
applied
sciences

Article

Deep Learning-Based Community Detection Approach on
Multimedia Social Networks

Antonino Ferraro 1 , Vincenzo Moscato 1,2 and Giancarlo Sperlì 1,2,*

����������
�������

Citation: Ferraro, A.; Moscato, V.;

Sperlí, G. Deep Learning-Based

Community Detection Approach on

Multimedia Social Networks. Appl.

Sci. 2021, 11, 11447. https://doi.org/

10.3390/app112311447

Academic Editors: Ilaria Bartolini and

Gianluca Lax

Received: 15 October 2021

Accepted: 22 November 2021

Published: 2 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affili-

ations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Information Technology and Electrical Engineering, University of Naples “Federico”, Via Claudio 21,
80125 Naples, Italy; antonino.ferraro@unina.it (A.F.); vincenzo.moscato@unina.it (V.M.)

2 CINI-ITEM National Lab, Via Cinzia, Complesso Universitario Montesantangelo, 80125 Naples, Italy
* Correspondence: giancarlo.sperli@unina.it

Abstract: Exploiting multimedia data to analyze social networks has recently become one the most
challenging issues for Social Network Analysis (SNA), leading to defining Multimedia Social Networks
(MSNs). In particular, these networks consider new ways of interaction and further relationships
among users to support various SNA tasks: influence analysis, expert finding, community identifica-
tion, item recommendation, and so on. In this paper, we present a hypergraph-based data model
to represent all the different types of relationships among users within an MSN, often mediated
by multimedia data. In particular, by considering only user-to-user paths that exploit particular
hyperarcs and relevant to a given application, we were able to transform the initial hypergraph
into a proper adjacency matrix, where each element represents the strength of the link between
two users. This matrix was then computed in a novel way through a Convolutional Neural Network
(CNN), suitably modified to handle high data sparsity, in order to generate communities among users.
Several experiments on standard datasets showed the effectiveness of the proposed methodology
compared to other approaches in the literature.

Keywords: multimedia social networks; community detection; convolutional networks

1. Introduction

With the widespread diffusion of Online Social Networks (OSNs) and more and more
powerful mobile devices in recent years, multimedia data have become the most nat-
ural means of reporting events, witnessing facts, and sharing user experiences or life
moments. Facebook, TikTok, and Instagram are certainly the most striking examples of
this phenomenon.

Thanks to the massive sharing of multimedia material (in particular, images and
videos), users of social networks now prefer to interact and communicate by posting
multimedia information and commenting on, or in general interacting with, the content.

Thus, a series of nondirected ties can be created among people who share the same
interests or passions, mainly through the interaction with multimedia content. In other
terms, the post of an image or video on one of these social networks can trigger an enormous
amount of reactions among users, even if they do not know each other directly.

The exploitation of multimedia data to analyze social networks has resulted in Multi-
media Social Networks (MSNs), which support new ways of user-to-user and user-to-content
interaction [1,2].

This fact represents a greedy opportunity for Social Network Analysis (SNA), whose goal
is to infer useful knowledge from social communities to support various tasks: influence
analysis, expert finding, community detection, item recommendation, and so on. Indeed, it
is well known that modern influencers publish photos and videos on social networks to
condition the behavior of other users, often for marketing or political purposes.

SNA could therefore exploit the relationships that are generated between users who in
some way interact with the same multimedia data to discover possible affinities. In addition,

Appl. Sci. 2021, 11, 11447. https://doi.org/10.3390/app112311447 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1326-0325
https://doi.org/10.3390/app112311447
https://doi.org/10.3390/app112311447
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112311447
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112311447?type=check_update&version=2

Appl. Sci. 2021, 11, 11447 2 of 17

the similarity between two multimedia objects could create further useful implicit links
among users. As an example, if in a given social network, two users often comment on the
photos of sunsets published by a third user, then it could be deduced that: (i) the two users
are fascinated by landscapes with sunsets; (ii) the third user could have a certain influence
on the first two. If the posted photos are very similar to those published by another user,
even the latter could somehow have interests similar to the first three, and more generally,
all users could belong to the same community.

In MSNs, due to their continuous growth, it is increasingly complicated to identify
communities, jointly considering global information about network interactions and local
information about users. From the perspective of connectedness and density, communities
are known as locally dense connected subgraphs or clusters of nodes, and in addition
to the internal cohesion of subgraphs, their separation from each other should also be
taken into account. More recent approaches leverage deep-learning models, often with
embedding techniques, to accomplish the task, but several problems remain in their appli-
cation due to several features of MSNs (e.g., hierarchical structure, unknown communities,
network heterogeneity, signed information on edges, community embedding, networks
dynamic, etc.) [3].

In this paper, to overcome the above issues, we propose an alternative approach. First
of all, to capture and represent all the different kinds of relationships among users, often
mediated by multimedia objects, we propose an extension of the hypergraph-based data
model, which some of the authors have recently introduced in previous work [4]. Then,
only by considering user-to-user paths that exploit particular hyperarcs and are relevant
for a given application, we were able to transform the initial hypergraph into a proper
adjacency matrix in which each element represents the strength of tie between two users,
taking into account the inherent complexity of graph relationships. Each bond considers
both direct user-to-user relationships and nondirected links that are generated through
user-to-content and content-to-content relationships. This matrix is then computed in a
novel way through a neural convolutional network, properly modified to manage the high
sparseness of the data, in order to generate communities among the users within an MSN.

Summarizing, the novelty introduced by our work is twofold: on the one hand, the use
of a hypergraph-based model to represent in a very effective manner the complex, dynamic,
and heterogeneous information within an MSN and to efficiently extract the relevant user-
to user paths useful directly transforming the graph into an adjacency matrix, avoiding
embedding methods, which can cause the loss of information; on the other hand, the
introduction of a semi-supervised approach for community detection using convolutional
neural networks to deal with high-dimensional adjacency matrices, which are not suitable
as the input to the classical CNN, since they classify images with significantly smaller
input matrices.

