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Abstract

:

Solar irradiance is an available resource that could support electrification in regions that are low on socio-economic indices. Therefore, it is increasingly important to understand the behavior of solar irradiance. and data on solar irradiance. Some locations, especially those with a low socio-economic population, do not have measured solar irradiance data, and if such information exists, it is not complete. There are different approaches for estimating solar irradiance, from learning models to empirical models. The latter has the advantage of low computational costs, allowing its wide use. Researchers estimate solar energy resources using information from other meteorological variables, such as temperature. However, there is no broad analysis of these techniques in tropical and mountainous environments. Therefore, in order to address this gap, our research analyzes the performance of three well-known empirical temperature-based models—Hargreaves and Samani, Bristol and Campbell, and Okundamiya and Nzeako—and proposes a new one for tropical and mountainous environments. The new empirical technique models daily solar irradiance in some areas better than the other three models. Statistical error comparison allows us to select the best model for each location and determines the data imputation model. Hargreaves and Samani’s model had better results in the Pacific zone with an average RMSE of   936 , 195     Wh /  m 2     day     ,    SD   of    36 , 01 %  ,    MAE   of    748 , 435     Wh /  m 2     day    ,   and    U  95      of    1.836 , 325     Wh /  m 2     day     . The new proposed model showed better results in the Andean and Amazon zones with an average    RMSE   of    1.032 , 99     Wh /  m 2     day     ,    SD   of    34 , 455     Wh /  m 2     day     ,    MAE   of    825 , 46     Wh /  m 2     day     , and    U  95      of    2.025 , 84     Wh /  m 2     day     . Another result was the linear relationship between the new empirical model constants and the altitude of 2500 MASL (mean above sea level).
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1. Introduction


Solar energy is a promising renewable energy source for supplying the growing energy demand. It has taken decades for solar energy to become economically feasible in developing countries. Today, the associated cost of harnessing this energy resource is competitive in certain situations, such as rural and isolated electrification. In isolated and rural areas, low population density discourages investments for expanding electricity transport systems due to uncertainty in the profits. The state could face such limitations in ensuring access to electricity services for rural and isolated populations through non-conventional energy sources, such as solar energy. In developing countries, solar irradiance data are often unavailable because of the scarcity of weather stations that measure this variable and the insufficient or incomplete calibration and maintenance of metering equipment [1]. In some cases, even when open-access databases are available, information gathering is extensive [2]. Therefore, in recent years, studies analyzing the correlation and methods for estimating solar insolation have increased. Empirical models incorporate relevant variables, such as temperature, sunshine, and relative humidity, to estimate solar insolation, as academic literature shows. The choice of the weather variable to estimate solar irradiance depends on available information, which is temperature in this case. We selected temperature because variable data were available in the national database, and AWS measured temperature and solar irradiance simultaneously in the analyzed locations.



1.1. Background


From empirical models to artificial intelligence, researchers develop models to estimate solar insolation for different time frames. Simplicity, acceptance, adaptability, and low computational cost are the advantages of empirical models [3]. Empirical models are usually based on astronomical, geometrical, physical, and meteorological factors [4]. The meteorological factors include the cloudiness, temperature, and sunshine that describe the condition of the sky. Of these, cloudiness is the most crucial factor for determining solar irradiance behavior. The databases record sunshine duration and temperature [5]; consequently, these variables are most widely used to estimate solar insolation [2]. The implementation of the empirical model depends on data availability and consistency [6]. Given this, the authors of [7] recommend revising the study site’s data simultaneity and reliability. In this case, all the weather stations recorded temperature data. Therefore, temperature-based empirical models are a convenient option for estimating global solar insolation [8].



In 1982, Hargreaves and Samani presented the first temperature-based model for estimating solar insolation based on daily temperature differences [9]. In 1984, Bristow and Campbell proposed a temperature-based empirical model that inputs the difference between daily maximum and minimum temperatures [10]. In 2011, Cheng et al. evaluated the performance of the temperature-based models in China. They found that support vector machine models using maximum and minimum temperatures as input and polynomial kernel functions outperform empirical models [11]. In 2014, Li et al. presented a temperature-based model for China based on the Hargreaves and Samani model [12]. Quansah et al. evaluated temperature-based and sunshine-based empirical models in Ghana [13], and Dos Santos et al. assessed nine temperature-based models for Brazil [14]. In 2017, Rivero et al. validated Hargreaves and Samani’s model for Mexico [15], while Jamil and Akhtar compared empirical models for India’s subtropical and humid environments [16]. Although several studies analyzed the empirical models’ behavior in different places globally, there is no similar amount of research analyzing the efficacy of temperature-based models for tropical and mountainous environments.




1.2. Contribution


To this end, the purpose of this research study was to assess three empirical temperature-based models—Hargreaves and Samani (HS), Bristow and Campbell (BC), and Okundamiya and Nzeako (ON)—for their capacity to estimate solar insolation in a tropical and mountainous environment. Statistical validation determines and compares the performance of the three models. Additionally, we proposed a new method based on the logistic regression model in order to estimate daily solar insolation according to daily temperature differences. This new approach offers an option to estimate daily solar insolations based on the temperature difference that could improve the estimation of this resource in sites with different latitudes with low computational costs. The IDEAM’s (Institute of Hydrology, Meteorology and Environmental Studies, abbreviated IDEAM according to its Spanish translation) Automatic Weather Stations (AWSs) located in the State of Nariño, Colombia, measured the information used as input. The three environmental zones of the area, Pacific, Andean, and Amazonian, allowed evaluating the models in different weather and physiographic conditions. The database was randomly divided into two parts: the first for calibrating the models and the second for validating the models statistically. Before using the empirical models, the data passed a quality control procedure to improve the reliability of the results. R-CRAN was the software used to carry out the computational process needed for the research.




1.3. Paper Structure


The article is organized into the following sections: Section 2 describes the materials and methods used; Section 2.1 describes the characteristics of the dataset; Section 2.2 and Section 2.3 outline the quality control procedures applied to both solar irradiance and temperature data; Section 2.4 presents the empirical temperature-based models; Section 2.3.4 introduces the author’s proposed model; Section 2.4 assesses the statistical validation of empirical models; Section 3 presents the results and discussion; and finally, Section 4 presents the conclusions.





2. Materials and Methods


2.1. Site and Dataset


The weather stations located in Nariño, Colombia (00°31′08″ N and 02°41′08″ N latitude; 76°51′19″ W and 79°01′34″ W longitude), measured solar irradiance and temperatures used as input for the empirical models. The proximity to the Equator and the Intertropical Convergence Zone influences the weather of this place, causing unimodal or bimodal rainy seasons and increasing cloud cover due to high humidity in low altitudes. Additionally, the western mountain range is a barrier for the moist air masses from the Pacific Ocean; thus, the Pacific foothills become more humid and tend to maintain this humidity [17]. Hence, it is appropriate to divide the weather and orographic conditions of Nariño into three environmental regions: the Pacific, the Andean, and the Amazon [18].



