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Abstract: Additively manufactured components, especially those produced in deposition weld-
ing processes, have a rough curvilinear surface. Strain and surface deformation analysis of such
components is increasingly performed using digital image correlation (DIC) methods, which raises
questions regarding interpretability of the results. Furthermore, in triangulation or local tangential
plane based DIC strain analysis, the principal strain directions are difficult to be calculated at any
point, which is due to the non-continuity of the approach. Thus, both questions will be addressed
in this article. Apart from classical local strain analysis based on triangulation or local linearization
concepts, the application of globally formulated radial basis functions (RBF) is investigated for the
first time, with the advantage that it is possible to evaluate all interesting quantities at arbitrary
points. This is performed for both interpolation and regression. Both approaches are studied at
three-dimensional, curvilinear verification examples and real additively manufactured cylindrical
specimens. It is found out that, if real applications are investigated, the RBF-approach based on
interpolation and regression has to be considered carefully due to so-called boundary effects. This
can be circumvented by only considering the region that has a certain distance to the edges of the
evaluation domain. Independent of the evaluation scheme, the error of the maximum principal
strains increases with increasing surface roughness, which has to be kept in mind for such applica-
tions when interpreting or evaluating the results of manufactured parts. However, the entire scheme
offers interesting properties for the treatment of DIC-data.

Keywords: digital image correlation; strain analysis; radial basis function; additive manufacturing;
WAAM; tension; torsion; verification

1. Introduction

Additive manufacturing is growing production technology, where material is applied
layer-wise. One example are 3D printing processes using polymers. In the context of metal-
lic materials, deposition welding processes represent a special manufacturing concept. In
both cases, smooth surfaces are obtained if the part under consideration is post-machined.
This post-processing step is not performed unless absolutely necessary. Mechanical load-
ing of such components with a rough surface results in inhomogeneous stress and strain
distributions. Nowadays, inhomogeneous strain distributions such as this can be deter-
mined using imaging techniques, for example digital image correlation (DIC) [1]. Since
the surfaces are neither smooth nor even, three-dimensional DIC must be used for strain
determination purposes. For a review of DIC with application in additive manufacturing,
see [2]. The evaluation procedures determine three-dimensional coordinates from the
tracking of gray value distributions at each point in time, see [1,3]. A comparison between
different times allows to determine surface displacements of individual points. Commonly,
a local regression concept is chosen, see [3], where the surface strains are determined within
particular tangent planes. An alternative concept is based on applying shape functions
similar to finite element approaches, see [4], where the simplest approach is based on a
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triangulation interpolation, see [5,6] for a similar approach. The latter approach has the
advantage that a C0-continuous displacement interpolation is obtained, while the strains,
however, are discontinuous. A mean-value calculation of the principal in-plane strains
(or stretches) at the intersecting nodes yields an additional “interpolation”. However, this
is not uniquely possible for the principal directions. Thus, a unique principal direction
computation of the strains is only possible within a triangle and not on the edges. The
“classical” local approach proposed in [3] has the advantage to provide the principal direc-
tions at the evaluation points, see [4] for an interpretation and a mathematically clearer
description. However, this is not always possible at arbitrary points within the region of
interest. To circumvent both disadvantages—non-smoothness and impossibility to evaluate
at arbitrary points—a global interpolation scheme is chosen using radial basis functions
(RBF), see, for the basic ideas [7,8].

RBFs are used in many areas of engineering science. Refs. [9,10] apply RBFs within
the field of fluid-structure interactions using mesh morphing techniques. For unstructured
meshes, Ref. [11] developed a mesh morphing technique employing RBFs. Refs. [12,13]
applied RBFs to fit and interpolate data. Further, RBFs find application in the solution
of partial differential equations (PDE), see [14–16], where RBFs are used within meshless
methods to solve PDEs.

For our application, RBFs have the advantage that the spatial distribution of the
evaluation points can be—more or less—arbitrary. They lead to a continuous interpolation
of the displacement field and, accordingly, also to continuous principal strain and principal
strain directions. In this context, the applicability and limitations must be examined
since the approach implies difficulties, such as ill-conditioned linear systems, possible
inefficiencies for large problems, dependence on individual shape parameters, smaller
oscillations between data points, and deviations of the derivatives at the boundaries. In a
first step, the properties of this approach will be compared to the triangulation concept—
with a particular focus on rough surfaces.

The paper is structured as follows. First, the strain evaluation within surfaces using
RBFs is briefly recapped. The concept is then tested in various applications: (1) complicated
verification examples for tension and torsion with regard to smooth and rough surfaces,
and (2) real samples produced by wire arc additive manufacturing (WAAM), see [17] for
an overview, with and without a rough surface.

The notation in use is defined in the following manner: geometrical vectors are
symbolized by~a (independent of the basis), second-order tensors A by bold-faced Roman
letters, and both column vectors and matrices by sans serif letters A.

2. Surface Strain Determination

We assume that a DIC-system provides a set of coordinates of so-called facet points
~xk(tn), k = 1, . . . , n(n)

D , at time tn, n = 0, . . . , nDIC. Here, nDIC represents the number of

times pictures of a “configuration” are taken. Thus, n(n)
D is the number of spatial coordinates

at time tn. The coordinates in the initial configuration of a “material point” ~Xk = ~xk(t0)
are used to calculate the displacement of the k-th point ~uk(~Xk, tn) = ~xk(tn)− ~Xk. These are
n(n)

D displacement vectors at time tn, which can vary depending on whether ~xk(tn) can be
detected by the DIC-system or not. There are several questions to be treated. First, what is
the displacement of a material point ~Xk at time tn if the DIC-system is not able to detect
~xk(tn) in time properly? Second, how can one determine the in-plane strain tensors that are
based on some in-plane gradient? Third, how can one obtain the spatial velocity (or even
the in-plane strain-rate tensor)? Thus, particular interpolation concepts in space and time
are required. The interpolation in time is commonly performed by a linear interpolation,
whereas two local concepts are employed for spatial interpolations. The first local approach
uses a linear tangential surface which is based on a regression analysis of points around
the evaluation point, see [3], and in more detail [4]. Alternatively, shape functions from the
finite element method are chosen, where the triangulation is the simplest approach [4–6].
The first approach has the disadvantage that multiple interpolations are required. The
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second approach, however, only leads to piece-wise continuous displacements, so that
the strains have jumps. This can be circumvented for principal strains (or stretches) by
averaging at the measurement points, but with the disadvantage that this is not applicable
to the principal strain directions. In this context, gradients are only calculable in the interior
of the local interpolation regions, but not at the bounds. A further disadvantage is the
necessity to find the element for a given point that is required for the evaluation. This leads
to additional computational effort. Thus, we are interested in a global interpolation scheme.
For this purpose, we use radial basis functions. In this article, the question is followed,
what accuracy can be expected for smooth and rough surfaces?