The paper is organized as follows. Section 2 gives the related work concerning social
network modeling and community detection issues. Section 3 describes the proposed
methodology for MSN analysis, by detailing the hypergraph-based model and the adopted
community detection solution. Section 4 reports the experimental results of our community
detection w.r.t. other approaches and standard datasets. Finally, Section 5 discusses some
conclusions and future work.

2. Related Works

In the last decade, the growth and complexity of social networks have brought new
opportunities and, at the same time, new issues related to their modeling and analysis.
In the following, we report the main approaches in the literature for modeling OSNs with
the related multimedia information w.r.t. the supported SNA tasks and for discovering
communities in such environments.

Appl. Sci. 2021, 11, 11447 3 of 17

2.1. Social Network Modeling

The first proposal for modeling an OSN considers only users and their interactions.
Exploiting this model, different approaches have been proposed with respect to partic-
ular applications, such as lurker identification [5,6], influence analysis [7,8], and expert
finding [9,10]. However, these approaches do not consider the contribution made by
multimedia content. To this end, more complex models have been proposed for social
information networks, which can be classified into four categories, summarized in Table 1.

Table 1. OSN models.

Type Ref. Entities Application

Graph
[11] Multimedia objects, concepts Multimedia annotation

[12] Images, users, and tags Link-based similarity

Bipartite
[13] Users and contents Influence diffusion

[14] Users and contents Social recommendation

Tripartite

[15] Users, tags, and images Recommendation

[16] Users, interaction behavior, and tags Recommendation

[17] Users, Tweets, and topics Coronavirus analysis

Hypergraph

[18] Users, tags, and resources Consensus maximization

[19] Users, time, and POIs Location prediction

[20] Users and items Recommendation

In the first family, a social network is represented as a graph whose set of vertices is
heterogeneous. Using such a model, Qi et al. [11] proposed an algorithm that combines
both the content and information context of the network for multimedia data annotation.
In turn, Jin et al. [12] used graph modeling and multimedia content information to propose
a new concept of image similarity.

The second family models the social network via a bipartite model. Zhu et al. [13]
designed a bipartite graph to model the interaction between users and multimedia content
to analyze the content diffusion in a social network. In [14], the authors proposed a
social recommendation framework based on an embedding method for general bipartite
(user–item) graphs.

The third category of approaches uses tripartite graphs, whose set of vertices is typi-
cally composed of users, tags, and resources. Zhang et al. [15] presented a recommendation
method using a user–image–tag model, whose main novelties concern user preference
identification on the basis of users’ interaction with images and re-ranking social images
on the basis of the content. In [16], the authors introduced an interaction tripartite graph,
composed of heterogeneous vertices (users, interaction behavior, and content), whose edge
weights are tuned by using an attention-driven CNN for recommendation. A tripartite
graph—whose set of vertices is composed of users, tweets, and topics—was detailed by
Liao, Zheng, and Cao [17] for providing coronavirus pandemic analysis through non-
negative matrix factorization and sentiment analysis.

Finally, the last group defines the OSN as a hypergraph. In [18], the authors pro-
posed a tensor decomposition approach that guarantees learning via a three-uniform
hypergraph. A heterogeneous hypergraph embedding (LBSN2Vec++) was developed by
Yang et al. [19] in order to consider complex interactions among users, time, and Points
of Interest (POIs) for friendship and location prediction tasks in a location-based social
network. Zheng et al. [20] developed a hybrid matrix factorization approach approach
exploiting a hypergraph data structure to represent complex interactions in social networks
for recommending items.

The chosen model was inspired by hypergraph-based approaches, which surely are
the most promising ones. In particular, starting form our preliminary previous work [4],

Appl. Sci. 2021, 11, 11447 4 of 17

we designed a novel data model based on hypergraphs that considers all the different
relationships typical of social networks, focusing on the role of multimedia objects as the
main means for connecting two users.

2.2. Community Detection Algorithm

Identifying groups of users who share similar interests has become a relevant topic in
different application domains. Nevertheless, the main issues about this task are related to
the existence of numerous community definitions and the high time complexity require-
ments of many community detection algorithms. The definition of modularity considers
both an interaction between entities (the nodes) belonging to the same community and
contextually also a weak interaction with nodes that are outside of that community. Since
there are different structural definitions that satisfy the modularity criterion, no formal
definition of community is universally accepted [21,22]. In addition, communities can
have different properties, often derived from the domain in question, such as hierarchical
organization, and nodes that can belong to multiple communities (overlapped). For all these
reasons, community identification has been approached from different perspectives, but
still remains one of the outstanding research problems in graph analysis.

In the following, a classification of existing methods for community identification in
an OSN is discussed.

We can consider five classes of community and cluster graph discovery methods,
which depend on the methodological principle and the adopted community
definition [23–25]: cohesive sub-graph discovery, which analyzes the topology of a sub-
graph of the network that should satisfy being a community (i.e., cliques or k-core); vertex
clustering, whose goal is classical cluster discovery (i.e., k-means or hierarchical clustering);
community quality optimization, which constructs clusters by optimizing a cluster quality
metric (i.e., conductance or modularity); divisive, identifying communities based on the
arcs that interconnect them (i.e., Girvan and Newman); model-based, relying on statistical
models for generating network divisions (i.e., label propagation analysis)

In the last few years, deep-learning models have been designed for dealing with
community detection. Reference [26] designed a method that combines an auto-encoder
deep network and K-means for respectively encoding the input data and clustering them
in order to identify communities. Yang et al. [27] developed a community detection
method based on a modularity function for building a low-dimensional embedding matrix
(modularity matrix) by using an auto-encoder scheme. An iterative learning algorithm,
named DeepWalk, was designed by Perozzi et al. [28], which is composed of two phases.
The first phase is a random walk generator that generates a tree graph starting from a
vertex chosen as the root and examining all vertices up to the maximum depth of the tree.
In the second phase, SkipGram moves on to the next node and creates the tree from it in
order to generate the topological information of the network.