The Pacific zone covers 52% of the total territory of Nariño, and this zone includes the Mira-Mataje binational watershed and a mangrove forest located in the Sanquianga natural reserve. Additionally, the region has two climatic zones: the Pacific flatlands and the Pacific foothills. The Pacific flatlands have a humidity level higher than 80%, an average temperature higher than 26 °C, and annual precipitation of between 3000 and 5000 mm/year. The Pacific foothills have high humidity, an average temperature between 18 °C and 24 °C, and annual precipitation between 4000 and 6000 mm/year. However, between the Junín and Barbacoas localities, the annual precipitation is approximately 9000 mm/year [17,18,19]. The Andean zone constitutes 40% of the total area of Nariño, and in this zone, the Andes split into two ranges: western and central [17,20]. The western mountain range exhibits bimodal precipitation behavior between 800 and 2200 mm/year, with peaks in April–May and October–November. In the central mountain range, the temperatures vary between 16 °C to 24 °C, and precipitation averages between 1000 to 1800 mm/year. In the north zone toward Patia, annual precipitation is less than 1000 mm/year, with temperatures typically above 24 °C [19]. The Amazon zone covers 8% of the Nariño territory and has two climate zones: mountainous and flatland. The mountainous zone is located between the Patía and Putumayo rivers with temperatures averaging between 6 °C and 11 °C and annual precipitation of about 2000 mm/year. The flatland zone has tropical weather influenced by the cloudy jungle and precipitation between 500 to 1500 mm/year [19].



There are 9 AWSs measuring solar irradiance, 8 located in Nariño and 1 positioned in the neighboring state of Cauca, and 16 Conventional Weather Stations (CWS) measuring temperature (see Table 1 and Table 2), located as shown in Figure 1. In the Pacific region, there are three AWSs. The altitude of these AWS ranges between 16 and 512 MASL. In the Andean region, there are five AWSs located at altitudes between 1005 and 3120 MASL. Finally, in the Amazon region, there is one AWS at an altitude of 3577 MASL. The maximum altitude difference between all AWSs is 3561 MASL. This difference allows evaluating solar irradiance behavior in a wide range of altitudes in the three diverse environmental regions. We reviewed a study on the same zone that used Landsat 7 (1999–2015), MODIS (2005–2015) and VAISALA 3TIER (2000–2015) satellite data; however, when comparing the satellite and ground data, we found a significant difference between them. The satellite data resulted in a maximum solar irradiance potential of approximately 245 W/m2 day with MODIS and Landsat 7 database [21]. In contrast, the ground measurements show a maximum potential of approximately 3800 W/m2 day. Furthermore, the results of the national Solar Atlas are closer to our results than satellite ones.




2.2. Data Quality Control


Data quality control is a procedure intended to improve the reliability of time series data. The procedure includes the analysis of database structure, the comparison with fixed and flexible limits, and time consistency. The application of these steps offered reliable results in studies of weather data quality control in Spain [22]. The quality control procedure followed in the current research study relied on guidelines presented in regulation UNE500540, which outlines successive analytical procedures of quality control for different weather variables [23]. The first step consists of checking the database structure, the second step compares the data with the maximum extraterrestrial solar irradiance, the third step compares the time series with the maximum and minimum clear-sky global solar irradiance limits, and the fourth step consists of analyzing changes in global solar irradiance hour by hour.



2.2.1. Solar Irradiance Data Quality Control


The first step consists of checking database structure. In our case, the data exhibited the following structure: AWS code, weather variable code, date, hour, and value. This step only maintains the values with the described structure [15]. For the fixed-range step, UNE500540 suggests using the most restrictive condition between the measurement device limit and the physical phenomenon limit. Nariño’s AWS have Kipp & Zonen CMP11 pyranometers with an upper operation limit of 4000   W /  m 2    [24]. The physical limit is the maximum extraterrestrial solar irradiance    I 0    of each location computed with the following equation [25]:


       I 0  =  I  s c   ×   1 + 0 , 033 ∗ cos   360 ∗   D − 3   365       ∗ sin  β  ,       sin  β    = cos  φ  × cos  δ  × cos    ω s      + sin  φ  × sin  δ       








where    I  s c     is the solar constant,  D  is the Julian day,  β  is the solar altitude, and  δ  is the declination calculated as follows:


  δ = 23.45 × s i n     360 ×   D + 284     365     ,  








where  φ  is the latitude, and    ω s    is the hour angle calculated as follows.


   ω s  =   cos   − 1     − tan  δ  tan  φ    .  











Therefore, the most restrictive condition is the extraterrestrial solar irradiance [22]. Consequently,    I 0  ≥  I  m t    , where    I  m t     is the measured global solar irradiance by a pyranometer at time  t .



For the flexible range test, UNE500540 suggests comparing the time series with the maximum and minimum values of a validated time series. In this case, there was no time series previously validated; therefore, we used, as an alternative, the restriction proposed for Estévez et al. with one modification. Namely, instead of using    I 0   , we used the following range defined by the clear-sky global solar irradiance:     0.03 ∗  I  cs   ≤  I  m t   ≤  I  cs       [21]. The clear-sky global solar irradiance is equal to  τ  times    I 0   ,    I  c s   =  I 0  ∗ τ  , and  τ  is the atmospheric transmittance estimated with Kreith and Kreider’s model as follows [25]:


  τ = 0.56 ×    e  − 0 , 65 × m   +  e  − 0 , 095 × m      








where the air mass  m  is defined as follows.


  m =  1  sin  β     











The fourth step consists of analyzing changes in global solar irradiance hour by hour. This analysis, known as time consistency, follows the restriction      I  c s     t  −  I  c s      t − 1       >      I m    t  −  I m     t − 1      . Time consistency is a useful means for detecting data storage and connection troubles in the datalogger. A high sampling frequency—for instance, every ten minutes—would increase the effectiveness of the test.



In addition to the tests mentioned above, it is also necessary to consider the zero offset, which results from thermal imbalances in the pyranometer. This phenomenon occurs because the sensor does not absorb any measurable irradiance values in the pyranometer’s spectral range, resulting in erroneous values [24]. It is essential to offset this imbalance because neglecting it would entail underestimated solar irradiance records between 0.7% and 4.3%. Several environmental factors influence the measurement process, so it difficult to correct all measurement instruments in all locations and environments [26]. Although various approaches to correct the zero-offset adapted to specific environmental conditions and instruments exist, the current research did not follow such approaches.




2.2.2. Temperature Data Quality Control


We carried out five temperature validation procedures, structure, range, step, consistency, and persistence, based on the recommendations of Estévez et al. and Rivero et al. The first step consists of verifying the database structure and that of the solar irradiance validation. The range test involves two evaluation methods: the instrumental range method determined by the ROTRONIC HYGROCLIP 2 RTD PT100 with a temperature range between −40 °C and 60 °C and the use of data validation criteria defined by other researchers. Rivero et al. recommended a temperature interval between −50 °C and 70 °C, while Estévez et al. suggested a range of −30 °C to 50 °C. We followed Estévez et al.’s recommendation because it is within the temperature range of the sensor. Likewise, the analysis of the step test, internal consistency test, and persistency test also followed Estévez et al.’s quality control process because it offered promising data analysis results in Spain [22,27].



The step test requires the fulfillment of the following requirements:      T h  −  T  h − 1       < 4  ;      T h  −  T  h − 2       < 7  ;      T h  −  T  h − 3       < 9  ;      T h  −  T  h − 6       < 15  ; and      T h  −  T  h − 12       < 25  , where    T h    is the air temperature measured at time  h . Although this evaluation does not consider other climatology aspects that can affect temperature variation, such as humidity, wind speed, cloudiness, and precipitation, the authors of this study applied these restrictions. Another fundamental requirement is that the daily step restriction fulfills the following condition:    T  m a x   −  T  m i n   < 30   ° C  , where    T  m a x     and    T  m i n     are the maximum and minimum daily temperatures [26]. Internal consistency assesses the accomplishment of the following conditions:    T  m a x   >  T  m e a n   >  T  m i n    ;    T  m a x    d    >  T  m i n     d − 1    ; and    T  m i n    d    ≤  T  m a x     d − 1    . Finally, the persistence test verifies measurement variability; therefore, the data must accomplish the conditions    T  m a x    d    ≠  T  m a x     d   − 1     ≠  T  m a x     d   − 2     and    T  m i n    d    ≠  T  m i n     d − 1     ≠  T  m i n     d − 2    , where  d  is the day number [22].





