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Abstract: A method of modal parameter identification of structures using reconstructed displace-
ments was proposed in the present research. The proposed method was developed based on the
stochastic subspace identification (SSI) approach and used reconstructed displacements of measured
accelerations as inputs. These reconstructed displacements suppressed the high-frequency com-
ponent of measured acceleration data. Therefore, in comparison to the acceleration-based modal
analysis, the operational modal analysis obtained more reliable and stable identification parameters
from displacements regardless of the model order. However, due to the difficulty of displacement
measurement, different types of noise interferences occurred when an acceleration sensor was used,
causing a trend term drift error in the integral displacement. A moving average low-frequency
attenuation frequency-domain integral was used to reconstruct displacements, and the moving time
window was used in combination with the SSI method to identify the structural modal parameters.
First, measured accelerations were used to estimate displacements. Due to the interference of noise
and the influence of initial conditions, the integral displacement inevitably had a drift term. The
moving average method was then used in combination with a filter to effectively eliminate the
random fluctuation interference in measurement data and reduce the influence of random errors.
Real displacement results of a structure were obtained through multiple smoothing, filtering, and
integration. Finally, using reconstructed displacements as inputs, the improved SSI method was
employed to identify the modal parameters of the structure.

Keywords: displacement reconstruction; frequency domain integration; low-frequency attenuation;
modal analysis; modal parameter identification; stochastic subspace identification

1. Introduction

Modal analysis is an experimental method used for structural parameter identification
(natural frequency, damping ratio, mode shape). This method is used in vibration response
calculations, the root cause analysis of vibration problems, damage detection, and virtual-
acoustic simulations. In addition, it is also used for adding flexibility to multibody analyses
and speeding up structural durability. Therefore, modal analysis is very effective for the
evaluation of structural changes to any types of responses [1,2].

The conventional modal analysis or the experimental modal analysis (EMA) requires
a known excitation force on a system to obtain structural vibration response data, processes
input and output signals to obtain the frequency response function, and finally, calculate
modal parameters of the system by curve fitting [3]. This algorithm can better identify
modal parameters of a system depending on its adaptability to the test environment;
thus, it cannot be used under operating conditions. However, it is important to develop
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a method for the real-time and in situ acquisition of the state information of structures
and the evaluation of their safety and residual life. In contrast, in the operational modal
analysis (OMA), modal parameters of a structure are obtained only by measuring its
output responses [4,5]. Orlowitz et al. [6] found no significant difference between the
modal parameters of a Plexiglas plate obtained by OMA and EMA under similar boundary
conditions.

Stochastic subspace identification (SSI), which was developed by Van Overschee and
De Moor in 1991, is a powerful time-domain output-only modal parameter identification
method [7–11]. SSI-based methods are less susceptible to prediction errors and computa-
tional efficiency [12]. Hence, continuous efforts have been made to improve the efficiency of
SSI. Priori et al. [13] studied the identification of user-defined parameters in a pure output,
data-driven random subspace through the asymmetric partition of the Hankel matrix.
Wen et al. [14] proposed a sliding window-fuzzy C-means clustering algorithm in combina-
tion with deterministic-stochastic subspace identification (SC-CDSI), and reported that the
proposed SC-CDSI identification algorithm could achieve the intelligent identification of
online tracking of structural frequencies. Zhou et al. [15] improved the accuracy of modal
parameter identification to determine the system matrix order of a damping ratio matrix.
Gres et al. [16] estimated periodic information from measured data using a non-steady-state
Kalman filter, and then removed the periodic information from the original output signal
by an orthogonal projection. Tran et al. [17] proposed the combined use of different modal
parameter identification methods, such as frequency domain decomposition, observer
Kalman filter identification algorithm, and combined deterministic SSI.

Dynamic displacement-based modal parameter identification methods are more use-
ful than acceleration-based modal parameter identification methods, especially for low-
frequency structures [18–20]. However, acceleration-based modal parameter identification
methods are widely used because of difficulties in displacement measurement and the
appearance of the trend term interference in acceleration integration [21].