Furthermore, more recently, Reference [29] proposed the GraphGAN framework,
which is based on the union of generative and discriminative methods through adversarial
training in a minimax game. It was evaluated in three real scenarios, i.e., link prediction,
node classification, and recommendation. Instead, Wang et al. [30] propose Community-
Aware Network Embedding (CANE), using the adversarial learning framework. The model
can sample a set of candidate nodes within the community and relies on dual feedback,
one given by the community detection model and the other by the discriminative model.
Finally, DNNNC, a novel method for node classification using deep learning, was proposed
by [31]. It tries to find the suboptimal solution by pre-existing network embedding methods.
It was the first deep node classification model that only relies on the network structure
information (and not other information, such as node characteristics).

Nevertheless, these approaches are subject to some limitations in terms of the size and
heterogeneity of the dataset or encoding approach that lead to losing some information
that could be useful for community detection. For this reason, we propose a CNN model

Appl. Sci. 2021, 11, 11447 5 of 17

that can handle adjacency matrices without encoding, exploiting their intrinsic sparsity to
fully preserve both the local and global structural information about a network’s graph.

3. Methodology

In this section, we describe both the proposed data model of Multimedia Social
Networks (MSNs) and the community detection approach based on the deep-learning
model for community detection. Furthermore, the proposed convolutional-network-based
approach can handle a large number of social relationships, which are established between
two users, to identify communities in an MSN.

3.1. Multimedia Social Network Model

Our MSN model is characterized by two entities: users, persons or organizations,
characterized by some attributes (i.e., profiles, interests, preferences), belonging to one
or more communities, and multimedia objects, a set of multimedia entities (i.e., images,
text, or videos), described by metadata or low-level features, that can be shared within a
social network.

Different relationships can be established between these entities; for instance, a user
can establish a relationship with another one (friendship or following); a user can publish a
photo, or video or comment on other multimedia objects or two images can be connected
according to their similarity.

Definition 1. Let U and O be, respectively, the set of users and multimedia objects. A multimedia
social network can be defined as a triple G = (V, E = {ei : i ∈ I}, ω), where V = U ∪ O is the
set of vertices, H is the set of hyperarcs, and ω : E → [0, 1] is a function that assigns a weight to
each hyperarc.

Each hyperarc is defined as an ordered pair ei = (e+i = (V+
ei

, i); e−i = (i, V−
ei
)), where

e+i is called the tail of the hyperarc and e−i is the head of the hyperarc. However, it turns
out that the set V = V+

ei
∪ V−

ei
is the set of vertices representing the entire hypergraph.

Furthermore, we define the degree of the hyperarc dei as the cardinality of contained
vertices that have incident arcs and the degree of a vertex dv as the cardinality of hyperarcs
that are incident to vertex v. It is also possible to define oriented and undirected arcs: in
the first case, each arc can be seen as a function that maps two disjoint and nonempty sets
of V+

ei
and V−

ei
.

Furthermore, we can define the main relationships of an MSN, which are classified
into the following three main categories:

1. User-to-user: representing a user’s actions with another user, which are, formally, de-
fined as ei = ((V+

ei
, i); (i, V−

ei
)), where V+

ei
= {uk} and {uk} ⊆ U, where

V−
ei

= {U − {uk}};
2. User-to-multimedia object: representing the relationships a user has with other

media objects, possibly associated with a weight (depending to the analyzed MSN).
The weight ω(ei) assigned to such hyperarcs indicates the importance of the relation-
ship of an MSN. Mathematically, it can be described as ei = ((V+

ei
, i); (i, V−

ei
)) with

V+
ei

= {uk}, where uk ⊆ U and V−
ei

= {oi}, where oi ⊆ O;
3. Similarity: represented by the similarity relations between two users or between two

objects. Mathematically, it is described as ei = ((V+
ei

, i); (i, V−
ei
)) with V+

ei
= {vk} and

V−
ei

= {vj} with i ̸= k. The weight associated with this class of hyperarcs is a function
of different factors, such as the metric used and the type of vertex considered.

We chose these types of relationships in our model for representing the complex
and heterogeneous interactions between users and/or multimedia objects considering the
characteristics of the most diffused OSNs (i.e., Twitter, Facebook, Flickr, Youtube, Instagram,
etc.), but also more specific social networks (LinkedIn, ResearchGate, etc.). In our model,
each kind of n-ary relationship can be easily implemented; thus, a user can tag another one
within an image, different users can belong to the same group, and son on.

Appl. Sci. 2021, 11, 11447 6 of 17

We can observe that the weight of a hyperarc is calculated on the basis of the type of
relationships that exist between two vertices; in the case of similarity between multimedia
data, the weight will correspond to their similarity according to low- and high-level features.
In the case of user-to-user and user-to-object relationships, the relative weight can in some
way be considered proportional in the first case to the frequency of relationships between
users, while in the second case, it is related to the topic published. For simplicity, we can
always consider the weight of these arcs to be equal to 1.

Figure 1 shows an example of a given MSN in which users can be connected either
because they interact with the same multimedia content (through orange hyperarcs) or
because they interact with similar content (through blue hyperarcs). Such kinds of informa-
tion can be very useful to community detection algorithms to identify the right clusters
of users.

Figure 1. Example of an MSN with 4 users (yellow), 5 multimedia objects (green), 7 user–multimedia object relationships
(orange), and 1 similarity relationship (blue).

Once the MSN model has been defined, it can be seen that there are different paths
connecting two users. These paths allow estimating how users interact with each other;
obviously, not all of them are eligible for relationship description, but it depends on the
considered SNA application.