In the first step, the theory of strain determination in curvilinear surfaces is recapped
in Section 2.1. Afterwards, Section 2.2 discusses the concept using RBFs, followed by an
investigation of RBFs in strain determination in Section 2.3.

2.1. Strain Computation in Surfaces

One difficulty in connection with surface strain measurement is to obtain strains within

a curvilinear surface. Thus, the surfaces in the initial configuration ~X = ~̂X(Θ1, Θ2) and in
the current configuration ~x = ~̂x(Θ1, Θ2, t) have to be approximated. We assume that both
functions depend on the same surface parameters Θα, α = 1, 2 (convective coordinates). Let
~aα = ∂~̂x/∂Θα be the tangent vectors to the surface description in the current configuration,

and ~Aα = ∂~̂X/∂Θα those in the initial state. Obviously, the functions ~̂X(Θ1, Θ2) and
~̂x(Θ1, Θ2, t) must be specified. In a first step, it is assumed that both vectorial functions are
known, in Section 2.2 they will be specified by RBFs.

The in-plane deformation gradient

F̂ =~aα ⊗ ~Aα, (1)

(Greek letters that occur twice as indices imply the sum of 1 to 2, see [4]) requires—apart
from the tangent vectors~aα—the contravariant (gradient) vectors ~Aα = Aαβ ~Aβ, β = 1, 2.
The matrix of contravariant metric coefficients Aαβ = ~Aα · ~Aβ is obtained by the inverse of
the matrix of covariant metric coefficients Aαβ = ~Aα · ~Aβ,[

Aαβ
]
=
[
Aαβ

]−1, (2)

see, for example [18]. It should be remembered that~aα ∈ V3 holds even though there are
only two tangent vectors (in each configuration). The in-plane right Cauchy-Green tensor

Ĉ = F̂T F̂ = aαβ
~Aα ⊗ ~Aβ, (3)

in which aαβ =~aα ·~aβ define the covariant metric coefficients in the current configuration,
has to be changed to the mixed-variant formulation

Ĉ = aαβ Aαγ︸ ︷︷ ︸
Ĉγ

β

~Aγ ⊗ ~Aβ = Ĉγ
β
~Aγ ⊗ ~Aβ (4)

to arrive at the eigenvalue problem(
(Ĉγ

β − µδ
γ

β)
~Aγ ⊗ ~Aβ

)
(qα ~Aα) = [Ĉγ

α − µδ
γ

α]qα ~Aγ =~0, (5)

remember ~Aγ · ~Aα = δ
γ

α holds, with the Kronecker-symbol δ
γ

α (δγ
α = 1 for γ = α, δ

γ
α = 0

for γ 6= α). For linearly independent tangent vectors ~Aγ, the coefficients must vanish
(eigenvalue problem) leading to
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det[Ĉγ
β − µδ

γ
β] =

∣∣∣∣Ĉ1
1 − µ Ĉ1

2
Ĉ2

1 Ĉ2
2 − µ

∣∣∣∣ =
= µ2 − (Ĉ1

1 + Ĉ2
2)µ + (Ĉ1

1Ĉ2
2 − Ĉ1

2Ĉ2
1) = 0. (6)

If one introduces the principal invariants

IĈ = tr Ĉ = Ĉ · I = Ĉ1
1 + Ĉ2

2 (7)

IIĈ =
1
2

(
(tr Ĉ)2 − tr Ĉ2

)
= det[Ĉα

β] = Ĉ1
1Ĉ2

2 − Ĉ1
2Ĉ2

1, (8)

the eigenvalues read

µ1,2 =
IĈ
2
±

√
I2
Ĉ
4
− IIĈ. (9)

Since the (in-plane) principal stretches are the eigenvalues of the right stretch tensor
Û of the polar decomposition F̂ = R̂Û, the square root of (9)

λ1,2 =
√

µ1,2, (10)

has to be calculated, see [4].
There are various principal strain measures

ε(m)
α =


1
m
(λm

α − 1) if m 6= 0

ln λα if m = 0
(11)

where the most common principal strain measures are given for m = 0 (Hencky strain),
m = 1 (engineering strain), and m = 2 (Green-Lagrange strain).

In conclusion, the spectral representation of the right stretch, the right Cauchy-Green
tensor, and the Green strain tensor reads

Û =
2

∑
α=1

λα~nα ⊗~nα, Ĉ =
2

∑
α=1

λ2
α~nα ⊗~nα, Ê(2) =

2

∑
α=1

ε
(2)
α ~nα ⊗~nα. (12)

Here,~nα = ~qα/|~qα|with~qα = qα ~Aα are the normalized eigenvectors or principal directions.

2.2. Radial Basis Functions

There are a number of approaches that use RBFs, see [7,8], mainly concerned with
computer graphics, geometrical reconstruction, interpolation, and smoothing. Here, RBFs
are applied to describe the motion of material surfaces, and the properties of surface
deformations are evaluated, i.e., the stretch or strain determination.

Since a Cartesian basis is chosen in the following, it is possible to use column vectors
x∈ R3 instead of geometrical vectors ~x ∈ V3. Thus, a consistent matrix notation can be
followed. The ansatz for the motion reads

x̂(Θ, tn) =
3

∑
j=1

( ncp

∑
k=1

m̂(ρ̂(Θ, Θk))B(n)
kj +

3

∑
l=1

n̂l(Θ)D(n)
l j

)
ej (13)

with

n̂(Θ) =


n̂1(Θ)
n̂2(Θ)
n̂3(Θ)

 =


1

Θ1

Θ2

. (14)

where the first part represents the RBF contribution and the second lower order polynomial
part is chosen to fit rigid body motions and linear displacement fields. Here, ej ∈ R3,
j = 1, 2, 3, are column vectors—with a value 1 at the j-th entry and a value of zero at
all other entries. Θ∈ R2 with Θ = {Θ1, Θ2} are the surface parameters of Section 2.1,
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where the simplest approach is to take the Cartesian coordinates in the initial configuration
provided by the DIC-system, (Θ1, Θ2) = (X, Y).

ρk = ρ̂(Θ, Θk) =
R
R0

=
‖Θ−Θk‖

R0
=

√
(X− Xk)2 + (Y−Yk)2

R0
(15)

defines the normalized distance function evaluated at the so-called center (or source) points
Θk = {Θ1

k , Θ2
k} = {Xcp

k , Ycp
k }, k = 1, . . . , ncp, which might be equidistant points in the

(X, Y)-space. R0 is a radius for normalizing the RBFs, and ncp are the number of center

points. The coefficients B(n)
kj and D(n)

l j are the unknown weights.
The chosen radial basis functions m̂(ρ) are depicted in Table 1, although there are

many other possible functions, e.g., splines, see [19]. The transposed position vector at
a point Θi, i = 1, . . . , n(n)

D (where n(n)
D symbolizes the number of evaluation points), is

given by
x(n)Ti = x̂T(Θi, tn) = mT

i κ
(n)
R + nT

i κ
(n)
M = aT

i κ(n). (16)

Here, the vectors of evaluated radial basis functions and monomials are symbolized by

mT
i = {mi1 mi2 . . . mincp}, mik = m̂(ρ̂(Θi, Θk)), mi ∈ Rncp (17)

nT
i = {1 Xi Yi}, ni = n̂(Θi), ni ∈ R3 (18)

aT
i = {mT

i nT
i }, ai ∈ Rncp+3, (19)

i = 1, . . . , n(n)
D , k = 1, . . . , ncp, and the matrices of unknowns by

κ
(n)
R =


B(n)

11 B(n)
12 B(n)

13
...