2.3. Empirical Temperature-Based Models


Although air temperature is a standard variable measured in weather stations, it has been infrequently used to estimate solar insolation. Temperature started to be relevant in estimating solar insolation when agricultural studies modeled solar insolation to analyze crop production rates. Consequently, researchers from other fields increasingly focus on the maximum, minimum, and mean temperature values in order to model solar insolation [28]. The most traditional models incorporating maximum and minimum temperatures are the Hargreaves and Samani and Bristow and Campbell models [4,10]. Both models are the basis of innovative approaches adapted to specific location conditions [7,12,27,29,30,31,32].



2.3.1. Hargreaves and Samani’s Model


In 1982, Hargreaves and Samani (HS) proposed a linear relationship between the square root of the temperature difference and the fraction between the extraterrestrial and terrestrial global solar insolation for different periods, as follows:


   H   H 0    = a      T  m a x   −  T  m i n       0 , 5    








where  a  is the empirical coefficient,  H  is the global solar insolation on a horizontal surface, and    H 0    is the daily extraterrestrial solar insolation calculated as follows.


   H 0      W h    m 2  d a y     =   24  π  ×  I  s c   ×   1 + 0 , 033 ∗ c o s     360 ∗ D   365       ×   c o s  φ    ×   c o s  δ    ×   s i n    ω s      +    π  180   ×  ω s  × s i n  φ    ×   s i n  δ    .  











This model, however, did not consider the effects of cloudiness, humidity, latitude, elevation, or topography, among others, in the specific location for which the model is used [33,34]. Allen stated that the HS model demonstrates better behavior in a monthly time frame than in a daily time frame because the variables follow a mean trend, resulting in a consistent relationship between    T  m a x   −  T  m i n     and   H /  H 0    [35].



The empirical coefficient represents the rate of change from the maximum and minimum temperature difference with the ratio between the extraterrestrial and terrestrial solar insolation. Initially, the HS model proposed an empirical coefficient calibrated with an eight-year time series from Central Valley in Davis County, California (see Table 3) [4,9]. They found that a relative humidity above 54% affects the empirical coefficient, and that the maximum and minimum temperature difference is smaller when it is nearly this percentage. As shown in Table 3, in humid regions, the empirical coefficient has a value less than 0.10 while other regions have values higher than 0.16 [9]. A thorough process uses empirical coefficients according to the region under study. Accordingly, Rivero et al. pointed out that using a fixed empirical coefficient for a large area with different regions may result in significant errors because topography influences temperature, the advective environment, and vegetation [15].




2.3.2. Bristow and Campbell’s Model


Bristow and Campbell (BC) presented a model based on two assumptions. The first assumption is that of a linear relationship existing between the absorbed and incoming solar insolation, while the second assumption is that of disregarding the heat flux coming from the soil for a daily period because it is close to zero. However, it is convenient to mention that the sensible heat produced by diurnal temperatures is higher than that produced during the nighttime [10]. This is understandable because solar irradiance heats air masses more due to short-wave radiation, whereas at night, there is less long-wave emission from the Earth to the atmosphere, reducing the temperature [29]. Furthermore, under ideal conditions, the temperature is minimum just before sunrise, resulting in a significant difference between daily maximum and minimum air temperature. This phenomenon permits the modeling of solar insolation as a function of temperature difference [10]. Under these assumptions, the authors presented their model:


   H   H 0    = a   1 −  e    − b Δ  T c        ,  








where  a ,   b ,   and  c  are empirical coefficients.  a  represents the maximum ratio between the extraterrestrial and terrestrial global solar insolation   H /  H 0   ;  b  and  c  determine how soon the model achieves such a maximum by temperature increases   Δ T  . Empirical coefficients represent the regional characteristics from arid to humid environments [10].



Temperature difference depends on the daily maximum    T  m a x     and minimum    T  m i n     temperatures for a day  D  given in   ° C  . Bristow and Campbell concluded that the minimum temperature averages of two consecutive days reduces the effect from hot or cold air masses, in turn, avoiding overestimated and underestimated solar insolation values. Accordingly, Dos Santos et al. stated that advection is not a common phenomenon in tropical zones; therefore, the temperature change   Δ T   estimation in these regions is   Δ T  D    =  T  m a x    D    −    T  m i n    D   . Dos Santos et al. also highlighted that this equation is better for sites with high altitudes, as in the study case [14].



Another weather effect modifying the solar insolation estimation is rain. The effect of rain decreases, setting   Δ T  J    equal to 0.75 times the estimated   Δ T  D   . If   Δ T   D − 1     is less than   Δ T   D − 2     by about 2 ºC, the first factor is multiplied by 0.75 [10]. However, when the rainy period is long, the relation between solar insolation and   Δ T   reaches an equilibrium. Therefore, it does not require adjustments [36].




2.3.3. Models Implemented in Tropical Environments


Knowledge of solar irradiance behavior in tropical zones is a mandatory requirement for this research study. The analyzed cases are from Africa (Nigeria Abuja, Benin City, Katsina, Lagos, Nsukka, and Yola), Brazil (Água Branca, Pao de Azucar, Santana do Ipanema, Palmeira dos Índios, Arapicara, Maceió, Corcuripe, and Sao Jose da Laje), and Mexico. Due to the fact that Nariño is in a tropical area, the results from these three cases constitute relevant inputs for the current research.



Okundamiya and Nzeako (ON) proposed a linear model as follows [37]:


   H   H 0    = a + b  T R  + c  T  m a x   ,  








where    T R    is the monthly average of the ratio between the daily minimum and maximum temperatures      T  m i n   /  T  m a x      , and   a , b   and  c  are empirical coefficients. The statistical validation of the model yielded a coefficient of determination between 0.809 and 0.952.



Nwokolo and Ogbulezie reviewed empirical models implemented in West Africa in order to compute global solar irradiance. They found that the soft computing models have better accuracy than the empirical models since they can be more easily adapted to several weather conditions. This is because soft computing models allow more inputs, as models or variables, to strengthen their reliability [38].



Dos Santos et al. studied the performance of ten temperature-based models in Northeastern Brazil. They found that the models did not show significant changes after adjusting them concerning the rainy periods’ effects. Dos Santos et al. also concluded that the HS model demonstrates better performance in the hinterlands and interior regions, whereas the BC model showed the best performance in humid and coastal zones [14].



Rivero et al. compared the values of the original empirical coefficients of the HS with new values generated from the model calibrated for Mexico with local data. A notable element of that research was the classification of Mexico’s climate zones using the Köppen–Geiger system. Furthermore, the authors developed another classification based on the clearness index, as shown in Table 4, to support the AWS data. It is useful to remember that the clearness index is the ratio between terrestrial solar insolation and extraterrestrial solar insolation. A relevant conclusion in this respect was that regardless of solar irradiance peaks during the day, it is possible to obtain similar clearness index values. Another notable conclusion was that fixed empirical coefficients result in significant error, especially in zones with a temperature difference below 15 °C. The authors proposed the following equation to overcome the identified issue derived from fixed coefficients [15]:


   a  H S   =  a 1  +  a 2    Δ T     +    a 3      Δ T    2   








where    a  H S     is the Hargreaves and Samani equation coefficient.