Therefore, it is still a key problem to reduce the interference of the trend term drift
error and low-frequency noise errors in acceleration integration. Lee et al. [22] presented a
displacement reconstruction method for low-frequency structures and introduced overlap-
ping time windows to improve the reconstruction displacement accuracy and suppress
low-frequency noises. However, when the target frequency was relatively low, it easily
oscillated in the frequency domain. Hong et al. [23] used two finite impulse response (FIR)
filters to reconstruct dynamic displacements. The accuracy of the proposed filter was inves-
tigated in detail using the transfer functions of the discrete filter for different displacement
sampling rates and target accuracy. The results show that it was difficult to control the
influence of low-frequency noise on the integration accuracy. Park et al. [24] used FEM-FIR
filter de-noising to estimate the temporal and spatial derivatives of displacements in an
elastic solid and the integral displacement for system identification. Brandt et al. [25]
proposed a low-frequency cut-off algorithm to reconstruct displacements from measured
accelerations and obtained the time-domain waveform of displacements according to the
relationship between acceleration and displacement spectra.

In the present work, an improved strategy-based SSI method was proposed to identify
the structural modal parameters using reconstructed displacements. The proposed strategy
consisted of three steps. In the first step, displacements were estimated from measured
accelerations. Due to the interference of noise and the influence of initial conditions,
the integral displacement inevitably had a drift term. In the second step, the moving
average method was employed to effectively eliminate random fluctuation interferences in
measured data and reduce the influence of random errors. Real displacement results of a
structure were obtained through multiple smoothing, filtering, and integration. Finally,
the modal parameters of the structure were identified by the proposed SSI method using
reconstructed displacements as input. The developed displacement-based SSI method is
more stable and accurate for low-frequency-dominated structures.
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2. Displacement Reconstruction Using Measured Acceleration Data
2.1. Mathematic Model for Acceleration Measurement

Interference terms, such as random interferences and direct current (DC) components,
generally exist in tested acceleration signals. Random interferences vary with time, and DC
components are the drifts of an accelerometer relative to the baseline under the influence
of environmental factors [26]. Therefore, the measured acceleration can be expressed as:

a(t) = as(t) + an(t) + C (1)

where as(t) is the structural information of the measured acceleration, an(t) is the random
interference part of the measured acceleration, and C is the DC component of the measured
acceleration.

The structural displacement signal can be obtained by the quadratic integration of the
measured acceleration under the influence of the initial velocity and displacement:

x(t) =
∫

v(t) + x(0) =
x

as(t)dtdt +
x

an(t)dtdt +
1
2

Ct2 + λt + v(0)t + η + x(0) (2)

where v(0)t is the first integral of the initial velocity, x(0) is the initial displacement, 1
2 Ct2 is

the integral term of DC components, and λ and η are constant terms of the first and second
integrals, respectively.

The obtained displacement can be divided into three parts:

x̃(t) =
x

as(t)dtdt, x̂(t) =
x

an(t)dtdt, α(t) =
1
2

Ct2 + λt + v(0)t + η + x(0) (3)

where the first part represents the real displacement of the structure, and the second part
represents the influence of environmental noise and measurement, which is small in the
practical tests and can be removed by multiple smoothing and filtering. The third part rep-
resents the combined influence of DC components, initial conditions, and integral constant
terms (it can be removed by subtracting the average value and fitting the polynomial by
the least square method). Therefore, the main goal of the following analysis is the removal
of the second and third parts of Equation (3).

2.2. Elimination of Trend Items and De-Noising

The least square method of polynomial fitting is most commonly used to eliminate the
interference of trend terms [19]. In this work, a moving average method of least squares
was used in combination with a filter to eliminate the interference of random fluctuations
in measured data; thus, the influence of random errors was reduced, and real displacement
results of the structure were obtained.