...
...

B(n)
ncp1 B(n)

ncp2 B(n)
ncp3

, κ
(n)
M =

D(n)
11 D(n)

12 D(n)
13

D(n)
21 D(n)

22 D(n)
23

D(n)
31 D(n)

32 D(n)
33

, κ(n) =

[
κ
(n)
R

κ
(n)
M

]
, (20)

κ(n) ∈ R(ncp+3)×3, κ
(n)
R ∈ Rncp×3, κ

(n)
M ∈ R3×3, at each evaluation time tn (the superscript T

symbolizes the transposition). The residual between the simulation (model) r(n)i and the

experimental data d(n)i at that point

r(n)Ti = x(n)Ti − d(n)Ti = aT
i κ(n) − d(n)Ti (21)

is required either for interpolation or for regression using a linear least-square approach
to determine the unknown parameters κ(n). If all residuals are assembled, the matrix
of residuals 

r(n)T1
...

r(n)T
n(n)

D


︸ ︷︷ ︸

R(n)

=


aT

1
...

aT
n(n)

D


︸ ︷︷ ︸

A(n)

κ(n) −


d(n)T1

...
d(n)T

n(n)
D


︸ ︷︷ ︸

D(n)

(22)

with R(n) ∈ Rn(n)
D ×3, A(n) ∈ Rn(n)

D ×(ncp+3), κ(n) ∈ R(ncp+3)×3, and D(n) ∈ Rn(n)
D ×3 is obtained.
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Table 1. Applied radial basis functions (here, expression 〈a〉 defines the Macaulay-brackets, 〈a〉 = a
for a > 0 and 〈a〉 = 0 for a ≤ 0).

m̂(ρ) m̂′(ρ)

Gaussian m̂G(ρ) e−(cGρ)2 −2c2
Gρe−(cGρ)2

Wendland [20] m̂W(ρ) 〈1− ρ〉4(1 + 4ρ) −20ρ〈1− ρ〉3

Inverse Multi-Quadrics m̂I(ρ)
cI√

ρ2 + c2
I

− ρcI
(ρ2 + c2

I )
3/2

In principle, there are three basic possibilities to determine the unknowns κ(n):
Interpolation: First, it is assumed that the center points Θk are equivalent to the evaluation
(data) points Θi, i.e., ncp = n(n)

D , and that there are no additional monomials. Then, the
residual (22) is zero, R(n) = 0, and degenerates to the system of linear equations with three
right-hand sides,

A(n)κ
(n)
R = D(n) (23)

with ai = mi, i = 1, . . . , n(n)
D . If monomials are used in addition to RBFs and the center

points are identical to the data points, more unknowns than equations occur. Here, it is
common to assume the orthogonality conditions

n(n)
D

∑
k=1

B(n)
kj nk = 0 (24)

leading to the linear system

A(n)κ(n) =

[
D(n)

0(3×3)

]
with A(n) =


mT

1 nT
1

...
...

mT
n(n)

D

nT
n(n)

D

n1 . . . n
n(n)

D
0(3×3)

. (25)

Regression: If it is not assumed that the data (evaluation) points are identical to the center
points, a linear least-square problem can be formulated (under the condition ncp ≤ n(n)

D − 3).
The least-square problem requires that the square of residuals should be a minimum,

f (κ(n)) =
1
2
R(n)(κ(n)) ·R(n)(κ(n))→ min. (26)

yielding the system of linear equations with several right-hand sides[
A(n)TA(n)

]
κ(n) = A(n)TD(n) (27)

to determine the unknown parameters κ(n) (the inner product in Equation (26) is defined
for an arbitrary matrix K∈ Rm×n by K ·K = ∑m

i=1 ∑n
j=1 KijKij). It should also be noted that

ΘT
i = {d(n)i1 d(n)i2 }, i.e., the (Xi, Yi)-coordinates of the data vectors are chosen in Equation (16)

in our applications later on.
Various solution schemes can be applied to the linear systems (23), (25) or (27) (di-

rect vs. iterative solvers, solvers for sparse matrices applicable for, e.g., the Wendland
function or the Gaussian function if a truncation of values close to zero is applied, sin-
gular value decomposition for very ill-conditioned systems, fast solvers, . . . , see, for
example [8,12,21,22] and the literature cited therein). In this rather introductory paper, we
confine our attention to the principle properties of the entire approach to strain determina-
tion in full-field strain measurements.
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2.3. Application of Radial Basis Functions for Strain Determination

To determine the principal stretches (or strains), the tangent vectors~aα = ∂~̂x/∂Θα are
needed in Equation (1), i.e.,

a(n)α =
∂x̂(Θ, tn)

∂Θα =
3

∑
j=1

( ncp

∑
k=1

dm̂
dρ

∂ρ̂k
∂Θα B(n)

kj +
3

∑
l=1

∂n̂l
∂Θα D(n)

l j

)
ej, a(n)α ∈ R3. (28)

The derivatives m̂′(ρ) are compiled in Table 1, and

∂ρ̂k
∂Θα =

Θα −Θα
k

‖Θ−Θk‖
. (29)

For the initial state, this reads

Aα = a(0)α =
3

∑
j=1

( ncp

∑
k=1

dm̂
dρ

∂ρ̂k
∂Θα B(0)

kj +
3

∑
l=1

∂n̂l
∂Θα D(0)

l j

)
ej, Aα ∈ R3 (30)

which is required for the matrix of metric coefficients, Aαβ = AT
α Aβ, to calculate the gradient

vectors Aα. This allows the calculation of the deformation gradient (1) and, accordingly,
the principal stretches (10).

3. Evaluation of Strain Determination Using RBFs

In the following subsections, the behavior of the full-field strain measurement using ra-
dial basis functions is investigated. For this purpose, the basic properties of the approach is
studied first using verification examples for which analytical solutions are known. Next, the
concept is applied to real experimental data obtained from WAAM-produced specimens.

3.1. Verification Examples of WAAM-Produced Cylindrical Components

We are interested in comparing the properties of the RBF-approach with the classical
triangulation concept. For this purpose, an analytical example of a surface deformation is
considered, which is similar to a real sample produced by a WAAM-process. In a first step,
however, pure tension and torsion of a cylindrical tube with a smooth surface is considered
so that the order of possible additional errors due to the roughness of the specimens can be
interpreted in the subsequent step.