Therefore, it is necessary to introduce the concept of a relevant path, which is a sequence
of hyperarcs that meets a given condition Θ. Such a condition can be defined on nodes
and hyperarc attributes and allows us to take full advantage of all the features of social
networks. In particular, the estimation of the interaction strength between two users is
performed using the concept of a relevant social path, which is a path between two users that
can exploit multimedia objects on which they both interact or that are similar or involve
other MSN users.

Figure 2 shows an example of a relevant path defined between two users, based on
the fact that they are interested in two similar objects.

Appl. Sci. 2021, 11, 11447 7 of 17

Figure 2. Example of a relevant path within the MSN defined in Figure 1.

These paths, then, allow us to construct a weighted adjacency matrix, called the
weighted relevant path matrix, whose element (i, j) represents the probability of interaction,
estimated from the number and weight of relevant social paths, between users i and j. It
should be noted that any update of the graph requires a corresponding change in the
adjacency matrix; in particular, our method easily handles potential changes in network
topology by exploiting the sparsity of the adjacency matrix. Figure 3 describes the generated
adjacency matrix for the MSN in Figure 1, considering as relevant paths all those leveraging
user-to-content and similarity relationships.

Figure 3. User-to-user sparse matrix related to the MSN shown in Figure 2.

3.2. Community Detection Approach Based on Deep Learning

In this section, we describe the proposed convolutional network, whose details are
shown in Figure 4, which uses as the input the user–user adjacency matrix with the goal of
identifying communities by combining semantic and topological content.

Appl. Sci. 2021, 11, 11447 8 of 17

Figure 4. Architectural overview of the proposed convolutional neural network.

In MSNs, the number of users is increasing, usually in the order of tens of millions;
thus, the proposed network involves the use of sparse matrices in order to reduce the
expected computational burden. In particular, this CNN relies on the classical four layers,
as shown in [32]: ingestion, convolution, max-pooling, fully connected layer. The ingestion layer
deals with the building of the adjacency matrix from the MSN network, which is fed the
convolutional layer as the input, performing a set of filters to extract the main features.
This layer provides a set of matrices (feature map) as the output, on which a max-pooling
operation is performed to reduce the problem resolution. The output of this layer is fed the
fully connected layer as the input, whose aim is to define the probability distribution of
each node over K classes.

More in detail, the convolutional network takes an adjacency matrix obtained by
analyzing the content published or the actions carried out by other users within social
networks, forums, etc., as the input. Then, this matrix is analyzed through a series of
filters (also called the kernel matrix) in order to extract the feature characteristics that allow
discriminating how a user interacts with other nodes. The output of the convolutional
layer is processed by the max-pooling layer, reducing the size of the problem. After the
max-pooling operation, the convolutional layer aggregates the features of the various
feature maps to provide the required prediction. Finally, a learning phase is carried out to
optimize the weights of the network for the analyzed task. Regarding the complexity of
the convolution operation, it depends on the size of the input, i.e., the matrices, and of the
kernel. If M, N represents the input matrix size and k, j the kernel matrix, the computational
cost is equal to O(MNkj) (worst case).

3.2.1. Ingestion Layer

The ingestion layer allows us to construct the input matrix (adjacency matrix) of the
proposed convolutional network. The adjacency of a node (n) with respect to others in the
network is expressed as a vector of features of length N, where N is equal to the number of
users in the network. In our opinion, each row of the adjacency matrix can express how a
user exerts his/her influence with respect to the other nodes in the network on the basis
of an influence function inversely proportional to the distance between the nodes in the
network. Formally, a function between two generic nodes i and j can be described by the
following formula eσ(1−sij×wij), where σ is the attenuation factor and sij and wij represent
the distance and the path weight (the minimum between the weights of the arcs within the
path) between i and j, respectively.

Appl. Sci. 2021, 11, 11447 9 of 17

Finally, this module allows the creation of the input for the next layer, decomposing
the adjacency matrix into individual rows, which are transformed into a two-dimensional
matrix of cardinality w × h = N.

3.2.2. Convolutional Layer

This layer performs the convolution operation with a set of filters (or kernels), espe-
cially chosen to extract the main features for the examined problem, generating a set of
matrices called the feature map as the output. Formally, each element of each feature map is
computed using the following formula:

vn
ij = relu(bw +

w′−1

∑
i=0

h′−1

∑
j=0

wij × pn
(x+i)(y+j)) (1)

where pn
(x+i)(y+j), wij, and bw represent the value at position (x + i, y + j) of the input

matrix, the weight at position (i, j), and the bias value for the corresponding convolutional
kernel, respectively.

In conclusion, the output of the convolutional layer is a set of feature maps with a number
equal to the cardinality of the chosen set of filters, each of size (w − w

′
+ 1)× (h − h

′
+ 1).

3.2.3. Max-Pooling Layer

This layer performs the max-pooling operation on the previously described convolution
output. In particular, it performs a subsampling of the given feature map, which allows
reducing the resolution of the problem with the use of an equal number of feature maps.
Formally, selecting a sliding window of m1 × m2, the max-pooling operation is performed
on a feature map of dimension f1 × f2 by selecting the maximum in each non-overlapping
one of cardinality m1 × m2, producing a matrix of f1

m1
× f2

m2
dimensions as the output.

3.2.4. Fully Connected Layer

The last layer of the proposed network is the fully connected layer, which consists
of K neurons, whose number is equal to the number of communities to be analyzed.
Summarizing, the output of this layer represents the probability distribution over K com-
munity classes.

Each neuron assigns each input node to the relative community by setting to 1 the
output value of the relative neuron, while the others are set to zero. Note that each value in
each feature map is connected to all K neurons in the fully connected layer.

Formally, the value of the k-th neuron can be calculated by the following formula:

ok
n = relu(b f

k + W f
k qc1c2

n) (2)

where f denotes the last fully connected layer, while qc1c2
n , W f

k , and b f
k are the output of

the convolutional layer, the weights, and the bias of the k-th neuron in the layer under
consideration, respectively.