First, based on the moving average method of least squares, a polynomial function of
degree m was obtained [15]:

Y(t) = a0 + a1t + a2t2 + · · ·+ amtm (4)

The original data with the minimum mean square error were obtained by the data
smoothing approach:

A(a0, a1, · · · , am) =
u

∑
i=−u

[
m

∑
j=0

ajt
j
i −Yi]

2

(5)

where u is the sliding order and m is the smoothing number. In order to determine
undetermined coefficients and minimize the error sum of squares between the function
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Y(t) and discrete data, the partial derivative of ak(k = 0, 1, . . . , m) in Equation (5) was
considered to be zero. Hence, the linear equations of element m + 1 were obtained as:

u

∑
i=−u

Yitk
i =

m

∑
j=0

aj

u

∑
i=−u

tk+j
i (6)

In Figure 1a, a standard sinusoidal superposition signal with 0.8 octaves of random
noises and the drift term is displayed, and Figure 1b presents data processed by the
moving average method. It is noticeable that random noises and trend terms could be
simultaneously removed. Therefore, the moving average method was applied to remove
the interference of noise in the following analysis.
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Figure 1. Comparison of noise-added signal and de-noising signals: (a) noise-added signal and (b) de-trending term and
de-noising signal.

2.3. Digital Filtering and Frequency Domain Integration

The moving average method can effectively eliminate random fluctuations induced
by high-frequency interferences through multiple corrections. In this work, a high-pass
filter with low-frequency attenuation was applied to remove trend terms induced by low-
frequency noises. The actual sampling signal can be expressed by the algorithm of Fourier
transformation in the frequency domain:

X(k) =
1
N

N−1

∑
r=0

x(r)e−j2πk r
N (7)

where N is the number of sampled data, x(r) is the sampling sequence signal of N points,
and x(k) is the discrete spectrum.

The frequency spectrum of the fast Fourier transform (FFT) of the acceleration se-
quence can be expressed as [21]:

a(k) =
2
N

N−1

∑
r=0

a(r)e−j2πk r
N = ak + bk j (8)

where a(r) is the acceleration sequence with N number of sampled data and a(k) is the
complex sequence of a(r) in the frequency domain after Fourier transformation. Further,
a(k) can be represented as:

a(k) = Ak cos(2π fkt + ϕk) (9)

where Ak =
√

a2
k + b2

k , ϕk = arctan bk
ak

, and fk is the frequency corresponding to a(k).
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The structural displacement in the time domain can be cumulatively expressed as:

s(t) =
N

∑
k=1

s(k) =
N

∑
k=1

Ak

ω2
k

cos(2π fkt + ϕk − π) =
N

∑
k=1

χ cos(2π fkt + ϕk − π) (10)

In order to eliminate low-frequency trend interferences, the low-frequency attenuation
method, which could retain components near the target frequency to the maximum extent,
was applied. Therefore, the displacement in the frequency domain can be calculated as [21]:

s(t) = −F−1
[

ω2

ω4 + δ
F(a(t))

]
(11)

where δ is the regularization coefficient to control the trend term error of the measured
acceleration:

δ =
1− α

α
(2π ft)

4 (12)

where α is the target accuracy coefficient and ft is the target frequency.
The low-frequency attenuation algorithm was applied by setting a high-pass filter

with a target frequency. The amplitude–frequency response characteristics of a filter with
a target frequency of 2 Hz are presented in Figure 2. It is noticeable that the amplitude
of the transfer function approaches 1 in the high-frequency band and is equal to 0 in the
low-frequency band. Therefore, this high-pass filter could effectively retain information
near the target frequency and attenuate low-frequency information simultaneously. In this
work, the analysis target precision coefficient was set to 0.95 to ensure better integration
precision in the small target frequency. Meanwhile, the choice of target frequency is difficult
for the low-frequency attenuation algorithm. The target frequency is affected by the level
of low-frequency noises, and an appropriate value should be selected to eliminate the trend
term error and drift error. In this paper, the value of the target frequency is selected to be
1 Hz, where good integration accuracies can be obtained in engineering applications.
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Figure 2. Frequency characteristics of the low-frequency attenuation filter.

3. Modal Parameter Identification

Modal parameter identification is an essential step in structural dynamic characteristic
identification. In this work, reconstructed displacements are used as inputs for parameter
identification. The SSI approach was applied to identify modal parameters by state space
matrices based on the singular vector decomposition (SVD) of the Hankel matrix.
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3.1. State Space Model of Structural Vibration

The first-order state space expression for motion of a discrete system with stochastic
noise and errors can be represented as:{

xk+1 = Axk + wk
yk = Cxk + vk

(13)

where xk = x(kt) ∈ R2n is the discrete state, A = exp(Ac∆t) ∈ R2n×2n is the state matrix
under discrete time conditions, C ∈ Rp×2n is the output matrix, wk is the noise induced by
environmental interference and modeling inaccuracy, and vk is the measured error.