3.1.1. Tension and Torsion of a Cylindrical Tube

To study the accuracy of the new approach using RBFs, the analytic deformation of
tension and torsion is compared to the numerical results. For more details on the analytical
equations and their derivation, refer to [23–26], and with an application to DIC, to [4]. Here,
the motion

~x = ~χR(~X, t) = r̂(R)~er(Φ, Z) + ẑ(Z)~ez (31)

is considered, with

r̂(R) = λ−1/2R, ϕ̂(Φ, Z) = Φ + DZ, ẑ(Z) = λZ, (32)

and
~er = cos ϕ~ex + sin ϕ~ey, ~eϕ = − sin ϕ~ex + cos ϕ~ey. (33)

λ = L/L0 defines the axial stretch, where L is the current length and L0 the initial length of
the cylinder. D = α/L0 symbolizes the twist, where α represents the torsion angle. The
motion (31) yields the principal stretches

λ1 = λ−1/2, λ2,3 =

√
1 + λ3 + (DR)2 ±

√
(1 + λ3 + (DR)2)2 − 4λ3

2λ
, (34)
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representing the eigenvalues of the right stretch tensor U of the polar decomposition
F = RU, where F(~X, t) = Grad~χR(~X, t) defines the deformation gradient, and R with
det R = +1, RT = R−1, the rotation tensor.

In the following example, a fixed radius R = 15 mm, L0 = 80 mm, λ = 1.2, and a tor-
sional angle of α = 20° are assumed, so that D = α/L0 = 20°π/180°/80 mm ≈ 0.44 mm−1.
See Figure 1 for the points on the surface in the reference and the current configuration.
The analytical solution yields the stretches

λ1 = 0.91287, λ2 = 1.2035, λ3 = 0.91022. (35)

We are interested in the in-plane stretches λ2 and λ3, which can be compared to the
DIC-results. λ1 defines the out-of-plane component, which cannot be measured. The
maximum principal stretch is λ2 ((+)-sign in Equation (34)2).

−20
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m
]

−20 −15 −10 −5  0  5  10  15  20y−axis [mm]
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z−
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m
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Figure 1. Tension–torsion example (smooth surface): generated (pattern) points on the surface in the
reference (green) and calculated positions in the current configuration (dark red).

For the numerically generated DIC-data, a center region (Φ ∈ [−45°,+45°],
Z ∈ [20 mm, 60 mm]) is assumed. Then, equidistant points are generated using Equation (31)
for constant R with a distance ∆d in each Φ- and Z-direction. In a first investigation, the
pointwise relative error of the maximum principal stretch of the RBF-approach relative to
the analytical (exact) stretch λex = λ2 in Equation (35)

eλk =
|λDIC

k − λex|
λex

× 100, (36)

is defined. Here, ∆d = 0.15 mm is chosen. Further, the Wendland function m̂W(ρ) com-
bined with the linear polynomial (monomials), see Table 1, with R0 = 1.5 mm is applied to
visualize the boundary effects, see Figure 2.
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Figure 2. Relative error of maximum principal stretch (Wendland function withmonomials,
R0 = 1.5 mm, ∆d = 0.15 mm) showing the boundary region effect of RBFs; (left) 3D represen-
tation, (right) 2D projection.

Although the points are fulfilled exactly, the derivatives—here represented by the
stretches—show larger errors at the boundary of the evaluation region, which is one of
the weaknesses of the RBF-method that were found in the scope of the study. This will be
considered in the following investigation.

In the following figures, the mean value of all errors is calculated

em =
1

nDIC

nDIC

∑
k=1

eλk , (37)

in a region of interest. nDIC is the number of data points considered. Since there is the
boundary effect of the RBF, see Figure 2, the following evaluations will only consider points
in the region −25° ≤ Φ ≤ 25°, 30 mm ≤ Z ≤ 50 mm.

Remark 1. The region of interest is chosen in an arbitrary manner to circumvent the influence
of the individual shape parameters of each RBF, and to avoid the boundary effects that lead to a
further misrepresentation of the convergence behavior. Not only the RBFs show such boundary
effects. On a closer look at the triangulation concept, all triangles are omitted which have angles
below a permissible critical angle. This serves to also exclude highly inaccurate solutions that occur
due to the coordinate transformation between global and surface coordinates. To circumvent this
discussion for both approaches, we restrict ourselves to the seemingly arbitrary center region.

To compare the new approach, the classical triangulation concept is considered as well.
Here, geometry and deformation are interpolated with shape functions for triangles, similar
to the finite element method. The triangulation is completed with the method of [27,28].
Within each triangle, the in-plane stretches (or for practical applications the principal in-
plane strains, can be determined, see [4]). This is followed by a calculation of the mean value
of the principal stretches of triangles adjacent to a data point (this implies an additional
interpolation). For our investigations, the point distance ∆d = {0.15, 0.25, 0.35, 0.45} is var-
ied and the mean relative error (37) of the different methods is analyzed, see Figure 3 (left).
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Figure 3. Mean relative error behavior em, see Equation (37): (left) variation of point distance for
constant shape parameter, (right) variation of shape parameter βW and β I for constant point distance
∆d = 0.25 mm.

To allow for a comparison of the functions m̂G(ρ), m̂W(ρ), and m̂I(ρ), the shape
factors are chosen to be constant, but in such a manner that the functions look quite
similar (R0 = 1.5 mm, cG = 2.7, cI = 0.2), see Appendix A. The Gaussian-RBF m̂G(ρ) with
monomials (Gau + Mon) show very good results in comparison to the triangulation concept.
However, the condition number of the resulting systems of linear Equations (23) and (25)
are too large for particular point distances so that the systems are not solvable for smaller
values of the point distances ∆d, see Table 2.

Table 2. Order of condition numbers of the linear systems for different interpolation schemes and
varying point distance (R0 = 1.5 mm, cG = 2.7, cI = 0.2). Here, the expert driver routines of [29]
are chosen.

∆d Gau Gau + Mon Wen Wen + Mon IMQ IMQ + Mon

0.15 1029 1034 104 109 106 109

0.25 1012 1016 103 108 104 107

0.35 106 1010 102 107 103 106

0.45 103 108 102 106 103 106

Thus, the relation between the point distance and the shape factor cG is essential—
as it is known from the literature. The Wendland function m̂W(ρ) shows much better
properties. Since there is an intersection of the pure RBF approach (Wen) with the extension
of monomials (Wen + Mon), there cannot be made an accuracy statement whether linear
polynomials are essential. Looking only at the condition numbers, the consideration of
monomials increases the condition numbers again. The inverse multi-quadrics approach
(IMQ) and (IMQ + Mon) yields similar results regarding the aspect of conditioning but
better results in the accuracy. The latter can be interpreted by the course of the function,
see Figure A1, which shows a larger region until the values of the function becomes very
small. Thus, linear functions seem to be better approximated—leading to the property that
the monomial approach implies more linear dependencies of the column vectors in the
linear system.