2.3.4. Proposed Empirical Model


The proposed model originated from observing the scatter plot between the clearness index and the daily temperature difference in each AWS. We concluded that the logistic model would offer useful results, because this model has successfully studied human growth, animal and biological processes, energy use patterns, and atmospheric applications [39,40]. The logistic regression commonly describes the relationship between binary variables and a predictor [41]. Although the relationship between extraterrestrial and terrestrial solar insolation does not offer binary results, it varies in a range between 0 and 1. The use of this technique “arises in estimating relationships in which the dependent variable is continuous, but is limited in range” [42]. Manning’s statement describes the relationship between the dependent and independent variables in the proposed model because solar insolation relationships are continuous, and the temperature range is defined by the minimum and maximum temperatures. Logistic regression does not assume that neither variables nor predictors have a normal distribution; this affirmation was another criterion to choose this approach [43].



The logistic regression model is part of the Generalized Linear Model (GLM), which describes the relationship between the mean of the dependent and independent variables with a more complex relationship than   y = a + b x  . In logistic regression, which is a statistical method, the coefficients have a similar meaning to linear regression; namely,  a  is the log-odds of success at   x = 0  , while  b  is the change in the log-odds of success corresponding to a one-unit increase in  x  [44]. This regression also assumes a linear relationship between the dependent and independent variables’ log-odds [40].



The logistic function came from the logistic model and is represented as follows:


  y =  1  1 +  e  − z     ,  








where  y  is the predicted variable, and  z  is a linear sum   a + ∑  b i   x i    where    x i    is the independent variable, and  a  and  b  are constants [41].


  y =  1  1 +  e  −   a + b x       .  











In this case, the temperature change   Δ T   is the predictor variable. Therefore, the proposed model is defined as follows.


   H   H 0    =  1  1 +  e  −   a + b Δ T        













2.4. Statistical Validation


Statistical validation is a mandatory step that allows the comparison of the predictor model with real measures to determine the suitability of the model. There are five main validation techniques: subjective assessment, dispersion indicators, overall performance indicators, distribution similitude indicators, and visual indicators [45,46]. We implement the second technique, because it is appropriate when the data have the same time frame, location, and treatment, among other characteristics. This validation technique measures the difference between the modeled and real value. Table 5 shows some measured dispersion indicators, expressed in absolute units or percentages [45].





3. Results and Discussion


The results and discussion have four subsections. The first subsection presents the quality control results of global solar irradiance. The second subsection shows the results of the temperature data validation procedure. The third subsection contains the empirical coefficients of the HS, BC, and NO models and those of the proposed model. The last subsection comprises the imputation results and the daily solar insolation for the AWS studied.



Figure 2 shows the scheme followed for implementing the models. We obtained the raw data of AWS and conducted a quality control process for data cleaning. Subsequently, we selected the days with at least six measured per day, aggregated the hourly irradiance to estimate the insolation, and chose the maximum and minimum daily temperature. We randomly selected 80% of the data of AWS for empirical model calibration and 20% for statistical validation.



3.1. Quality Control: Global Solar Irradiance and Temperature


A step undertaken prior to the quality control procedure is data adjustment stemming from the calibration constant. In this case, there was no calibration constant for the Biotopo AWS affecting the quality of the time series; likewise, this AWS also had the smallest number of recordings among all AWS. The total amount of data (47,612) for the period studied corresponded to 34.50% of the total data that should be recorded. The AWS registered information during 57.59% of the measured period 2005–2017.



Table 6 shows the results of the global solar irradiance validation procedure. The first step, which evaluated the database structure, presents 5843 recordings on average with the incorrect structure. The AWS with the most recordings that had an incorrect data structure was Viento Libre; this step confirmed that 9715 data did not have the database structure, corresponding to 12.55% of the total data. The AWS with fewer recordings with the incorrect data structure was Biotopo; this step confirmed that 1055 data did have the database structure, corresponding to 2.22% of the total. The fixed range validation discarded 36.71% of data on average. Biotopo lost the most data, corresponding to 47.62% of the total, whereas Universidad de Nariño lost the fewest data, amounting to about 22.09% of the total. The flexible range test results reveal information losses of 39.11%. The AWS with the lowest number of losses was Biotopo, about 15.14%, while Guapi had the highest number of losses, about 5422%. Although the last test was not mandatory, it is useful to point out that 44.06% of the recordings did not overcome the time consistency level. Considering only the mandatory steps, about 35.27% of the data overcame these validation steps. Universidad de Nariño’s AWS had the most data approving the validation process, whereas Guapi’s AWS had the fewest data approving the validation process.



The first row of Table 7 represents the recorded data number between 06:00 and 18:00. The subsequent rows show the day numbers with the recorded data amount indicated in the heading—for instance, Biotopo has 13 days with only one record. The columns highlighted in gray represent that each day has between 10 and 11 recordings per day. It is worth noting that only 1.26% of days had complete information, with a maximum of 4.25% in Cerro Páramo and a minimum of 0.28% in Biotopo. Consequently, the model implementation only considered the days with at least six recordings during the daytime period to avoid underestimating the resource—approximately 95.81% of the recordings that overcame the mandatory validation levels accomplished this requirement.



The results confirm the importance of improving the maintenance and calibration procedures of the measurement instruments in order to increase the amount of useful information, in turn increasing reliability.



We considered the Rivero et al.’s classification and modified the item concerning partially cloudy days, as Table 8 shows. Table 8 shows that, in the analyzed AWS, on average, 64.70% of days were classified as partially high cloudiness. This corresponds to losses between 20% and 40% of extraterrestrial solar irradiance when reaching ground level. This result is important not only because clouds affect global solar irradiance but also because, as a variable, it is not easy to model. Consequently, the resource estimation in this tropical and mountainous environment is more complicated than in other environments.



Table 9 shows the results of the temperature validation procedure. In the first step, missing information was 8.64% on average. Cerro Páramo AWS missed the most information amount, with 16.95% missing data. In the fixed range test, Guapi had data missing of about 11.62%. In the step test, about 35.07% of the data did not pass the validation requirement. Considering the starting values as the base, 57.08% of the data overcame the quality control procedure.



Table 10 shows, as Table 7, the record numbers by day. The results indicate that about 57.42% of the days had 88.46% of useful information. Finally, from the total amount of data that overcame the hourly validation test, only 68.03% of data were suitable for feeding the models.




3.2. Model Development and Performance


3.2.1. Model Development


By observing the scatter plot from Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10, we concluded that the logistic model would offer helpful results because logistic regression commonly describes the relationship between binary variables and a predictor [40]. Although the relationship between extraterrestrial and terrestrial solar insolation does not offer binary results, it varies in a range between 0 and 1. Furthermore, logistic regression does not assume that neither variables nor predictors have a normal distribution [42].




3.2.2. Performance


Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10 show the relationship between the daily clearness index and daily delta of temperature for the studied AWS. Figure 3 and Figure 10 show that there is a moderate linear relationship between the daily clearness index and daily delta of temperature in the Pacific zone. Figure 5 shows that, in Cerro Páramo, the clearness index and the delta of temperature possess a moderate linear relationship. In the Andean zone, the clearness index and delta of temperature exhibited a weak linear relationship.



Table 11 shows the empirical coefficients of the HS, BC, and ON models and those of the proposed model. The  a  and  b  empirical constants of the BC model demonstrated a growing trend corresponding to altitude, while the c empirical constant showed the opposite behavior. The empirical coefficients of the HS model did not present a significant variation among AWS. This means that the AWSs have similar humid conditions, considering the original values given by [9]. The empirical coefficient of the ON model for the Bitopo AWS revealed the unique negative value. More studies and data are necessary to understand this result. However, there were two influencing factors: Biotopo AWS did not have calibration factor, and the data number was the lowest.