Moreover,

x(t) =
(

q(t)
.
q(t)

)
, Ac =

(
0 In

−M−1K −M−1C

)
, Bc =

(
0

M−1B2

)
(14)

where Ac ∈ R2n×2n is the state matrix, Bc ∈ R2n is the input matrix, x(t) ∈ R2n is the state
vector, M, C, K ∈ Rn×n are the mass, damping, and stiffness matrices respectively, q(t) is
the displacement vector, and B2 is the description input location matrix.

The two different types of noise signals in Equation (13) are zero mean white noises
and have a covariance matrix of:

E
[(

wr
vr

)(
wT

s vT
s
)]

=

[
Q S
ST R

]
δrs (15)

where E is the mathematical expectation, Q, R, S are the covariance matrices for noise
sequence wk, vk, and δrs is the Kronecker delta.

3.2. Identification of the Hankel Matrix

In this section, the solutions of the state matrix A and the output matrix C are calculated.
As the Hankel matrix of a vibrating structure includes modal information, the output state
space model was constructed, and the Hankel matrix was obtained from displacement
data [27]:

H0/2i−1 =
1√

j



y0 y1 . . . yj−1
y1 y2 . . . yj
. . . . . . . . . . . .

yi−1 yi . . . yi+j−2
yi yi+1 . . . yi+j−1

yi+1 yi+2 . . . yi+j
. . . . . . . . . . . .

y2i−1 y2i . . . y2i+j+1


=

χ√
j



a0 a1 . . . aj−1
a1 a2 . . . aj
. . . . . . . . . . . .

ai−1 ai . . . ai+j−2
ai ai+1 . . . ai+j−1

ai+1 ai+2 . . . ai+j
. . . . . . . . . . . .

a2i−1 a2i . . . a2i+j+1


=

(
Y0/i−1

Yi/2i−1

)
=

(
Yp

Yf

)
(16)

This Hankel matrix has 2i rows and j columns. In Equation (16), yk is the displacement
vector, ak is the acceleration vector, χ is the acceleration integral displacement coefficient,
and Yp ∈ Ri×j, Yf ∈ Ri×j represent the output matrices’ ‘past’ and ‘future’, respectively.

Now, operating the two matrices in Equation (16), the block Toeplitz matrix composed
of the output covariance matrix can be expressed as:

T1/i = Yf YT
p =


CAi−1 CAi−2G . . . CG
CAiG CAi−1G . . . CAG

. . . . . . . . . . . .
CA2i−2G CA2i−3G . . . CAi−1G

 =


C

CA
CA2

. . .
CAi−1

[ Ai−1 Ai−2G . . . AG G
]
= Oi∆i (17)

where Oi and ∆i are the extended observability matrix and the controllability matrix,
respectively.
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Further, the singular vector decomposition of Equation (17) leads to:

T1/i = USVT =
(

U1 U2
)( S1 0

0 0

)(
VT

1
VT

2

)
= UT

1 S1VT
1 (18)

where U and V are orthogonal matrices and S is a diagonal matrix composed of
singular values.

Hence, the observability matrix and the state sequence can be expressed as:

Oi = U1S1/2
1 (19)

∆i = S1/2
1 VT

1 (20)

Therefore, the modal parameters of the system can be analyzed by calculating the
state matrix A and the output matrix C based on the matrices Oi and ∆i.

3.3. Extraction and Selection of Modes

Eigenvalue decomposition was then performed on the state matrix A of the system [28]:

A = ψΛψ−1 (21)

where Λ= diag(λi), λi is the eigenvalue of the discrete-time system, and Ψ is the eigenvec-
tor matrix of the system.

According to the relationship between the eigenvalues of the discrete-time system and
the continuous system, mode frequencies, damping ratios, and strain modal shapes can be
obtained as:

f =

√
real(λb

i ) + imag(λb
i )

2π
(22)

ξ =
−real(λb

i )√
real(λb

i ) + imag(λb
i )

(23)

φ = Cψ (24)

where λb
i = ln λi

∆t , λb
i is the eigenvalue of the continuous system, ∆t is the time interval, and

f, ξ, and φ are the mode frequency, the damping ratios, and the modal shape, respectively.