In the next study, the point distance is fixed by ∆d = 0.25 mm. Then, the normalized
shape factor βW = R0/∆d = R0/0.25 and that of the inverse multi-quadrics function,
cIMQ := cI R0 = β I/10, are varied, see Figure 3 (right). The factor 1/10 is chosen for a
better presentation in Figure 3 (right). The inverse multi-quadrics converges very fast for
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increasing shape factor β I . However, only solutions for particular linear systems due to
exceeding condition numbers for β I < 8 (IMQ) and β I < 16 (IMQ + Mon) are obtained.

A possible approach of estimating the shape factor ĉIMQ(∆d)—in dependence of the
point distance ∆d so that accuracy and condition number are appropriate—is provided in
Appendix A.

The advantage of having only one function representing the deformation offers the
simple possibility to evaluate—apart from the principal stretches or strains—the principal
direction concerned. Here, two possibilities can be considered, see [4], either the eigenvec-
tors of the in-plane right stretch tensor Û or the in-plane left stretch tensor V̂. The in-plane
left stretch tensor stems from the polar decomposition F̂ = V̂R̂ and can be determined
either by the eigenvalue problem of the left Cauchy-Green tensor B̂ = F̂F̂T = V̂2 or by
rotating the eigenvectors of the in-plane right stretch tensor Û by the rotation tensor R̂.
The latter is omitted for brevity. Figure 4 shows the distribution of the principal direction
(eigenvectors) of the in-plane right stretch tensor Û evaluated at particular positions on
the sample’s surface. Both possibilities are commonly not provided in DIC-evaluation
programs, or are not explained in a thorough manner. However, these principal directions
might provide a sound interpretation of the load distribution in the presence of inhomoge-
neous deformations. Thus, Figure 4 shows the known principal directions for the “simple”
problem of tension and torsion, where the RBF-results are evaluated.
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Figure 4. Principal directions ~uα, α = 1, 2, of the in-plane right stretch tensor Û for the torsional
example (∆d = 0.25 mm for inverse multi-quadrics with monomials cI R0 = 0.3).

3.1.2. Tension and Torsion of a Tube with Rough Surface

With WAAM components that have already been manufactured, the actual objective
is that the surfaces, see Figure 5 (right), as an example, are not treated any more. This
poses further challenges to image correlation methods, since—although classical paints and
spray-on speckle patterns can be used—the surfaces have a high degree of roughness. The
strains on the surfaces, on the other hand, are difficult to evaluate because the interpolations
smooth out the local features. To investigate this, it is possible to use a verification example
of the following type: a cylindrical specimen with a rough surface in the initial configuration
is considered

~X(Θ1, Θ2) = ~X(Φ, Z) = R̂(Z)~ER(Φ) + Z~EZ, (38)

where (Θ1, Θ2) = (Φ, Z) are the curvilinear coordinates, and ~ER(Φ) = cos Φ~ex + sin Φ~ey,
and ~EΦ(Φ) = − sin Φ~ex + cos Φ~ey, the radial and circumferential directions. First, a
smoothed step-function for the varying radius describing the welding bead stacks is applied,
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R̃(Z) = R0 +
DS
2

nws

∑
k=0

(tanh(c(Z− (Zk + δ)))− tanh(c(Z− (Zk+1 − δ)))), (39)

Zk = Z0 + kH. (40)

R0 is the mean radius of the tube, DS controls the notch depth between two stacks of
welding beads, and nws defines the number of stacks over the specimen’s height. Here,
one can only describe a pause by the welding robot, which has to stop after a certain
number of welding beads to guarantee sufficient heat transport (The welding robot must be
stopped after a few cycles of material application, as poor heat transfer causes the material
to become too viscous and the specimens tend to melt away. The stopping time is necessary
so that solidification is guaranteed). These welding layers build a welding stack of height
H. Here, δ� H is chosen for a certain notch width between the step functions describing
the stacks, and c (dimension: 1/length) serves to sharpen the notch, see Figure 6.

Figure 5. Specimens made using WAAM process. (left) Specimen without any outer surface treat-
ment, (right) specimen, where the outer surface is machined off.

R0

H

Ds

Z

R

Dw

Ds

H

welding bead

stack of welding beads

Figure 6. Geometrical quantities of verification example for rough surface.

The individual welding layers (welding beads) are then described with the aid of a
superposition of sinusoidal functions,

R̂(Z) = R̃(Z) +
DW

2

(
1 + sin

(
2πnwb

H
Z
))

, (41)

where nwb represents the number of welding beads within one stack of height H.
Next, the deformation

~x = ~χR(~X, t) = r̂(R)~er(ϕ) + ẑ(Z)~ez, (42)

is assumed, where the radial motion depends only on Z, r(Z) = r̂(R̂(Z)), see Equation (41).
Furthermore, ϕ = Φ + DZ holds for torsional problems, see Equation (32)2, which leads to

~er(Φ, Z) = cos(DZ)~ER(Φ) + sin(DZ)~EΦ(Φ)

~eϕ(Φ, Z) = − sin(DZ)~ER(Φ) + cos(DZ)~EΦ(Φ)

~ez = ~EZ.

(43)
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Inserting this basis into the motion (42) yields

~x = ~χR(~X, t) = r(Z) cos(DZ)~ER(Φ) + r(Z) sin(DZ)~EΦ(Φ) + ẑ(Z)~EZ. (44)

The in-plane deformation gradient (1) requires the tangent vectors

~a1 =
∂~x
∂Φ

= âR(Z)~ER(Φ) + âΦ(Z)~EΦ(Φ) (45)

~a2 =
∂~x
∂Z

= b̂R(Z)~ER(Φ) + b̂Φ(Z)~EΦ(Φ) + b̂Z(Z)~EZ (46)

with

âR(Z) = −r(Z) sin(DZ), âΦ(Z) = r(Z) cos(DZ), (47)

b̂R(Z) = r′(Z) cos(DZ)− Dr(Z) sin(DZ), b̂Φ(Z) = r′(Z) sin(DZ) + Dr(Z) cos(DZ), (48)

and b̂Z(Z) = ẑ′(Z). When calculating the gradient vectors ~Aα, the tangent vectors

~A1 =
∂~X
∂Φ

= R̂(Z)~EΦ(Φ), ~A2 =
∂~X
∂Z

= R̂′(Z)~ER(Φ) + ~EZ (49)

are required. Here, the property ~E′R(Φ) = ~EΦ(Φ) is exploited (the prime means the
derivative with respect to the argument of the function). The inverse of the matrix of
covariant metric coefficients

[Aαβ] =

[
R̂2(Z)

1 + R̂′2(Z)

]
(50)

i.e.,

[Aαβ] =

[
1/R̂2(Z)

1/(1 + R̂′2(Z))

]
(51)

yields together with ~Aα = Aαβ ~Aβ the contravariant vectors

~A1 =
1

R̂(Z)
~EΦ, ~A2 =

R̂′(Z)
1 + R̂′2(Z)