Table 12 presents the results of seven statistical validation measurements for each AWS. Considering   R M S E  ,   S D  ,   M A E  ,    U  95    , and   M A P E  , the proposed model had better performance than the other models. That said, the BC model had better results for   M A E   and   M P E  . The proposed model showed better results in AWS located at altitudes above 2500 MASL. In contrast, the HS model showed better performance at altitudes below 2500 MASL. However, if the objective is to use a unique model to estimate solar irradiance from temperature data in the state, the proposed model remains the best.



RMSE showed that the lowest value occurred in the Guapi AWS (  878 , 75 Wh /  m 2  day  ), while the highest value was in the Cerro Páramo AWS (  1.209 , 76 Wh /  m 2  day )  ; on average, RMSE was   1.046 , 69 Wh /  m 2  day  . The ON model presented the highest RMSE, with   1.058 , 77 Wh /  m 2  day  ; followed by the BC model, with   1.052 , 96 Wh /  m 2  day ;   the HS model, with   1.046 , 66 Wh /  m 2  day ;   and the proposed model, with   1.028 , 37 Wh /  m 2  day  .



The standard deviation showed that Cerro Páramo presented more scattered values than the other AWSs. By comparing the four models and analyzing the average standard deviation, the best option is the proposed model. The MBE showed that the BC model made an underestimation of   77 , 79 Wh /  m 2  day   in Cerro Páramo. All models—ON, HS, BS, and the proposed model—overestimated the solar resource in Viento Libre by   167 , 77 Wh /  m 2  day  ,   163 , 13 Wh /  m 2  day  ,   162 , 63 Wh /  m 2  day  , and   160 , 23 Wh /  m 2  day ,   respectively.



The MAE showed that the proposed model had the best performance, with an average error of   821 , 41 Wh /  m 2  day  , while the ON model reached an average error of   8.45 , 27 Wh /  m 2  day  .    U  95     yielded, on average, the following results:   2.076 , 49 Wh /  m 2  day     2.065 , 11 Wh /  m 2  day ,   2.034 , 13 Wh /  m 2  day  , and   2.016 , 86 Wh /  m 2  day   for ON, BC, HS, and proposed models, respectively, thereby confirming that the proposed model performed better than the other models.



  MPE   presented the BC model as the best-performing model, with   14.45 %   on average, whereas the HS model was the worst-performing, with   15.31 %   on average. MAPE revealed the proposed model as the best option, with   35.12 %   followed by the HS and ON models. The   MAPE   results were consistent with the other statistical results.



The proposed model’s empirical coefficients showed a relationship with altitude. Figure 11 presents the linear adjustment of the empirical coefficients for two altitude ranges covering the location of AWS. On the left side, the figures represent the relationship between empirical coefficients and the altitudes below 2500 MASL; on the right side, the figures show the remaining AWS. Statistical analysis indicated that    R 2    for the  a  coefficient was 0.5262 and 0.5995 in the first and second cases, respectively.    R 2    for the  b  coefficient was 0.6069 and 0.8152 in the first and second cases, respectively. This result is remarkable since solar irradiance and temperature change with respect to altitude. These changes occur because of higher altitude and fewer molecules and aerosols scattering and absorbing solar irradiance [47,48].





3.3. Imputation of Daily Solar Insolation Data


According to the AWS location, the imputation process used to estimate the daily solar insolation data followed the best empirical model based on the research results. Table 13 shows the number of imputed data for each AWS. La Josefina had the most imputed values; it was necessary to fill in 2870 missing data. Botana had the lowest imputed values, filling 572 missing data. On average, the empirical models allowed imputing about four years of missing data; therefore, it was necessary to fill these empty gaps by using temperature data. The time series before and after the daily solar insolation imputation process for each AWS is presented in Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19.



Figure 20 shows the monthly daily average solar insolation for all analyzed AWSs. The AWS located in the Pacific zone presented similar behaviors; namely, they registered a peak in August and September and a lower level in November. Viento Libre was the only AWS that recorded values close to   4000   Wh /  m 2     day    in August. The Botana and Universidad de Nariño AWSs in the Andean region showed a peak between October and November. The Cerro Páramo and Viento Libre AWSs exhibited certain energy complementarity because the lower level in the first AWS compensates the higher level of the second AWS.





4. Conclusions


The validation levels of the global solar irradiance data strongly influenced the results of the empirical variables. The best evidence was that the results showed that 60.89% of the data overcame the mandatory validation steps. From the dataset overcoming the quality control process, 95.81% corresponded to the days with at least six recordings, and those days constituted the empirical model’s calibration information. However, this percentage represented, on average, 33.90% of the total information recorded in the AWS. In addition to this, only 1.26% of the days had complete information. This result indicates that the time series quality is not optimum; therefore, it is necessary to improve and increase maintenance and calibration procedures.



In the state of Nariño, the performance of the AWS is a determining factor when considering the predominance of partial high cloudiness, representing 64.7% of the total measured days. Accordingly, in Nariño, high cloudiness complicates the estimation of solar insolation; therefore, it is fundamental to improve the reliability of measurement systems. Consequently, it is also essential to regularly establish a plan to carry out these procedures at a high-quality level and according to widely accepted standards. Installing more AWSs to increase the sampling points is also recommended.



Regarding temperature measures, only 92.78% of the measures were useful for the empirical calibration and imputation from the total data that overcame the hourly validation steps. Additionally, the days with more records had between 11 and 12 data inputs per day; this means that most of the days used for modeling and filling the database by the imputation process had 88.46% of the total information on average.



The proposed model showed a linear relationship between the empirical coefficients and altitude.    R 2    showed better adjustments between the empirical constants and the altitude in sites above 2500 MASL than at sites below this altitude. This result is consistent with the temperature in tropical zones where there is high humidity at low altitudes and global solar irradiance in high altitudes.



The results from   R M S E  ,   S D  ,   M A E  ,    U  95    , and   M A P E   statistical tests demonstrated that the proposed model exhibited better performance in five of the eight evaluated cases (Viento Libre, Cerro Páramo, Universidad de Nariño, Botana, Josefina, and Paraiso), all of which were in the Andean and Amazon zones at altitudes above 2500 MASL (see Table 12). The proposed model was useful for imputing information in the Andean and Amazon AWSs, with a mean value in RMSE of   1.022 , 86   W /  m 2  day   for the Andean zone and   1.152 , 72   W /  m 2  day   in the Amazon zone. In the Pacific zones’ AWSs, Hargreaves and Samani’s model was the best option, followed by the model proposed in this study.



