [40~60]

Magnetic moment
→
m

X component (Am2) [4500]
Y component (Am2) [0]
Z component (Am2) [−2500]

Sampling rate (Hz) 128
Data length (s) 300
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Figure 2. Simulated magnetic anomaly signal using dipole model.

2.2.2. Background Noise

Geomagnetic noise as background noise data does not provide good robustness of the
model. The geomagnetic data that can be collected are recorded by different instruments for
a limited period at specific locations. To improve the model’s generalization, we obtained
the colored background noise by transforming the Gaussian white noise in the frequency
domain. We set its power spectral density as 1/ f α (0 < α < 2), then inverted it to the time
domain. The typical background noise with the PSD of 1/ f 1.5 is shown in Figure 3.

Figure 3. Simulated temporal plot background noises and PSD of 1/ f 1.5.

.2.2.3. Data Set and Training

We added the simulated background noise with gradual SNR (from −10 dB to 10 dB)
to the target signal to form the data set. Target signals greater than 0.2 in the normalized
amplitude were marked as 1 to represent the presence of the target. The rest of the signals
were marked as 0 to represent the absence of the target. We eventually generated a data set
consisting of 100,000 labeled examples. We randomly split the data into training (85%) set,
validation (5%) set, and test (10%) set. We used the Adam optimizer [22] with an initial
learning rate of 0.0003. The batch size was set to be 64, and the whole training consisted of
100 epochs.

3. Experiment
3.1. Simulation Experiment

We completed the simulation experiment with the test set. For a given α, 1000 testing
instances were synthesized to obtain the average probability of each 0.5 SNR (−10~10 dB).
We compared the predicted probability of each sampling point with the corresponding
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ground truth. A typical test example is shown in Figure 4, with an SNR = 0 dB, and α = 1.5.
The SNR is defined as:

Powersignal =
1
N

N

∑
i=1

x[n]2 (2)

SNR = 10log10
Ptarget

Pnoise
dB (3)

where Powersignal is defined by N and x[n], which are the length of the target signal and
amplitude of each sampling point, respectively. Because we used only one magnetometer
to measure the geomagnetic field, we calculated the deviation between observational and
minimum geomagnetic data as the power of background noise.

Figure 4. Typical test experiment. Three-axis simulation magnetic signals (the black lines) and the
target signals (the blue lines). The probabilities are predicted by the model and the ground truth.

To better describe the model performance of each sampling point, we define the
following two parameters: Precision (P) and Recall (R):

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

where TP is the number of true-positive points, which means correctly detected target
numbers. FP is the number of false-positive points, which represents the falsely alarmed
target numbers. FN is the number of false-negative points, which denotes the missing
target numbers. The precision is the number of true positive results divided by the number
of all positive results, including those not identified correctly, and the recall is the number of
true-positive results divided by the number of all samples that should have been identified
as positive. Precision is also known as positive predictive value, and recall is also known
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as sensitivity in diagnostic binary classification. More examples of the tests are shown in
Figure A1. The simulation results are shown in Figure 5.

Figure 5. The recall and precision of the model under the Gaussian colored noise with the PSD of
1/ f α. (a) α = 0. (b) α = 0.5. (c) α = 1. (d) α = 1.5. (e) α = 2.0.
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We follow this rule to count the sampling points with probability greater than 0.5 rep-
resent true in each test experiment. Figure 5a shows excellent performance under the
Gaussian white noise (α = 0). It is apparent from this figure that the recall and precision
are still up to 70% when the SNR is down to −5 dB. Figure 5b–e show the cases of several
Gaussian colored noises (α = 0.5, α = 1, α = 1.5 and α = 2.0, respectively). The model
has consistent results when the SNR is higher than 0 dB. However, model performance
decreases slightly as the colored noise becomes stronger. A higher Precision means that the
false alarm rate of magnetic anomaly detection is lower, and the results are more reliable. A
higher Recall means that fewer magnetic anomalies are missed. Overall, it is a satisfactory
result to maintain a good precision rate based on a high recall rate.