~ER(Φ) +
1

1 + R̂′2(Z)
~EZ. (52)

In the following, the abbreviations

ÂΦ(Z) =
1

R̂(Z)
, B̂R(Z) =

R̂′(Z)
1 + R̂′2(Z)

, B̂Z(Z) =
1

1 + R̂′2(Z)
(53)

are used. Evaluating the sum of dyadic products (1) leads to the in-plane deformation
gradient

F̂ =

bRBR aR AΦ bRBZ
bΦBR aΦ AΦ bΦBZ
bZBR 0 bZBZ

~EI ⊗ ~EJ , (54)

I, J = R, Φ, Z, and the in-plane right Cauchy-Green tensor

Ĉ = F̂T F̂ =

 B2
R
(
b2

R + b2
Φ + b2

Z
)

AΦBR(aRbR + aΦbΦ) BRBZ
(
b2

R + b2
Φ + b2

Z
)

AΦBR(aRbR + aΦbΦ) A2
Φ
(
a2

R + a2
Φ
)

AΦBZ(aRbR + aΦbΦ)
BRBZ

(
b2

R + b2
Φ + b2

Z
)

AΦBZ(aRbR + aΦbΦ) B2
Z
(
b2

R + b2
Φ + b2

Z
)
~EI ⊗ ~EJ . (55)
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Since the tensor is singular, one eigenvalue is zero. Evaluating Equation (9) with the
(full) invariants

IĈ = tr Ĉ = A2
Φ(a2

R + a2
Φ) + (B2

R + B2
Z)(b

2
R + b2

Φ + b2
Z), (56)

IIĈ =
1
2

(
(tr Ĉ)2 − tr Ĉ2

)
= A2

Φ(B2
R + B2

Z)
(
(aRbΦ − aΦbR)

2 + (a2
R + a2

Φ)b
2
Z

)
, (57)

are now depend on the axial coordinate Z, i.e., the principal stretches are

λ1,2(Z) =
√

µ1,2(Z) with µ1,2 =
IĈ
2
±

√
I2
Ĉ
4
− IIĈ. (58)

(full means that the basis is not in the tangential plane so that the trace has to be built over
the entire tensor coefficients).

In our example, we assume r̂(R) = r(Z) = λ−1/2R̂(Z) and ẑ(Z) = λZ—similar to
the classical tension-torsion example, where λ represents the axial stretch—with R̂(Z)
of Equation (41). As our geometrical setting, R0 = 15 mm, DS = 0.5 mm, H = 8 mm,
DW = 0.3 mm, c = 20 mm−1, δ = 0.2 mm, nws = 10, and nwb = 2 are defined. Moreover,
equidistant data points between −45° ≤ Φ ≤ 45° and 20 mm ≤ Z ≤ 60 mm are generated.
The surface contour R̂(Z) is shown in Figure 7.

 0

 5

 10

 15

 20

 20  25  30  35  40  45  50  55  60

R
−

c
o
o
rd

in
a
te

 i
n
 m

m

Z−coordinate in mm

Figure 7. Surface contour of verification example with rough surface at time t = 0.

Figure 8 (left) shows the maximum and minimum principal stretches over the axial di-
rection Z evaluated at Φ = 0°. For the triangulation concept, this is only approximately the
case, Φ ≈ 0°). Obviously, there is a strong stretch inhomogeneity generated by the surface.
This has an essential influence on the accuracy of the stretch results. In Figure 8 (right),
the relative error using the classical triangulation concept is plotted using varying dot
distances (∆d = (0.15, 0.25, 0.35, 0.45) mm). Especially in the areas of notches, the errors
are very large. This is nearly independent of the point distances and obvious against the
background that hardly any points enter the notch. However, even between the notches,
an error of less than 0.1% can be seen in the main extensions due to the roughness.
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Figure 8. (left) Minimum and maximum principal stretches for verification examplewith rough
surface, (right) relative error of maximum principal stretches using triangulation with different point
distances ∆d = (0.15, 0.25, 0.35, 0.45) in mm.

When applying the Wendland and inverse multi-quadrics (IMQ) functions with the
respective use of monomials, the selection of appropriate shape parameters is needed.
In this regard, see Figure 3 (right). For the following, βW = 10, i.e., R0 = βW∆d are
chosen for the Wendland parameter, and β I = 10cIMQ for the IMQ, with cIMQ from
Equation (A4) in Appendix A. Here, the factors cIMQ = {0.3, 0.5, 0.7, 0.9}mm are obtained
for ∆d = {0.15, 0.25, 0.35, 0.45}mm. When considering the same behavior of the RBFs in
Figure 9, one can see that the RBF-approach using the Wendland function m̂W(ρ) with
monomials yields smaller errors between the notches than the triangulation concept. Across
the notches, relative errors similar to those obtained with the triangulation concept are
observable. For smaller point distances, however, the relative errors are smaller for the
Wendland ansatz. The results are even better for the inverse multi-quadrics functions m̂I(ρ)
with monomials, where the shape parameter is chosen according to Equation (A4). The
condition numbers are in all cases around 108–109.
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Figure 9. Rough surface verification example for different point distances ∆d = (0.15, 0.25, 0.35, 0.45)
in mm and adapted shape parameters: (left) Wendland function with monomials (R0 = 10∆d),
(right) inverse multi-quadrics with monomials (ĉIMQ(∆d) in Equation (A4)).

In conclusion, the stretch (strain) results must be interpreted carefully for real ap-
plications in regions of strong changes in the surface geometry. The documented errors
are in the order of 20% close to notches—and this only includes errors that result from
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any of the interpolation concepts to determine the in-plane stretches (strains). Further,
larger point distances can lead to relative errors of the stretches in the order of 0.1% in the
“smoother” regions.

3.2. Real Application Example of a Tube under Tension and Torsion

In our final example, we performed tension and torsion experiments at real tube-like
specimens. The specimens were produced by a WAAM-process using the gas metal arc
welding material EN ISO 14341-A G 50 7 M21 4Mo (C 0.09, Mn 1.95, Si 0.7, Mo 0.5), see
Figure 5 (left).

The tube-like specimens are welded onto round solid sections that act as specimen
holders (diameter 32 mm, possible clamping length LC = 55 mm). Two specimens remain
in their original shape and two specimens are machined off (outer diameter 27.2 mm) in
order to obtain a smooth surface on the outside, see Figure 5 (right). It is not possible to
reach the inside to machine off the inner surface. Thus, the tubes are still rough on the
inside. The length between the full material clamping region is L0 ≈ 82 mm. The machine’s
traverse displacement is u(t) = KUt, KU = 0.01 mm s−1, for tension, and a torsional angle
of ϑ(t) = Kϑt, Kϑ = 0.01 ° s−1, for torsion. The 3D-DIC-system ARAMIS 12M (which
uses the software ARAMIS Professional 2020 from GOM GmbH, Brunswick, Germany) is
chosen to identify the 3D coordinates of the data points in the reference and all current
configurations, to ensure that the new strain determination tools can be used. These data
points no longer have equidistant spacing. Depending on the number of pixels (px) to
build up the facet data in ARAMIS, the results can differ. In the case here, 9 px for the facet
size and 6 px for the point distance are chosen. Figure 10 (left) shows the evaluation region
of the rough surface in the reference state, where the data points were taken, the RBC-
concept was applied, and the points were provided to the pre- and post-processor GiD [30].
The evaluation region is approximately L0 = 80 mm long and has an opening angle of
approximately 90°. In the subsequent investigations, inverse multi-quadrics combined
with monomials are chosen with a shape factor of cIMQ = 0.3 mm. If one increases the
number of pixels, the geometric results change and are smoothed, see Figure 10 (right).
Here, the facet size is 19 px and the point distance is 15 px. In the following example, a
short discussion of the effects on the strain results is added.