The proposed model showed stable performance in the tropical and mountainous environment of Nariño. However, it is necessary to analyze more information coming from other locations with the same characteristics. Most importantly, the number of AWSs and the quality of time series data in tropical and mountainous environments must be increased.
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Nomenclature




	 a ,  b ,  c 
	Empirical coefficients



	  H  
	Global horizontal insolation



	    H 0    
	Daily extraterrestrial solar irradiance



	    I 0    
	Hourly extraterrestrial solar irradiance



	    I  cs     
	Hourly clear-sky global solar irradiance



	    I  cs     t    
	Hourly clear-sky global solar irradiance at time  t 



	    I  m t     
	Global solar irradiance at time  t 



	    I  s c     
	Solar constant



	    K t    
	Clearness index



	    T h    
	Hourly measured temperature



	    T  m a x     
	Maximum daily temperature



	    T  m e a n     
	Mean daily temperature



	    T  m i n     
	Minimum daily temperature



	    T R    
	Ratio between the daily minimum and maximum temperature



	   Δ T   
	Difference between the daily maximum and minimum temperature



	  φ  
	Latitude



	  δ  
	Solar declination



	    ω s    
	Sunset hour angle



	  D  
	Julian day



	  β  
	Solar altitude



	  τ  
	Atmospheric transmittance
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Figure 1. Automatic and conventional weather stations in Nariño. Source: made by the authors with information from OpenStreetMap. 
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Figure 2. Scheme for empirical model implementation. 
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Figure 3. Daily delta of temperature–clearness index for Biotopo. 
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Figure 4. Daily delta of temperature–clearness index for Viento Libre. 
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Figure 5. Daily delta of temperature–clearness index for Cerro Páramo. 
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Figure 6. Daily delta of temperature–clearness index for Universidad de Nariño. 
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Figure 7. Daily delta of temperature–clearness index for Botana. 
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Figure 8. Daily delta of temperature–clearness index for La Josefina. 
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Figure 9. Daily delta of temperature–clearness index for Paraiso. 
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Figure 10. Daily delta of temperature–clearness index for Guapi. 
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Figure 11. Coefficients a and b empirical model–altitude relation in the proposed model. 
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Figure 12. Biotopo imputation. The dark blue points are the estimated values using air temperature information, and the light blue points are the measured values. 
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Figure 13. Viento Libre imputation. 
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Figure 14. Cerro Páramo imputation. 
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Figure 15. Universidad de Nariño imputation. 
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Figure 16. Botana imputation. 
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Figure 17. La Josefina imputation. 
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Figure 18. Paraiso imputation. 
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Figure 19. Guapi imputation. 
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Figure 20. Daily monthly insolation. 
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Table 1. Automatic weather stations in Nariño.
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	Name
	Latitude
	Longitude
	Altitude
	Period
	Region





	Biotopo
	1.41
	−78.28
	512
	2005–2017
	Pacific



	Altaquer *
	1.56
	−78.09
	101
	2013–2014
	Pacific



	Granja el Mira
	1.55
	−78.70
	16
	2016–2017
	Pacific



	Cerro Páramo
	0.84
	−77.39
	3577
	2005–2017
	Amazon



	La Josefina
	0.93
	−77.48
	2449
	2005–2017
	Andean



	Viento Libre
	1.62
	−77.34
	1005
	2005–2017
	Andean



	Universidad de Nariño
	1.23
	−77.28
	2626
	2005–2017
	Andean



	Botana
	1.16
	−77.27
	2820
	2005–2017
	Andean



	El Paraiso
	1.07
	−77.63
	3120
	2005–2017
	Andean



	Guapi **
	2.57
	−77.89
	42
	2005–2017
	Pacific







* This AWS was not used in this study because the measurement period is short for this study. ** This AWS is in the neighboring state of Cauca.
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Table 2. Conventional weather stations in Nariño.






Table 2. Conventional weather stations in Nariño.





	Name
	Latitude
	Longitude
	Altitude
	Period
	Region





	CCCP del Pacífico
	1.82
	−78.73
	1
	2005–2017
	Pacific



	Altaquer
	1.56
	−78.09
	1010
	2005–2013
	Pacific



	Granja el Mira
	1.55
	−78.69
	16
	2005–2017
	Pacific



	Obonuco
	1.19
	−77.30
	2710
	2005–2015
	Andean



	Apto. Antonio Nariño
	1.39
	−77.29
	1796
	2005–2017
	Andean



	San Bernardo
	1.53
	−77.03
	2190
	2005–2017
	Andean



	Taminango
	1.55
	−77.27
	1875
	2005–2017
	Andean



	Común el automática
	0.93
	−77.63
	3141
	2007–2017
	Andean



	Apto. San Luis
	0.86
	−77.67
	2961
	2005–2017
	Andean



	Bombona
	1.18
	−77.46
	1493
	2005–2017
	Andean



	Tanama
	1.37
	−77.58
	1500
	2005–2017
	Andean



	Sindagua
	1.11
	−77.39
	2800
	2005–2017
	Andean



	Barbacoas
	1.67
	−78.13
	32
	2005–2012
	Pacific



	Monopamba
	0.99
	−77.15
	2719
	2006–2016
	Amazon



	El Encano
	1.15
	−77.16
	2830
	2005–2017
	Andean



	Chimayoy
	1.26
	−77.28
	2745
	2005–2014
	Andean
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Table 3. Hargreaves and Samani’s empirical coefficients.






Table 3. Hargreaves and Samani’s empirical coefficients.





	   a   
	Region Type





	0.16
	Arid and semi-arid



	0.17
	Interior regions



	0.19
	Coastal regions



	0.10—0.09
	Humid climates







Source: [4,14].
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Table 4. Daily clearness index classification ranges.






Table 4. Daily clearness index classification ranges.





	      K   T   Range    
	Day Type





	   0.00 <  K T  ≤ 0.20   
	Cloudy/Overcast



	   0.20 <  K T  ≤ 0.60   
	Partially cloudy



	   0.60 <  K T  ≤ 0.75   
	Sunny



	   0.75 <  K T  ≤ 1.00   
	Very sunny







Source: [15].
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Table 5. Error measurements.






Table 5. Error measurements.





	Measurement
	Definition
	    Formula   (  p i           is   The   Predicted   Value ,    o i           Is   the   Observed   Value ,    P m           Is   the   Mean   Predicted   Value ,    O m          Is   the   Mean   Observed   Value ,   and   n   Is   the   Amount   of   Data )   





	Mean of percent error (MPE)
	Values close to zero indicate a better model and suggest that the ratio of the standard deviation of the measured and computed value is near one.
	    1 n    ∑  i = 1  n      p i  −  o i    /  o i    



	Mean absolute error (MAE)
	The average vertical distance between each predicted and observed point.
	    1 n    ∑  i = 1  n      p i  −  o i      



	Root mean square error (RMSE)
	This provides a measure of the error size but is sensitive to outlier values because the measure gives more weight to large errors.
	        1 n    ∑  i = 1  n        p i  −  o i     2      1 / 2     



	Mean bias error (MBE)
	This measure provides information on the model’s long-term performance when the model includes a systematic error that presents overestimated or underestimated predictors. Low MBE values are desirable, although it should be noted that an overestimated dataset will cancel out another underestimated dataset.
	    1 n    ∑  i = 1  n      p i  −  o i      



	Standard Deviation of the residual (SD)
	This measure shows the difference between the standard deviation of the predicted and observed datasets.
	       100    O m       1 n        ∑  i = 1  n   n      p i  −  o i     2  −       ∑  i = 1  n      p i  −  o i       2       1 2      



	Uncertainty at 95%      U  95      
	This is a measure of certainty confidence; a lower value is expected.
	   1.96     S  D 2  + R M S  E 2      1 / 2     







Source: [7,14,45,46,47].
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Table 6. Solar irradiance validation results. Each step represents the amount of data that overcome the validation level.






Table 6. Solar irradiance validation results. Each step represents the amount of data that overcome the validation level.