To further evaluate the network performance, we introduced another parameter
F-score, which is calculated from the Precision and Recall of the test:

F− score = 2× Precision× Recall
Precision + Recall

(6)

In statistical analysis of binary classification, the F-score is a measure of a test’s accuracy.
The highest possible value of an F-score is 1.0, indicating perfect Precision and Recall, and
the lowest possible value is 0 if either the Precision or the Recall is zero. We calculate
the F-score based on the classification in Table 2. Each row is a different alpha, and each
column represents a different SNR interval. The F-score in each bin is calculated from
5000 samples. From the table, each alpha has an SNR interval as a watershed. When the
SNR is greater than this interval, the F-score increases rapidly to above 0.7. This certainly
gives the confidence interval for the model. As the composition of colored noise becomes
more and more (alpha), the model’s reliance on SNR becomes stronger. When the SNR is
higher than 2.5, the F-score is almost greater than 0.9, which indicates good performance of
the model.

Table 2. The F-score of the model under the Gaussian colored noise.

F-Score [−10, −7.5) [−7.5, −5) [−5, −2.5) [−2.5, 0) [0, 2.5) [2.5, 5) [5, 7.5) [7.5, 10]

α = 0.0 0.249 0.701 0.908 0.952 0.965 0.974 0.976 0.975

α = 0.5 0.191 0.432 0.778 0.915 0.942 0.961 0.970 0.973

α = 1.0 0.115 0.178 0.451 0.792 0.899 0.930 0.953 0.967

α = 1.5 0.133 0.190 0.385 0.700 0.854 0.911 0.944 0.956

α = 2.0 0.129 0.199 0.401 0.708 0.852 0.899 0.937 0.957

3.2. Field Experimen

In order to evaluate the model performance under an extremely high colored noise
background in the field, we conducted a field experiment to detect the subway stop
information in the Beijing Yuandadu Park, lasting 2 h (Figure A2). This park is surrounded
by heavy traffic lines with many passengers and is close to the roads and subway stations.

The magnetometer we used is FGS-03, which is a low noise 3-axis fluxgate sensor. The
sensor noise is less than 6 pT/

√
Hz, and the output sensitivity is 0.1 mV/nT. We chose

the sample rate of 128 Hz for more information. A total of 120 min of three-component
continuous magnetic records were obtained from the experiment.

We acquired the probability of magnetic anomaly detection by our model using a
300 s-long sliding window on the data with 30% overlap per step. Figure 6 shows the
magnetic records from the field experiment and the probability of MAD, respectively.
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Figure 6. The data from the field experiment and the probability of MAD. The blue hollow icon
represents a correct detection, the blue solid icon represents two trains, and the red hollow icon
represents a false alarm.

The probability is almost higher than 0.5 or 0, shown in Figure 6, which indicates
that the model can output direct magnetic anomaly detection results in the case of urban
background noise. After checking the train schedules (Table A1), it was determined
that 38 trains passed through the subway station near the magnetometer during the
data recording period. The occurrence of these trains is consistent with the peak of the
probability plot. There are only two false alarms with a probability of just reaching 50%,
which can be avoided by increasing the screening threshold. Further analysis showed that
when the time interval of two trains is small, it is very difficult to distinguish only by the
peak. The eight blue solid icons show the following case: trains in both directions enter
the station almost simultaneously. Figure 7 further demonstrates this case. Figure 7a is an
enlargement of minutes 20 to 25, showing the two trains being detected almost simultaneously.
The two peaks (red circles) show that the model’s predictions are still distinguishable. Figure
7b shows a correct detection for minutes 85 to 90. Although there are still a few false alarms,
they are easily filtered. Overall, the model completed the magnetic anomaly detection.

Figure 7. Two examples from the field experiment in Figure 6. The blue hollow icon represents a
correct detection, the blue solid icon represents two trains, and the blue dotted line represents a false
alarm. (a) minutes 20–25, (b) minutes 85–90.
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4. Discussion

With the above experiments, the attention deep-learning model we proposed en-
ables only one magnetometer to detect magnetic anomaly under Gaussian color back-
ground noise.