In conclusion, the learning phase iteratively updates the convolutional layer to
improve the accuracy of the proposed system by optimizing the system parameters
(P = (W, W f , b, b f)). Then, a back-propagation step is performed in order to optimize
the values of the vector P. Formally, we assume that there is a set T of training sample
{(sn, ln)1 ≥ n ≥ T}, where sn is the adjacency relation of node n and lk

n expresses whether
or not the node belongs to the particular community. The cost function can be expressed
as follows:

J(P) =
1
2

T

∑
n=1

∥on − ln∥2
2 =

1
2

T

∑
n=1

k

∑
k=1

(ok
n − lk

n)
2 (3)

where ok
n is the value of the k-th neuron and lk

n the k-th size of the corresponding label
vector (ground truth).

Appl. Sci. 2021, 11, 11447 10 of 17

This iterative process continues until Equation (3) converges by optimizing the param-
eters of the vector P via the back-propagation operation. The back-propagation criterion
used was the sparse softmax cross-entropy, suitably modified to be optimized to work with
sparse matrices.

Our approach relies on the semi-supervised strategy, which requires a small sample of
training data, on which we tuned the optimal parameters in order to identify communities
in an MSN.

4. Experimental Evaluation

In this section, we describe the experimentation performed to evaluate the proposed
approach on different datasets.

4.1. Experimental Protocol

Our evaluation aimed to investigate the effectiveness and efficiency of the proposed
approach according to the following three criteria:

• Time efficiency analysis of our approach on the artificial dataset, varying the matrix
sparsity and number of nodes;

• Performance analysis during the training phase considering the loss value and different
optimization metrics;

• Effectiveness analysis of the proposed approach with respect to DeepWalk [28],
SDNE [33], LINE [34], GraphGAN [29], CANE [30], and DNNNC [31].

The proposed approach was evaluated on three different datasets: an artificial dataset,
varying the number of nodes from 50,000 to 200,000 and the related sparsity degree between
10−8 and 10−3, BlogCatalog3 (http://datasets.syr.edu/datasets/BlogCatalog3.html, ac-
cessed on 10 October 2021), and Yahoo Flickr Creative Commons 100M (YCFMM100M) [35],
a dataset containing about 100 million photos and videos extracted from Flickr. For the
dataset YCFMM100M, images were filtered by tags in order to consider only the ones
about cultural heritage, which were, successively, processed according to the method-
ology described in Section 3. The final dataset was composed of 138,100 nodes and
135,613 non-zero values, thus having a degree of sparsity equal to 7.1 × 10−6 and only
71,605 values different from zero. Finally, we developed our framework on the Microsoft
Azure (https://azure.microsoft.com/, accessed on 10 October 2021) cloud computing plat-
form using a E2-64 v3 virtual machine equipped with a 2.3 GHz Intel XEON® E5-2673 v4
(Broadwell) processor and 32 GB of RAM.

4.2. Metrics

We estimated the performance with Macro − F1 and Micro − F1 [33,36]; the reason for
choosing these metrics is that the problem to be solved is a multi-label classification.

Consider X as one of the possible labels. We refer to TP(X), FP(X), and FN(X) as the
number of true positives, false positives, and false negatives, respectively. Assume then
that C is the set of labels. Macro − F1 and Micro − F1 are defined as follows:

Macro − F1 =
∑X∈C F1 − measure(X)

|C| (4)

Micro − F1 =
2 × Precision × Recall

Precision + Recall
(5)

where the precision and recall are defined as:

Precision =
∑X∈C TP(X)

∑X∈C(TP(X) + FP(X))
(6)

Recall = ∑X∈C TP(X)

∑X∈C(TP(X) + FN(X))
(7)

http://datasets.syr.edu/datasets/BlogCatalog3.html
https://azure.microsoft.com/

Appl. Sci. 2021, 11, 11447 11 of 17

4.3. Architecture

We propose a modular and scalable architecture based on Big Data architectures,
which consists mainly of two modules: data crawling and data processing.

In particular, the data crawling module is responsible for crawling information from
different social networks, on which, subsequently, a data cleaning operation is carried out
to remove errors and inconsistencies from the data and tuple dangling in order to improve
the quality of data.

The data processing focuses on the building of the multimedia social network based
on the Spark framework (https://spark.apache.org/, accessed on 10 October 2021) from
the data collected by the data crawling module and on the development of a new machine-
learning model based on the TensorFlow framework (https://www.tensorflow.org/, ac-
cessed on 10 October 2021) for community detection in MSNs.

4.4. Running Time Analysis

In this section, we analyze the convolution execution times when varying the number
of nodes and the sparsity of the input matrix. In particular, in Figure 5, we generated four
different datasets with 10,000, 50,000, 100,000, and 200,000 nodes by setting the sparsity to
a value of 10−4.

Figure 5. Running time of the convolutional operation when varying the number of nodes.

As can be seen from Figure 5, the proposed approach turned out to be more efficient
as the number of nodes increased compared to the one based on dense matrices, which
adopts the primitives of the TensorFlow framework. Furthermore, it can be seen that
the running time was closely related to the number of nodes, and the results were strictly
based on the workstation used.

In Figure 6, we fixed the number of nodes at 50,000 and varied the matrix sparsity
between 10−8 and 10−3.

https://spark.apache.org/
https://www.tensorflow.org/

Appl. Sci. 2021, 11, 11447 12 of 17

Figure 6. Running time of the convolutional operation when varying sparsity degree.

It can be seen that in this case, the convolution time for the algorithm based on dense
matrices was constant as it does not depend on the matrix sparsity. Moreover, the proposed
approach turned out to be effective compared to a native method until the degree of
sparsity decreased to a value between 10−4 and 10−3.

Furthermore, there are two points of caution to be noted: (i) the degree of sparsity in
real social networks varies between 10−6 and 10−8; (ii) the timescales may be subject to a
500–1000-times reduction in their value in case a GPU is used.