Z X Y

Figure 10. Reconstruction of rough surface of a specimen using GiD: data generated with (left) 6 px
point distance and 9 px for facet size, (right) 15 px point distance and 19 px for facet size.

3.2.1. Comparison of Triangulation Concept and RBF (Torsional Case)

The torsion sample investigated in the first study was milled off on the outside using
a lathe. The maximum torsional angle is ϑ = 15° (torsional couple ≈ 770 N m). Figure 11
shows the maximum principal Green strains (m = 2 in Equation (11)) for the triangulation
concept (lower figure) explained in [4] and the RBF-approach using inverse multi-quadrics
functions with monomials (upper figure). To obtain a better impression of the differences,
the projection of the 3D data onto the (Y/Z)-plane is shown (for the coordinates, see
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Figure 1). The triangulation concept yields a more smeared strain distribution, whereas the
RBF-approach yields a more finely resolved picture.

Figure 11. Comparison of (bottom) triangulation result for torsion and (top) RBF (IMQ + Mon)

showing principal maximum Green strain ε
(2)
max (the specimen’s region is projected onto the (Y/Z)-

plane and rotated by 90° to reduce the figure size).

Apart from the more methodical examination, the notches (transitions of the welding
bead stacks) on the inside of the tube can be observed on the externally smooth specimen,
as higher strain values occur there. Thus, plastification and failure will occur in these
regions. If a deformation of pure torsion were to be assumed according to Equation (34) for
λ = 1, R = 27.2 mm, and D = θ/L0 with ϑ = 15° (transformed in radian) and L0 = 82 mm,
a maximum principal Green strain ε

(2)
max ≈ 0.045 would be obtained. This is not achieved in

the thicker parts of the specimen’s wall, but the measured strains are larger in the thinner
parts. Thus, a localization of the deformation occurs.

As discussed previously, the number of pixels to build up a facet has an influence
on the geometry, see Figure 10. Further, the influence is transferred to the strain analysis
as well. In the previous (and all other) investigation, we chose 9 px to form the facets
and 6 px for the point distance, to ensure high resolution of the geometry, see Figure 10
(left). If one takes a facet size of 19 px and a point distance of 15 px, both the geometry,
Figure 10 (right), and the resulting maximum principal strain distribution ε

(2)
max are more

smeared, see Figure 12.

Figure 12. Maximum principal strain distribution ε
(2)
max using a facet size of 19 px with a point

distance of 15 px (IMQ + Mon).

This figure represents a comparison to Figure 11 (top). Consequently, the facet size
has also a significant influence on the strain analysis. In the following, only evaluations
using a 9 px facet size are investigated.

3.2.2. Rough Versus Smooth Surface Properties

In the next study, the tensile problem for a displacement of the testing machine’s
traverse of 1.49 mm is looked at. Figure 13 (left) shows the maximum principal in-plane
surface Green strains ε

(2)
max of the rough specimen and the results for the smooth outer
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surface specimen (right). The larger strains occur in the notches so that the strains obtained
in the regions of the welding bead stacks are smaller than for the machined specimen with
the smooth outer surface. This is clear since the regions of the welding bead stacks are the
stiffest areas in the specimen.

Figure 13. Comparison of rough and smooth (machined off) outer surface for tension (IMQ + Mon)

showing principal maximum Green strain ε
(2)
max.

A similar behavior can be observed for torsion. Here, we took a torsional angle of
ϑ = 4.32°, see Figure 14.

Figure 14. Comparison of rough (top) and smooth (machined off; (bottom)) outer surface for torsion
(IMQ + Mon) showing principal maximum Green strain.

Even here, the maximum principal strains ε
(2)
max are within the transition of the welding

bead stacks. Since this torsional angle is much smaller than in the previous study, it becomes
obvious that the influence of the rough surface increases significantly at higher load levels.

3.2.3. Smoothing Data

The final issue we would like to address is the application of the linear least-square
procedure, see Equation (27). The linear system (27) is solved using a singular value
decomposition scheme to circumvent the ill-conditioned coefficient matrices in some of
the computations.

Here, it is assumed that the number of center (evaluation) points ncp is not identical to
the number of data points nD of the DIC-system. Again, the IMQ-method with monomials
is used (cIMQ = 0.3 mm). The number of data points is nD = 66,013 for the tensile problem
with a smooth outer surface, resulting from the chosen facet size. Center points are gen-
erated for the first calculation, making sure that the number of center points corresponds
to approximately 50% of the number of data points, i.e., 98 in circumferential and 335 in
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longitudinal direction (ncp = 32,830). In a second calculation, we use only (approximately)
a number of center points, which is around 25% of the number of data points (69 points
in circumferential and 236 points in longitudinal direction, ncp = 16,284). The number
of data points remains the same. We expect a smoothing of the strains. In Figure 15,
four evaluations of the maximum principal strains ε

(2)
max are compiled, where the RBFs are

evaluated for the plotting routine at the data points (Figure 15 (top right) is equivalent
to Figure 13 (right)). For comparative purposes, we start off with compiling the classical
triangulation concept (top left figure), followed by the IMQ + Mon-approach (nD = ncp;
top right). Again, the RBF-approach resolves finer the strains, when the data points are
equivalent to the center points. The bottom left figure shows the result of the strains from
the computation with 50% center points. Obviously, the strains become more homoge-
neously distributed (blue regions) due to the regression property of using less center points,
i.e., RBFs, than data points. This behavior increases significantly with the calculation using
the 25% center point computation. For future investigations, it must be asked whether
error-controlled, adaptive schemes yield an optimized number of center points.

triangulation RBF interpolation

RBF, 50% center points RBF, 25% center points

Figure 15. Principal maximum strain behavior ε
(2)
max of smoothing data for tension of smooth surface

sample, see Figure 13 (right) using the linear least-square approach (27). (top left) Classical triangula-
tion concept, (top right) IMQ + Mon, i.e., center points equal data points, (bottom left) IMQ + Mon +
LLS 50% center points, (bottom right) IMQ + Mon + LLS 25% center points.