3.4. Improved Stochastic Subspace Identification Algorithm

As the signal length affects the recognition accuracy and operation efficiency of SSI,
it is important to control the signal length. In this work, an improved method of modal
parameter identification is presented by adding a sliding window in the calculation of
modal parameters. Generally, the window size determines the accuracy of recognition.
If the window is too small, modals do not appear. On the contrary, if the window is
large, the calculation process becomes complex and more error modals appear in the
stability diagram. Therefore, both the window size and the step size are set through sliding
windows to realize modal parameter identification with high efficiency (Figure 3).

Generally, the characteristics of the tested structure, the sampling frequency, and
the noise level for the chosen size of the calculated window should be comprehensively
considered. Here, specific analysis steps are applied to contain these factors based on the
order determination of the stability diagram:

(1) Assume that the initial window time is t1, the sampling frequency is sf, and the initial
window length is L1 = s f × t1.

(2) Let the lag time, ∆t, between previous and later windows and the data length corre-
spond to the ith window, as Li = [t1 + (i− 1)× ∆t]× s f .
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(3) Identify the corresponding stability diagrams of each window by the SSI algorithm.
If the system order is N, the maximum number of stable points will be the same
corresponding to each mode. The related number of stable points for the first three
modes are f1, f2, and f3, and the percentages, GFi = fi/N, of these modes can be
obtained.

(4) Change the value of GFi with the signal length. When the percentage exceeds 90%,
the corresponding window time is supposed to be the appropriate one, otherwise the
window time will be increased.
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4. Numerical Simulation

In order to verify the accuracy of the acceleration integral displacement and displacement-
based modal parameter identification, an ideal acceleration sequence composed of three
harmonic signals was constructed and the difference between theoretical and integral
displacement was analyzed. Further, the singular values of the Hankel matrix constructed
from acceleration and displacement data were compared. Finally, a 3-DOF system was
used to numerically compare the difference between acceleration-based and reconstructed
displacement-based modal parameter identification.

4.1. Synthesized Ideal Discrete Acceleration

Consider a composite-simulated sinusoidal signal that includes the frequencies of
10, 15, and 20 Hz with the corresponding acceleration amplitudes of 10, 20, and 30 g,
respectively. The acceleration signal can be expressed as:

a(t) = 10 sin(20πt) + 20 sin(30πt) + 30 sin(40πt) (25)

Now, taking the sampling frequency of the above signal sequence as 1000 Hz, the
theoretical displacement signal can be obtained as:

x(t) = − 10

(20π)2 sin(20πt)− 20

(30π)2 sin(30πt)− 30

(40π)2 sin(40πt) (26)

Figure 4 presents the effects of the improved algorithm on the integral displacement.
Figure 4a depicts the difference between integral and standard displacements. The error
was large at 0.2 s due to the uncertainty of the initial value and the truncation error, and it
fitted well after 0.2 s. Displacements at 1.175–1.195 s are locally amplified in Figure 4b, and
it is noticeable that these displacement signals had the same frequency and waveform, with
slightly different amplitudes. The frequency spectrum shown in Figure 4c was obtained by
performing FFT transformation on theoretical and reconstructed displacement signals. It is
evident that theoretical and reconstructed displacement signals had the same frequency
spectrum components, which included three main frequency components of 10, 15, and
20 Hz. However, the effect of interference on signal amplitude existed under 10 Hz.

Next, the integral error evaluation index was applied to calculate the error between
integral and standard displacements (Figure 4a) [29]:

Err =
|d(ti)− y(ti)|

range(d)
(27)
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where d(ti) and y(ti) are the standard and integral displacements at time ti respectively,
and range(d) is the range of the standard displacement in the whole period and represents
the difference between the maximum and minimum standard displacements.