Finally, Table 2 shows the running time of the proposed approach with respect to six
different state-of-the-art approaches: DeepWalk [28], SDNE [33], LINE [34], GraphGAN [29],
CANE [30], and DNNNC [31]. It is easy to note that our approach achieved performances
similar to the majority of the state-of-the-art approaches.

Table 2. Running time comparison among the proposed approach w.r.t. six different state-of-the-
art models.

Dataset
Model Blogcatalog3 Flickr

CNN 41 min 315 min

DeepWalk 21 min 159 min

SDNE 47 min 366 min

LINE 42 min 326 min

GraphGAN 49 min 382 min

CANE 55 min 432 min

DNNNC 39 min 298 min

Appl. Sci. 2021, 11, 11447 13 of 17

4.5. Training Performance Analysis

We evaluated the loss function on the training set with respect to a set of parameters:

• Learning rate (0.1, 0.01, 0.001);
• Kernel number (three and ten);
• Optimizer (gradient descent and Adam);
• Decaying rate.

In particular, we used two types of optimizers: descending gradient, an iterative first-
order optimization algorithm for finding the minimum of a function, and Adaptive Moment
Estimation (Adam), an additive first-order gradient optimization algorithm for a stochastic
objective function. Figure 7a,b analyzes the learning curves using the two optimizers when
varying the number of kernels.

(a) (b)

Figure 7. Loss analysis when varying the number of kernels. (a) Loss analysis with 2 convolutional layers and 3 kernels
using gradient descent without decaying. (b) Loss analysis with 2 convolutional layers and 10 kernels using gradient
descent without decaying.

In Figure 7a, it is possible to notice how the choice of the learning rate for the down-
ward gradient had an impact on the value of the loss obtained, while it became less
significant for the Adam optimizer. Furthermore, Figure 7a,b shows how in the case of the
descending gradient, it was necessary to use a high-level learning rate in order to reach a
value of 0.5, a value reached with the Adam optimizer with a learning rate of 0.01 in about
600 epochs.

4.6. Effectiveness Evaluation

In this section, we discuss about the effectiveness of our approach with respect to
the state-of-the-art ones on two well-known datasets: BlogCatalog3 and Flickr. Firstly, we
investigate the performance of the proposed framework when varying the percentage of
edges, randomly chosen, setting s0 = 1, 2, and 3 in Figure 8 to choose the maximum length
of the relevant path. In particular, it is easy to note in Figure 8 that accuracy decreased
when increasing the number of arcs removed, achieving better results when setting s0 = 2,
while increasing the number of hops did not provide significant improvements in accu-
racy. Having defined their maximum length, we compared our approach with respect to
different baselines on the BlogCatalog3 and Flickr datasets: DeepWalk [28], an iterative
algorithm using local information obtained from a random walk to learn latent representa-
tion, and SDNE [33], which relies on a deep model using a Laplacian eigenmap, LINE [34],
embedding method using a stochastic gradient and negative samples.

Appl. Sci. 2021, 11, 11447 14 of 17

Furthermore, we evaluated our method also w.r.t. more recent approaches: the Graph-
GAN [29] framework, which is based on the union of generative and discriminative methods
through adversarial training in a minimax game; CANE [30], which uses a community-aware
network embedding together with adversarial learning; DNNNC [31], which exploits a deep
node classification model, only relying on the network structure information.

Figure 8. Accuracy evaluation when removing different percentages of edges.

Tables 3 and 4 show the results of the comparison of our approach w.r.t. SDNE, LINE,
Deep Walk, GraphGAN, CANE, and DNNNC on the BlogCatalog3 and Flickr datasets when
varying the percentage of labeled nodes. It is easy to note that our approach was close to
the best-case performance when the number of training instances increased.

Table 3. Performance of our approach w.r.t. DeepWalk, SDNE, LINE, GraphGAN, CANE, and
DNNNC on the BlogCatalog3 dataset.

% Labeled Nodes 10% 30% 60% 90%

Micro-F1 (%)

CNN 30.51 39.67 44.70 47.92

DeepWalk 36.00 39.60 41.30 42.00

SDNE 31.11 36.70 41.88 44.88

LINE 30.43 35.99 41.41 43.46

GraphGAN 28.78 39.01 42.71 44.76

CANE 28.99 39.21 42.98 45.01

DNNNC 28.15 38.91 41.89 44.59

Macro-F1 (%)

CNN 14.72 24.98 31.92 35.12

DeepWalk 21.30 25.30 27.60 28.90

SDNE 19.88 24.94 28.11 31.22

LINE 18.67 24.81 27.91 30.64

GraphGAN 17.88 23.54 29.87 33.01

CANE 18.12 23.85 30.04 33.42

DNNNC 17.55 23.21 29.45 32.83

Appl. Sci. 2021, 11, 11447 15 of 17

Table 4. Performance of our approach w.r.t. DeepWalk, SDNE, LINE, GraphGAN, CANE, and
DNNNC on the Flickr dataset.

% Labeled Nodes 1% 3% 6% 9%

Micro-F1 (%)

CNN 25.94 35.88 39.43 44.51

DeepWalk 32.40 35.90 37.70 38.50

SDNE 23.74 34.76 37.83 41.14

LINE 23.01 34.44 37.75 40.65

GraphGAN 23.01 33.10 37.77 42.32

CANE 23.47 33.49 37.89 42.54

DNNNC 22.79 32.99 37.14 42.16

Macro-F1 (%)

CNN 12.15 20.91 26.46 29.74

DeepWalk 14.00 19.60 22.90 24.60

SDNE 11.69 19.87 23.29 26.13

LINE 11.52 19.76 23.01 25.78

GraphGAN 13.92 19.91 25.63 27.39

CANE 14.08 19.97 25.73 27.56

DNNNC 13.78 19.66 25.21 27.01

5. Conclusions

Currently, we are inundated with a large amount of data from which it becomes
increasingly difficult to infer new information. One of the methods to improve knowledge
about a particular field of interest is the analysis of social networks through the analysis
of human relationships that are established between people. Given the large number of
friendship relationships established on modern social networks today, identifying subsets
of users who share common interests is becoming increasingly difficult. The identification
of such groups of users can be useful in different fields: marketing, with the suggestion of
appropriate advertising campaigns, and recommendation systems, with the suggestion of
appropriate tourist/cultural routes based on their preferences.