In addition to developing a powerful tool for magnetic anomaly detection, our study
provides a novel perspective on the observation system. We suggest that two main factors
control the performance of detecting moving targets: stations and generalizability. Because
most methods need differential calculation by the reference magnetometer to eliminate
interference, this is the reason why no comparison with other methods is made in this
study. Moreover, different methods have different limitations; for example, OBF is not
good at colored noise, MED is limited by SNR, and DeepMAD relies on datasets. We
noted that deep learning could learn feature extraction from massive amounts of data to
complete the classification task, and attention mechanisms can help the model process such
sequential signals.

Our model carried out single station detection with the benefit of a very deep encoder
and attention mechanism, and the generalizability was improved by training with large
amounts of simulation data. The model is pioneering; however, it needs the following
improvements. The first is multi-target detection: when multiple targets appear at the
same time, it is difficult for the model to differentiate. The second is model implantation:
the network structure is still too large to be implemented into mobile chips. The third is
transfer learning: when going for specific target detection in a particular place, we suggest
training the model with a dataset containing local geomagnetic and target anomalies.

5. Conclusions

In conclusion, an advanced deep-learning model based on the attention mechanism
is proposed to detect magnetic anomalies. The simulation and field experiment results
show that the model is still applicable in the case of a single magnetometer, colored noise,
and low SNR. The simple implementation and outstanding performance lead to a wide
range of real-time application scenarios. This type of application is used for perimeter
protection, such as underwater target detection, intrusion alert, or indoor ferromagnetic
object location.
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Appendix A

Figure A1. Typical test experiments of different SNR (−5.0~5) and Alpha (0~2.0). Three-axis
simulation magnetic signals (the black lines) and the target signals (the blue lines). The probabilities
are predicted by the model and the ground truth.

Figure A2. Location of field experiment and subway station.
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Table A1. The timetable of Jiandemen station during the field experiment from 14:10 to 16:10.

Driving Direction Time of Arrival

To MUDANYUAN (west)
14:15, 21, 27, 33, 39, 46, 52, 58

15:04, 10, 16, 22, 28, 35, 41, 47, 53, 59
16:05

To BEITUCHENG (east)
14:11, 17, 24, 30, 37, 43, 50, 56

15:03, 09, 16, 22, 29, 35, 42, 48, 56
16:01, 08

References
1. Wiegert, R. Magnetic Anomaly Guidance System for Mine Countermeasures Using Autonomous Underwater Vehicles. In

Proceedings of the Oceans 2003. Celebrating the Past Teaming Toward the Future (IEEE Cat. No.03CH37492), San Diego, CA,
USA, 22–26 September 2003; Volume 4, pp. 2002–2010. [CrossRef]

2. Paperno, E.; Sasada, I.; Leonovich, E. A New Method for Magnetic Position and Orientation Tracking. IEEE Trans. Magn. 2001,
37, 1938–1940. [CrossRef]

3. Baldoni, J.A.; Yellen, B.B. Magnetic Tracking System: Monitoring Heart Valve Prostheses. IEEE Trans. Magn. 2007, 43, 2430–2432.
[CrossRef]

4. Sheinker, A.; Shkalim, A.; Salomonski, N.; Ginzburg, B.; Frumkis, L.; Kaplan, B.-Z. Processing of a Scalar Magnetometer Signal
Contaminated by 1/fα noise. Sens. Actuators A Phys. 2007, 138, 105–111. [CrossRef]

5. Ginzburg, B.; Sheinker, A.; Salomonski, N.; SOREQ, N.; Frumkis, I.L.; Kaplan, B.Z. Application of Target-Based and Noise-Based
Methods in Magnetic Anomaly Detection Systems. In Proceedings of the International Marine Electromagnetics Conference
(MARELEC 2009), Stockholm, Sweden, 7–9 July 2009.