	Name
	Code
	Data
	Step 1
	Step 2
	Step 3
	Step 4





	Biotopo
	51025060
	47,612
	46,557
	24,385
	20,699
	12,883



	Viento Libre
	52035040
	77,424
	67,709
	40,777
	26,835
	12,311



	Universidad de Nariño
	52045080
	98,452
	93,338
	72,715
	37,481
	21,033



	Cerro Páramo
	52055150
	90,440
	81,940
	57,407
	36,661
	25,709



	La Josefina
	52055170
	55,909
	54,041
	29,966
	14,183
	7427



	Botana
	52055210
	98,928
	90,777
	51,416
	38,327
	20,847



	El Paraiso
	52055220
	88,408
	82,135
	54,371
	29,033
	14,394



	Guapi
	53045040
	78,773
	72,708
	49,039
	22,452
	12,747



	Average
	
	79,493
	73,651
	47,510
	28,208
	15,919
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Table 7. Classification of days according to irradiance recording per day. The rows contain the number of days classified by the amount of measured data between the 6:00 and 18:00 per day.






Table 7. Classification of days according to irradiance recording per day. The rows contain the number of days classified by the amount of measured data between the 6:00 and 18:00 per day.





	

	
Data Number per Day *

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12

	
13

	
Total of Days




	
Name

	






	
Biotopo

	
13 **

	
16

	
15

	
19

	
30

	
49

	
104

	
190

	
350

	
528

	
622

	
207

	
6

	
2149




	
Viento Libre

	
43

	
50

	
77

	
86

	
121

	
175

	
313

	
444

	
702

	
654

	
390

	
119

	
11

	
3185




	
Universidad de Nariño

	
27

	
42

	
56

	
73

	
97

	
173

	
340

	
403

	
730

	
1014

	
778

	
308

	
63

	
4104




	
Cerro Páramo

	
34

	
39

	
42

	
45

	
59

	
83

	
145

	
283

	
483

	
952

	
1080

	
362

	
160

	
3767




	
La Josefina

	
109

	
71

	
22

	
24

	
25

	
57

	
78

	
195

	
293

	
386

	
274

	
134

	
6

	
1674




	
Botana

	
16

	
20

	
26

	
43

	
82

	
142

	
246

	
469

	
798

	
1066

	
839

	
336

	
14

	
4097




	
El Paraiso

	
55

	
83

	
110

	
137

	
158

	
205

	
285

	
364

	
614

	
787

	
514

	
149

	
13

	
3474




	
Guapi

	
185

	
193

	
180

	
153

	
111

	
101

	
139

	
239

	
335

	
447

	
549

	
182

	
75

	
2889








* This number represents the amount of data per day. ** This number represents the number of days in all time series with one measure per day.
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Table 8. Days’ classification according to cloudiness.






Table 8. Days’ classification according to cloudiness.





	
     k t     

	
    0.00 <  k t  ≤ 0.20    

	
    0.20 <  k t  ≤ 0.40    

	
    0.40 <  k t  ≤ 0.60    

	
    0.60 <  k t  ≤ 0.75    

	
    0.75 <  k t  ≤ 1.00    

	




	
Name

	
Cloudy

	
Partially High Cloudiness

	
Partially Low Cloudiness

	
Sunny

	
Very Sunny

	
Number of Days *






	
Biotopo

	
760

	
1188

	
67

	
0

	
0

	
2015




	
Viento Libre

	
105

	
1458

	
1179

	
0

	
0

	
2745




	
Universidad de Nariño

	
243

	
2611

	
846

	
1

	
0

	
3701




	
Cerro Páramo

	
1380

	
1232

	
137

	
1

	
0

	
2793




	
La Josefina

	
88

	
991

	
271

	
1

	
0

	
1351




	
Botana

	
451

	
2704

	
711

	
2

	
0

	
3868




	
El Paraiso

	
167

	
1859

	
543

	
1

	
0

	
2570




	
Guapi

	
130

	
746

	
125

	
0

	
0

	
1001




	
Average

	
16.99%

	
64.70%

	
18.28%

	
0.03%

	
0.00%

	
100%








* Days with   Δ T  ,    T R   ,    T  m a x    ,    T  m i n    , and    k t    complete information.
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Table 9. Temperature validation results. Each step presents the amount of data that overcome the validation level.






Table 9. Temperature validation results. Each step presents the amount of data that overcome the validation level.





	Name
	Code
	Data
	Step 1
	Step 2
	Step 3





	Biotopo
	51025060
	52.848
	47.268
	46.436
	24.385



	Viento Libre
	52035040
	77.424
	67.969
	67.962
	40.777



	Universidad de Nariño
	52045080
	100.740
	94.880
	92.886
	72.715



	Cerro Páramo
	52055150
	91.850
	76.280
	69.410
	57.407



	La Josefina
	52055170
	55.728
	52.867
	52.707
	29.966



	Botana
	52055210
	98.952
	91.077
	91.047
	51.416



	El Paraiso
	52055220
	91.699
	85.713
	84.792
	54.371



	Guapi
	53045040
	84.371
	81.014
	71.598
	49.039
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Table 10. Classification of days according to irradiance recording per day. The rows contain the number of days classified by the amount of data measured between 6:00 and 18:00.






Table 10. Classification of days according to irradiance recording per day. The rows contain the number of days classified by the amount of data measured between 6:00 and 18:00.





	

	
Data Number

per Day *

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12

	
Total of Days




	
Name

	






	
Biotopo

	
33 **

	
9

	
17

	
13

	
26

	
46

	
56

	
85

	
130

	
257

	
605

	
846

	
2123




	
Viento Libre

	
79

	
68

	
91

	
91

	
94

	
120

	
124

	
192

	
264

	
500

	
873

	
696

	
3192




	
Universidad de Nariño

	
74

	
26

	
24

	
31

	
47

	
71

	
113

	
198

	
309

	
599

	
1170

	
1379

	
4041




	
Cerro Páramo

	
101

	
49

	
58

	
47

	
67

	
86

	
133

	
190

	
348

	
590

	
754

	
701

	
3124




	
La Josefina

	
61

	
21

	
36

	
46

	
50

	
78

	
109

	
130

	
197

	
405

	
573

	
558

	
2264




	
Botana

	
38

	
11

	
27

	
46

	
62

	
102

	
147

	
253

	
386

	
679

	
1114

	
1221

	
4086




	
El Paraiso

	
74

	
42

	
65

	
67

	
92

	
102

	
155

	
236

	
373

	
541

	
915

	
909

	
3571




	
Guapi

	
20

	
8

	
10

	
21

	
18

	
21

	
45

	
79

	
168

	
405

	
919

	
1349

	
3063








* This number represents the amount of data per day. ** This number represents the number of days in all time series with one measure per day.
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Table 11. Empirical coefficients.






Table 11. Empirical coefficients.