The error diagram of reconstructed and locally amplified displacement signals in the
interval of 1–1.5 s is exhibited in Figure 4d. The error between reconstructed and locally
amplified displacement signals was large at 0.2 s and then dropped fast to 0.02, proving
the validity of the improved algorithm. The value of the error is related to the selection of
target frequency and the precision coefficient, and the maximum value of error is shown
in Table 1 by changing these two parameters. It was found that the better precision was
obtained until 1 Hz.
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Figure 4. (a) Comparison between theoretical and reconstructed displacements, (b) locally amplified displacement signals
at 1.175–1.195 s, (c) spectrum comparison between theoretical and reconstructed displacements, and (d) error diagram of
reconstructed and locally amplified displacement signals in the interval of 1–1.5 s.

Table 1. The maximum value of error after 0.5 s by changing the target frequency and target precision
coefficient.

Maximum Error
Frequency

0.2 Hz 0.5 Hz 1 Hz 4 Hz 8 Hz

Precision
Coefficient

0.92 0.059 0.025 0.013 0.016 0.015
0.95 0.054 0.023 0.012 0.015 0.016
0.98 0.047 0.021 0.011 0.017 0.020

Generally, singular values of a matrix possess some important hidden information.
Hankel matrices consisting of acceleration and displacement data were analyzed to verify
the high recognition ability of the improved algorithm. First, 3000 data points were
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selected, and 1500 × 1500 Hankel matrices were constructed. The singular values and
ranks of different Hankel matrices were obtained and normalized [19]. The 30th-order
normalized singular value curves are displayed in Figure 5, where the blue and red curves
present the results obtained based on displacement and acceleration data, respectively. The
sudden drops in values of the curves correspond to the modal order of the system. It is
noticeable that the curve obtained based on displacement data decreased faster than the one
obtained based on acceleration data, indicating an easy identification of modal parameters.
Moreover, as the displacement curve was closer to the horizontal line, its de-noising effect
was better than that of the acceleration curve. Therefore, the Hankel matrix constructed by
displacement data was more effective to identify low-frequency modes.
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4.2. 3-DOF Mass-Damping-Spring System

In order to verify the accuracy of the improved SSI method, a spring oscillator system
with three-degrees-of-freedom (DOF) was considered [30] (Figure 6). The parameters of the
3-DOF system were m1 = 7 kg, m2 = 10 kg, m3 = 10 kg, k1 = 1000 N/m, k2 = 2000 N/m, and
k3 = 100 N/m. The mass matrix, M, and stiffness matrix, K, of the system were calculated,
and the damping matrix was determined based on the Rayleigh damping assumption of
C = aM + bK.
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The difference between the conventional SSI method and the improved SSI method
with reconstructed displacements was numerically simulated by the 3-DOF system. The
coefficients of the damping ratio were a = 0.005 and b = 0.002. The natural frequencies
of the first three orders of the system were obtained as ω1 = 0.46 Hz, ω2 = 1.21 Hz,
and ω3 = 3.84 Hz, with the corresponding damping ratios of ξ1 = 0.59%, ξ2 = 0.33%, and
ξ3 = 0.45%, respectively. Gaussian white noises with a power of 60 dBW were then applied
as the excitation, which was generated by the WGN function in Matlab. Figure 7 presents
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the time histories of the incentive force and its power spectral density. The acceleration
and displacement data of the 3-DOF system were obtained by the Newmark-β method and
used as input signals.

Figures 8 and 9 present the time domain and power spectral density (PSD) of calculated
accelerations and reconstructed displacements for the time interval of ∆t = 0.01 s and the
point number of N = 5000. It is noticeable that reconstructed displacements had more
low-order modes, whereas accelerations were more affected by high-order modes.
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Figure 7. (a) Time history and (b) PSD of the excitation force.
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Figure 8. (a) Time history and (b) PSD of calculated accelerations.
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Figure 9. (a) Time history and (b) PSD of reconstructed displacements.
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The modal parameters of the system were identified by calculated accelerations and
reconstructed displacements. The frequencies, modals, and damping ratios of the system
were identified by its stability diagrams. The x- and y-axes of the stability diagrams shown
in Figure 10 represent the frequencies and mode orders of the system, respectively. When
the difference between the characteristics of high and low orders was within a certain
tolerance range, a stable mode appeared. The tolerances for the frequency, the damping
ratio, and the modal shape were set to 1%, 5%, and 5% respectively, and the number of
Hankel matrices was c × (n − c + 1), where c = 500 and n is the data length, and the order
of the state space model ranged from 2 to 50. Moreover, the appropriate window size was
10 s and the corresponding sliding step was 5 s to satisfy 50% duplication of time-domain
signals between adjacent windows.