6. Ginzburg, B.; Frumkis, L.; Kaplan, B.-Z. Processing of Magnetic Scalar Gradiometer Signals Using Orthonormalized Functions.
Sens. Actuators A Phys. 2002, 102, 67–75. [CrossRef]

7. Zhao, Y.; Zhang, J.H.; Li, J.H.; Liu, S.; Miao, P.X.; Shi, Y.C.; Zhao, E.M. A Brief Review of Magnetic Anomaly Detection. Meas. Sci.
Technol. 2020, 32, 042002. [CrossRef]

8. Sheinker, A.; Salomonski, N.; Ginzburg, B.; Frumkis, L.; Kaplan, B.-Z. Magnetic Anomaly Detection Using Entropy Filter. Meas.
Sci. Technol. 2008, 19, 45205. [CrossRef]

9. Sheinker, A.; Ginzburg, B.; Salomonski, N.; Dickstein, P.A.; Frumkis, L.; Kaplan, B. Magnetic Anomaly Detection Using High-
Order Crossing Method. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1095–1103. [CrossRef]

10. Zhou, J.J.; Lin, C.S.; Huan, Y.C. Decreasing Noise in Magnetic Anomaly Detection Basing on Wavelet Denoising. Appl. Mech.
Mater. 2013, 368, 1860. [CrossRef]

11. Fan, L.; Kang, C.; Wang, H.; Hu, H.; Zhang, X.; Liu, X. Adaptive Magnetic Anomaly Detection Method Using Support Vector
Machine. IEEE Geosci. Remote Sens. Lett. 2020, 99, 1–5. [CrossRef]

12. Hu, M.; Jing, S.; Du, C.; Xia, M.; Peng, X.; Guo, H. Magnetic Dipole Target Signal Detection via Convolutional Neural Network.
IEEE Geosci. Remote Sens. Lett. 2020, 24, 1–5. [CrossRef]

13. Xu, X.; Huang, L.; Liu, X.; Fang, G. DeepMAD: Deep Learning for Magnetic Anomaly Detection and Denoising. IEEE Access 2020,
8, 121257–121266. [CrossRef]

14. Williams, R.J. Complexity of Exact Gradient Computation Algorithms for Recurrent Neural Networks; Technical Report NU-CCS-89-27;
Northeastern University, College of Computer Science: Boston, MA, USA, 1989.

15. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF Models for Sequence Tagging. arXiv 2015, arXiv:1508.01991.
16. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
17. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the

Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N.,
Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

18. Kim, T.-Y.; Cho, S.-B. Web Traffic Anomaly Detection Using C-LSTM Neural Networks. Expert Syst. Appl. 2018, 106, 66–76.
[CrossRef]

19. Oehmcke, S.; Zielinski, O.; Kramer, O. Input Quality Aware Convolutional LSTM Networks for Virtual Marine Sensors. Neurocomputing
2018, 275, 2603–2615. [CrossRef]

20. Zhou, X.; Hu, B.; Chen, Q.; Wang, X. Recurrent Convolutional Neural Network for Answer Selection in Community Question
Answering. Neurocomputing 2018, 274, 8–18. [CrossRef]

21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

22. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

http://doi.org/10.1109/OCEANS.2003.178206
http://doi.org/10.1109/20.951014
http://doi.org/10.1109/TMAG.2007.894002
http://doi.org/10.1016/j.sna.2007.04.018
http://doi.org/10.1016/S0924-4247(02)00351-5
http://doi.org/10.1088/1361-6501/abd055
http://doi.org/10.1088/0957-0233/19/4/045205
http://doi.org/10.1109/TGRS.2011.2164086
http://doi.org/10.4028/www.scientific.net/AMM.368-370.1860
http://doi.org/10.1109/LGRS.2020.3025572
http://doi.org/10.1109/LGRS.2020.3033707
http://doi.org/10.1109/ACCESS.2020.3006795
http://doi.org/10.1016/j.eswa.2018.04.004
http://doi.org/10.1016/j.neucom.2017.11.027
http://doi.org/10.1016/j.neucom.2016.07.082

	Introduction 
	Methods 
	Network Design and Architecture 
	Data Preparation 
	Magnetic Anomaly Signal 
	Background Noise 
	Data Set and Training 


	Experiment 
	Simulation Experiment 
	Field Experimen 

	Discussion 
	Conclusions 
	
	References