In this paper, a methodology was proposed for modeling heterogeneous information
in a hypergraph-based data model and for identifying user groups by combining their pref-
erences and the common actions performed by users on an MSN. The choice to determine
communities based on actions allowed reducing the number of relationships established
between users, allowing a more granular analysis of the interests and interactions between
users. In particular, the analysis of the actions performed by each user on multimedia
objects allowed analyzing this behavior within the social network, providing more details
about these preferences and interests compared to those of other people; in fact, the addi-
tion of paths between cultural objects also allowed the identification of new ways in which
two users can interact and thus share similar interests.

Although our approach is promising, we need to discuss its limitations: to use the
CNN, one needs to have a GPU-based infrastructure available; moreover, performing
parameter tuning, i.e., choosing the learning rate, kernel, and number of epochs, is an
expensive process in terms of computational complexity due to the massive matrix input.

Future works will be devoted to:

• Extending the testing phase to other datasets such as Facebook, Twitter, etc., not only
with respect to Flickr;

• Optimizing the analysis of influence and recommendation algorithms;
• Reducing the impact of lurkers (a type of behavior on social media in which a user

interrupts an online silence or passive thread-viewing habit to engage in a virtual

Appl. Sci. 2021, 11, 11447 16 of 17

conversation; the term implies that a user typically does not participate in social media
or online social activities) based on communities in social networks;

• Improving the community detection also using embedding techniques directly on
hypergraphs, which transform a state space with high dimensionality into a new
space with low-dimensionality (e.g., vectors), having the advantages of being able
to lighten the computational complexity and to apply many techniques of machine
learning.

Author Contributions: A.F.: Conceptualization, Methodology Software, Validation, Writing—
Original Draft, Writing—Review & Editing; V.M.: Conceptualization, Methodology Software, Valida-
tion, Writing—Original Draft, Writing—Review & Editing; G.S.: Conceptualization, Methodology
Software, Validation, Writing—Original Draft, Writing—Review & Editing. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rathore, S.; Sharma, P.K.; Loia, V.; Jeong, Y.S.; Park, J.H. Social network security: Issues, challenges, threats, and solutions. Inf.

Sci. 2017, 421, 43–69. [CrossRef]
2. Bayrakdar, S.; Yucedag, I.; Simsek, M.; Dogru, I.A. Semantic analysis on social networks: A survey. Int. J. Commun. Syst. 2020,

33, e4424. [CrossRef]
3. Liu, F.; Xue, S.; Wu, J.; Zhou, C.; Hu, W.; Paris, C.; Nepal, S.; Yang, J.; Yu, P.S. Deep learning for community detection: Progress,

challenges and opportunities. arXiv 2020, arXiv:2005.08225.
4. Amato, F.; Moscato, V.; Picariello, A.; Sperlí, G. Multimedia social network modeling: A proposal. In Proceedings of the 2016

IEEE Tenth International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 4–6 February 2016; pp. 448–453.
5. Amato, F.; Moscato, V.; Picariello, A.; Piccialli, F.; Sperlí, G. Centrality in heterogeneous social networks for lurkers detection: An

approach based on hypergraphs. Concurr. Comput. Pract. Exp. 2018, 30, e4188. [CrossRef]
6. Antelmi, A. Towards an Exhaustive Framework for Online Social Networks User Behaviour Modelling. In Proceedings of the

27th ACM Conference on User Modeling, Adaptation and Personalization, Larnaca, Cyprus, 9–12 June 2019; pp. 349–352.
7. Amato, F.; Moscato, V.; Picariello, A.; Ponti, G.; Sperlì, G. Influence Analysis in Business Social Media. In Proceedings of the

MIDAS@ PKDD/ECML, Skopje, Macedonia, 18–22 September 2017; pp. 43–54.
8. Wang, F.; She, J.; Ohyama, Y.; Jiang, W.; Min, G.; Wang, G.; Wu, M. Maximizing positive influence in competitive social networks:

A trust-based solution. Inf. Sci. 2021, 546, 559–572. [CrossRef]
9. Li, G.; Dong, M.; Yang, F.; Zeng, J.; Yuan, J.; Jin, C.; Hung, N.Q.V.; Cong, P.T.; Zheng, B. Misinformation-oriented expert finding in

social networks. World Wide Web 2020, 23, 693–714. [CrossRef]
10. Wu, D.; Fan, S.; Yuan, F. Research on pathways of expert finding on academic social networking sites. Inf. Process. Manag. 2021,

58, 102475. [CrossRef]
11. Qi, G.J.; Aggarwal, C.; Tian, Q.; Ji, H.; Huang, T. Exploring Context and Content Links in Social Media: A Latent Space Method.

IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 850–862. [CrossRef]
12. Jin, X.; Luo, J.; Yu, J.; Wang, G.; Joshi, D.; Han, J. Reinforced Similarity Integration in Image-Rich Information Networks. IEEE

Trans. Knowl. Data Eng. 2013, 25, 448–460. [CrossRef]
13. Zhu, Z.; Su, J.; Kong, L. Measuring influence in online social network based on the user-content bipartite graph. Comput. Hum.

Behav. 2015, 52, 184–189. [CrossRef]
14. Chen, H.; Yin, H.; Chen, T.; Wang, W.; Li, X.; Hu, X. Social Boosted Recommendation with Folded Bipartite Network Embedding.