Remark 2. If one considers the displacements horizontally and in the viewing direction of the
reader (X-direction see Figure 10), which is not shown here for reasons of brevity, it turns out that
the specimens are not optimally aligned. In other words, they are bent and twisted if tension (or
compression) is applied. This does not have very much influence when twisting the specimens by
pure torsion, when comparing the order of magnitude to the analytical results in Section 3.1.1,
but it does if they are drawn or pressed. Both the machine stiffness and the misalignment have a
significant influence on the strain distribution—as well as curved specimens and ones that are not
exactly aligned. Overall, this affects the magnitude of the strains, which are larger than the expected
strains on the view side. The specimen elongation is approximately 0.1 mm after subtracting the
rigid body motion (resulting from the testing machine’s stiffness). Therefore, special care must be
taken when fabricating specimens for the purpose of identifying their material properties. They
should turn out as flawless as possible. Thus, the interpretation and evaluation of DIC-results will
be a very challenging task in additive manufacturing.
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3.2.4. Principal Directions

Usually, only the maximum or minimum principal strains are provided. The associated
principal strain directions are not recognizable. For the example of the simple tensile
test of the externally twisted specimens from Figures 13 (right) and 15, this is shown in
Figure 16 (left).
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Figure 16. Distribution of principal strain directions associated to the maximum principal strain.
The bounding box shows the projected region of the DIC-data: (left) 9 px facet size, (right) 19 px
facet size.

There, a facet size of 9 px (projected onto the (Y/Z)-plane) is chosen. It can be seen
that the orientations have seemingly no preferred direction. If the facet size is increased to
19 px, Figure 16 (right), the orientations slightly rotate in load direction.

An analogous behavior can also be observed in the commercial program ARAMIS.
However, there is no precise indication of how these directions are calculated. Furthermore,
by using the RBF approach, the evaluation of all geometric information can be completed
at arbitrary points—which is presented in Figure 16.

For future investigations, it is still an open question what information is obtained in
the case of strongly inhomogeneous deformations and how it is to be interpreted.

3.3. Discussion

It turns out that Wendland and inverse multi-quadrics radial basis functions are
appropriate to determine the strains (or stretches) in the surface of curvilinear material
bodies. This totally new global interpolation approach to evaluate DIC-data for strain
analysis has the advantage that the accuracy can be increased—in comparison to local strain
determination approaches—as shown using analytical verification examples concerning
the deformation of smooth and non-smooth curvilinear surfaces. For future applications,
the Wendland function might be an interesting ansatz, since it yields sparse matrices which
are required to reduce the computational costs for a larger number of points. Even more, a
concept is provided, see Appendix A, on how to adapt the shape factor of the RBFs to the
point distances of the DIC-patterns.

However, there are also some disadvantages which have to be treated very carefully.
In the investigations of the real samples for curvilinear surfaces, there might be non-
unique mappings between the surface coordinates (Θ1, Θ2) = (Y, Z) and the real surface
description. This is caused by scattered data and by boundary points that are very close
to each other in the mapped data (this might result in singular covariant metric matrices).
This can be circumvented using other surface parameters, for example (Θ1, Θ2) = (Φ, Z)
in the case of our applications. Furthermore, the so-called boundary effect—i.e., weakly
oscillating courses at the boundary of the region under consideration—imply a stronger
deviation of the gradients. However, the gradients have a direct impact on the strain
determination. One possibility to circumvent this problem is to cut off the edge region after
the interpolation step. For the Wendland function, where a particular radius in the RBF is
given, the multiple of the radius can be chosen. For smaller point distances, this concept
of choosing the multiple of some geometrical measure seems to be sufficient, although
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it is a non-objective choice. This approach, however, is difficult to use for the inverse
multi-quadrics function, since this type of function has a longer distance of influence. An
alternative approach might be to extrapolate the data of the boundary region, to interpolate
all data (real data and the generated synthetic data), and to show only the original region.
However, both approaches require detailed investigations.

Instead of the interpolation concept (center points equal data points), a regression
approach is possible. This allows to reduce the resulting system of linear equations and to
smooth the strain distribution, which raises the question whether adaptive schemes are
suitable to automatically determine the center points.

With regard to the interpretation of the results for additively manufactured compo-
nents, where the surface has a higher roughness, it should be noted that special care has to
be taken regarding accuracy—for all strain calculation tools—especially if there are small
notches in the specimen’s surface due to the production process. This is particularly the
case for products manufactured by WAAM processes. Furthermore, the small notches have
an essential influence on the strain distribution in the components.

Apart from this, we observed that the produced specimens show misalignments due
to the difficult manufacturing process. This leads to additional shear and twist deformation
modes, which essentially have significant influence on the magnitude of the expected
strains. In this context, the deviation of the principal strain orientation between loading
direction and the axial axis is different so that it is hard to compare it to some global strain
measure. Thus, there are still open questions to be treated in the future in the application
field of DIC—both for additive manufacturing, as well as for efforts to improve strain
evaluation tools.
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Appendix A. Properties of Radial Basis Functions

The chosen RBFs of Table 1 have a similar course for the Gaussian and the Wendland
function for cG/R0 = 1.8 and R0 = 1.5, see Figure A1.
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Figure A1. (left) Comparison of the three RBFs chosen so that similar curves result, (right) similarity
estimation to obtain shape parameter in dependence of the point distance ∆d.

The main difference is that the Gaussian m̂(ρ) is non-zero for ρ > R0. Thus, the
Wendland function is appropriate for formulating sparse matrices A and particular solvers
concerned for Equations (23), (25) and (27), and optimized matrix–matrix, as well as matrix–
vector products in Equation (27), the study of which is not the subject of this article. The
IMQ, on the other hand, behaves different since it takes longer to converge to zero.

We are interested in obtaining shape parameters cIMQ := cI R0 of the inverse multi-
quadrics approach depending on the point distance ∆d. We re-write m̂I(ρ) using ρ = r/R0,

m̂I(ρ) =
cI√

ρ2 + c2
I

=
cI R0√

r2 + (cI R0)2
=

cIMQ√
r2 + c2

IMQ

. (A1)

In Figure 3 (right), β I = 10cIMQ is chosen as a normalized shape parameter (so that the
diagram obtained a reasonable axis). From that figure, β I = 5 seems to yield good results
(with regard to the condition number and the achievable accuracy), c(1)IMQ = 5/10 = 0.5 for
∆d = 0.25. This leads to a value of the RBF at r = ∆d

B :=
c(1)IMQ√

∆d2 + c(1)IMQ

2
=

0.5√
0.252 + 0.52

=
2√
5

. (A2)

For another arbitrary point distance ∆d, it is assumed that the function

m(∆d) =
cIMQ√

∆d2 + c2
IMQ

= B (A3)

has the same value, see Figure A1 (right). From Equation (A3)

ĉIMQ(∆d) =
B√

1− B2
∆d (A4)

is calculated. In the case discussed here, ĉIMQ(∆d) = 2∆d is obtained, see Equation (A2).
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