	
Bristow and Campbell




	
AWS

	
  a  

	
  b  

	
  c  




	
Biotopo

	
0.5075

	
0.0735

	
1.1908




	
Viento Libre

	
0.5942

	
0.1499

	
0.8655




	
Cerro Páramo

	
0.5922

	
0.2595

	
0.6153




	
Universidad de Nariño

	
0.4893

	
0.3282

	
0.6568




	
Botana

	
0.6288

	
0.1964

	
0.6415




	
Josefina

	
0.6039

	
0.2563

	
0.5350




	
Paraiso

	
0.5850

	
0.3183

	
0.4818




	
Guapi

	
0.4471

	
0.1156

	
1.2478




	
Hargreaves and Samani




	
AWS

	
  a  

	

	




	
Biotopo

	
0.0970

	

	




	
Viento Libre

	
0.1248

	

	




	
Cerro Páramo

	
0.1340

	

	




	
Universidad de Nariño

	
0.1263

	

	




	
Botana

	
0.1169

	

	




	
Josefina

	
0.1138

	

	




	
Paraiso

	
0.1199

	

	




	
Guapi

	
0.1208

	

	




	
Okundamiya and Nzeako




	
AWS

	
  a  

	
  b  

	
  c  




	
Biotopo

	
−0.1838

	
−0.3871

	
0.0264




	
Viento Libre

	
0.0578

	
−0.2666

	
0.0168




	
Cerro Páramo

	
0.1084

	
−0.1572

	
0.0257




	
Universidad de Nariño

	
0.2679

	
−0.2416

	
0.0112




	
Botana

	
0.0621

	
−0.1547

	
0.0191




	
Josefina

	
0.1770

	
−0.1589

	
0.0118




	
Paraiso

	
0.2617

	
−0.1775

	
0.0100




	
Guapi

	
0.0717

	
−0.5202

	
0.0228




	
Proposed model




	
AWS

	
  a  

	
  b  

	




	
Biotopo

	
−2.3058

	
0.1786

	




	
Viento Libre

	
−1.3499

	
0.0912

	




	
Cerro Páramo

	
−1.7914

	
0.1706

	




	
Universidad de Nariño

	
−1.2211

	
0.0747

	




	
Botana

	
−1.4489

	
0.0898

	




	
Josefina

	
−1.2299

	
0.0608

	




	
Paraiso

	
−1.1667

	
0.0607

	




	
Guapi

	
−1.8043

	
0.1495
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Table 12. Summary of the empirical model’s statistics results. The best result for each AWS is in bold.






Table 12. Summary of the empirical model’s statistics results. The best result for each AWS is in bold.





	
    R M S E      W h  /   m  2     d a y         






	
AWS

	
BC

	
HS

	
ON

	
Proposed




	
Biotopo

	
1.152,62

	
993,64

	
1.155,07

	
1.113,48




	
Viento Libre

	
1.086,47

	
1.080,72

	
1.110,62

	
1.077,35




	
Cerro Páramo

	
1.194,57

	
1.209,76

	
1.196,56

	
1.152,72




	
Universidad de Nariño

	
1.032,45

	
1.083,73

	
1.032,24

	
1.019,14




	
Botana

	
1.052,42

	
1.070,23

	
1.077,17

	
1.042,68




	
Josefina

	
1.009,00

	
1.066,18

	
999,28

	
984,75




	
Paraiso

	
930,82

	
990,32

	
938,02

	
921,32




	
Guapi

	
965,40

	
878,75

	
961,21

	
915,53




	
   S D   




	
AWS

	
BC

	
HS

	
ON

	
Proposed




	
Biotopo

	
49,90

	
43,11

	
50,08

	
48,29




	
Viento Libre

	
29,21

	
29,05

	
29,86

	
28,97




	
Cerro Páramo

	
56,04

	
56,77

	
56,15

	
54,08




	
Universidad de Nariño

	
31,89

	
33,55

	
31,88

	
31,47




	
Botana

	
34,46

	
35,05

	
35,23

	
34,14




	
Josefina

	
31,29

	
33,06

	
30,99

	
30,53




	
Paraiso

	
27,82

	
29,58

	
28,04

	
27,54




	
Guapi

	
31,75

	
28,91

	
31,58

	
30,12




	
   M B E     Wh /  m 2     day      




	
AWS

	
BC

	
HS

	
ON

	
Proposed




	
Biotopo

	
−77,79

	
−2,01

	
−45,24

	
−37,29




	
Viento Libre

	
162,63

	
163,13

	
167,77

	
160,23




	
Cerro Páramo

	
37,90

	
21,29

	
27,22

	
33,37




	
Universidad de Nariño

	
90,20

	
62,04

	
93,68

	
93,72




	
Botana

	
48,24

	
42,30

	
71,63

	
47,13




	
Josefina

	
5,28

	
−20,58

	
16,92

	
22,18




	
Paraiso

	
−23,17

	
−42,52

	
−15,89

	
−14,98




	
Guapi

	
−36,98

	
−16,38

	
−53,45

	
−27,50




	
   M A E     Wh /  m 2     day      




	
AWS

	
BC

	
HS

	
ON

	
Proposed




	
Biotopo

	
916,08

	
800,52

	
917,96

	
885,10




	
Viento Libre

	
863,76

	
861,64

	
883,10

	
862,86




	
Cerro Páramo

	
940,46

	
946,29

	
929,90

	
887,34




	
Universidad de Nariño

	
845,12

	
884,48

	
841,37

	
833,30




	
Botana

	
866,59

	
881,19

	
888,56

	
860,18




	
Josefina

	
769,70

	
830,06

	
767,58

	
760,43




	
Paraiso

	
757,02

	
806,64

	
760,64

	
748,67




	
Guapi

	
753,77

	
696,35

	
773,11

	
733,40




	
    U  95       Wh /  m 2     day      




	
AWS

	
BC

	
HS

	
ON

	
Proposed




	
Biotopo

	
2.261,26

	
1.949,37

	
2.266,06

	
2.184,48




	
Viento Libre

	
2.130,26

	
2.118,99

	
2.177,61

	
2.112,38




	
Cerro Páramo

	
2.343,94

	
2.373,74

	
2.347,83

	
2.261,82




	
Universidad de Nariño

	
2.024,57

	
2.125,13

	
2.024,17

	
1.998,46




	
Botana

	
2.063,85

	
2.098,79

	
2.112,40

	
2.044,75




	
Josefina

	
1.978,59

	
1.941,90

	
1.959,53

	
1.931,04




	
Paraiso

	
1.825,23

	
1.941,90

	
1.839,34

	
1.806,59




	
Guapi

	
1.893,21

	
1.723,28

	
1.885,00

	
1.795,41




	
   M P E   




	
AWS

	
BC

	
HS

	
ON

	
Proposed




	
Biotopo

	
16,22%

	
19,52%

	
17,93%

	
18,33%




	
Viento Libre

	
15,34%

	
15,32%

	
15,39%

	
15,18%




	
Cerro Páramo

	
28,77%

	
27,90%

	
27,64%

	
28,69%




	
Universidad de Nariño

	
13,73%

	
12,78%

	
13,82%

	
13,80%




	
Botana

	
14,22%

	
11,32%

	
15,08%

	
14,11%




	
Josefina

	
12,24%

	
20,51%

	
12,52%

	
12,70%




	
Paraiso

	
8,24%

	
7,70%

	
8,59%

	
8,51%




	
Guapi

	
6,82%

	
7,46%

	
6,11%

	
7,12%




	
   M A P E   




	
AWS

	
BC

	
HS

	
ON

	
Proposed




	
Biotopo

	
49,13%

	
44,53%

	
49,71%

	
48,13%




	
Viento Libre

	
30,09%

	
29,99%

	
30,46%

	
29,94%




	
Cerro Páramo

	
56,68%

	
56,62%

	
55,00%

	
53,67%




	
Universidad de Nariño

	
31,44%

	
32,47%

	
31,26%

	
30,97%




	
Botana

	
34,42%

	
32,58%

	
35,35%

	
34,07%




	
Josefina

	
30,83%

	
37,42%

	
30,74%

	
30,56%




	
Paraiso

	
26,75%

	
28,29%

	
26,91%

	
26,47%




	
Guapi

	
28,15%

	
26,14%

	
28,65%

	
27,14%
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Table 13. Imputation by AWS.






Table 13. Imputation by AWS.





	AWS
	Imputation





	Biotopo
	2241



	Viento Libre
	1502



	Cerro Páramo
	749



	Universidad de Nariño
	686



	Botana
	585



	La Josefina
	2872



	Paraiso
	1369



	Guapi
	2277
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