IEEE Trans. Knowl. Data Eng. 2020, online ahead of print, [CrossRef]
15. Zhang, J.; Yang, Y.; Tian, Q.; Zhuo, L.; Liu, X. Personalized Social Image Recommendation Method Based on User-Image-Tag

Model. IEEE Trans. Multimed. 2017, 19, 2439–2449. [CrossRef]
16. Hu, Q.; Han, Z.; Lin, X.; Huang, Q.; Zhang, X. Learning peer recommendation using attention-driven CNN with interaction

tripartite graph. Inf. Sci. 2019, 479, 231–249. [CrossRef]
17. Liao, X.; Zheng, D.; Cao, X. Coronavirus pandemic analysis through tripartite graph clustering in online social networks. Big

Data Min. Anal. 2021, 4, 242–251. [CrossRef]
18. Anandkumar, A.; Sedghi, H. Learning mixed membership community models in social tagging networks through tensor methods.

arXiv 2015, arXiv:1503.04567.

http://doi.org/10.1016/j.ins.2017.08.063
http://dx.doi.org/10.1002/dac.4424
http://dx.doi.org/10.1002/cpe.4188
http://dx.doi.org/10.1016/j.ins.2020.09.002
http://dx.doi.org/10.1007/s11280-019-00717-6
http://dx.doi.org/10.1016/j.ipm.2020.102475
http://dx.doi.org/10.1109/TPAMI.2011.191
http://dx.doi.org/10.1109/TKDE.2011.228
http://dx.doi.org/10.1016/j.chb.2015.04.072
http://dx.doi.org/10.1109/TKDE.2020.2982878
http://dx.doi.org/10.1109/TMM.2017.2701641
http://dx.doi.org/10.1016/j.ins.2018.12.003
http://dx.doi.org/10.26599/BDMA.2021.9020010

Appl. Sci. 2021, 11, 11447 17 of 17

19. Yang, D.; Qu, B.; Yang, J.; Cudre-Mauroux, P. LBSN2Vec++: Heterogeneous Hypergraph Embedding for Location-Based Social
Networks. IEEE Trans. Knowl. Data Eng. 2020, online ahead of print. [CrossRef]

20. Zheng, X.; Luo, Y.; Sun, L.; Ding, X.; Zhang, J. A novel social network hybrid recommender system based on hypergraph
topologic structure. World Wide Web 2018, 21, 985–1013. [CrossRef]

21. Chakraborty, T.; Dalmia, A.; Mukherjee, A.; Ganguly, N. Metrics for community analysis: A survey. ACM Comput. Surv. (CSUR)
2017, 50, 54. [CrossRef]

22. Cavallari, S.; Cambria, E.; Cai, H.; Chang, K.; Zheng, V. Embedding both finite and infinite communities on graph. IEEE Comput.
Intell. Mag. 2019, 14, 39–50. [CrossRef]

23. Danon, L.; Diaz-Guilera, A.; Duch, J.; Arenas, A. Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005,
2005, P09008. [CrossRef]

24. Lancichinetti, A.; Fortunato, S. Consensus clustering in complex networks. Sci. Rep. 2012, 2, 336. [CrossRef]
25. Kovács, I.A.; Palotai, R.; Szalay, M.S.; Csermely, P. Community landscapes: An integrative approach to determine overlapping

network module hierarchy, identify key nodes and predict network dynamics. PLoS ONE 2010, 5, e12528. [CrossRef]
26. Vilcek, A. Deep Learning with K-Means Applied to Community Detection in Networks; CS224W Project Report; Golden Gate University:

Stanford, CA, USA, 2014.
27. Yang, L.; Cao, X.; He, D.; Wang, C.; Wang, X.; Zhang, W. Modularity Based Community Detection with Deep Learning. IJCAI

2016, 16, 2252–2258.
28. Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online Learning of Social Representations. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; Association for
Computing Machinery: New York, NY, USA, 2014; pp. 701–710. [CrossRef]

29. Wang, H.; Wang, J.; Wang, J.; Zhao, M.; Zhang, W.; Zhang, F.; Xie, X.; Guo, M. Graphgan: Graph representation learning
with generative adversarial nets. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
2–7 February 2018; Volume 32.

30. Wang, J.; Cao, J.; Li, W.; Wang, S. CANE: Community-aware network embedding via adversarial training. Knowl. Inf. Syst. 2021,
63, 411–438. [CrossRef]

31. Li, B.; Pi, D. Learning deep neural networks for node classification. Expert Syst. Appl. 2019, 137, 324–334. [CrossRef]
32. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http://www.

deeplearningbook.org (accessed on 10 October 2021).
33. Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234. [CrossRef]
34. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the

24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [CrossRef]
35. Thomee, B.; Shamma, D.A.; Friedland, G.; Elizalde, B.; Ni, K.; Poland, D.; Borth, D.; Li, L.J. YFCC100M: The new data in

multimedia research. Commun. ACM 2016, 59, 64–73. [CrossRef]
36. Tang, L.; Liu, H. Relational learning via latent social dimensions. In Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 817–826. [CrossRef]

http://dx.doi.org/10.1109/TKDE.2020.2997869
http://dx.doi.org/10.1007/s11280-017-0494-5
http://dx.doi.org/10.1145/3091106
http://dx.doi.org/10.1109/MCI.2019.2919396
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1038/srep00336
http://dx.doi.org/10.1371/journal.pone.0012528
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1007/s10115-020-01521-9
http://dx.doi.org/10.1016/j.eswa.2019.07.006
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1145/2939672.2939753
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1145/2812802
http://dx.doi.org/10.1145/1557019.1557109

	Introduction
	Related Works
	Social Network Modeling
	Community Detection Algorithm

	Methodology
	Multimedia Social Network Model
	Community Detection Approach Based on Deep Learning
	Ingestion Layer
	Convolutional Layer
	Max-Pooling Layer
	Fully Connected Layer

	Experimental Evaluation
	Experimental Protocol
	Metrics
	Architecture
	Running Time Analysis
	Training Performance Analysis
	Effectiveness Evaluation

	Conclusions
	References