Figure 10 displays the stability diagrams of modal frequencies based on calculated
accelerations and reconstructed displacements, where the blue ‘#’ marks represent the
poles of frequency stability, the red ‘4’ marks represent the poles of frequency stability and
damping ratio stability, and the black ‘+’ marks represent the poles of frequency stability,
damping ratio stability, and vibration mode stability.

It is noticeable that the first three modes were accurately identified by reconstructed
displacements when the modal order was no more than five. On the contrary, the first-order
model was identified by calculated accelerations when the modal order was close to 40,
causing a loss of modes. Therefore, displacement-based modal parameter identification
had better stability for low-frequency modals.

Figure 11 presents the variations of the frequency and damping ratio of the system
identified by displacement signals in different periods (the first and second orders cor-
responded to 0–10 and 5–15 s, respectively), where the dashed lines represent the real
frequency and damping ratio, and the circles, the boxes, and the triangles represent the fre-
quency and damping of modal parameter identification using reconstructed displacements
at different periods. It is clear that the accuracy of modal frequency identification was high,
and the first three modes were accurately identified.

However, due to the high sensitivity of the damping ratio to noises, the accuracy of
modal frequency identification was higher than that of modal damping ratio identification
regardless of acceleration or displacement; hence, the damping ratio was larger than the
estimated error due to the influence of inherent random errors. Although some fluctuations
were noticed in the damping ratio of the third mode obtained by the proposed method,
the results of the first two modes had good consistency, indicating the consistency and
robustness of displacement-based modal parameter identification.
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Figure 10. (a) Stability diagram based on calculated accelerations (time: 0–10 s). (b) Stability diagram
based on reconstructed displacements (time: 0–10 s). (c) Stability diagram based on reconstructed
displacements (time: 5–15 s).
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Figure 11. (a) Frequencies and (b) damping ratios estimated by different time-domain signals.

5. Experimental Verification

In this section, a dynamic experiment of a cantilever plate was performed to verify the
accuracy of the proposed algorithm. In this experiment, the acceleration of the plate under
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a transverse force was measured, and the performance of modal parameter identification
was judged by the developed strategy. Finally, the responses and modals obtained by
reconstructed displacements were compared with tested data.

5.1. Experimental Setup

A carbon fiber-reinforced composite cantilever plate of 540 × 180 × 1.5 mm in size
was used, and its physical parameters are presented in Table 2.

Table 2. Properties of the carbon fiber-reinforced composite plate.

Carbon Fiber Composite

Young’s modulus (GPa) Ex Ey Ez
47.45 60.3 3.9

Shear modulus (GPa)
Gxy Gyz Gxz
72.9 1.5 62.35

Poisson’s ratio
νxy νyz νxz
0.3 0.4 0.3

Density (Kg/m3) 1800

The experimental platform and process are presented in Figure 12a,b, respectively.
The input signal of the system was generated by an Agilent 33220A signal generator (1)
and amplified by a YE5872 power amplifier (2) as the input signal of an electric shaker (3).
The carbon fiber-reinforced composite cantilever plate (4) was fixed on the shaker by a
specially designed fixture (5). The signal acquisition system consisted of a PCB M352C65
ceramic shear ICP accelerometer (6), an acceleration signal acquisition system (7), and a
computer (8). The accelerometer was fixed on the cantilever plate to measure the acceler-
ation of the plate. The modal frequency and damping ratio of the cantilever plate were
identified by two sensors—one was set at the free end (acc1) and the other was placed in
the middle of the cantilever plate (acc2).
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5.2. Reconstructed Displacements Calculated from Accelerations

Environmental stochastic effects were also considered in the experiment, and an
electric vibration table was used to generate noise excitations with an amplitude of 10 V.
Figure 13 presents the time-domain signal and time-frequency distribution of acc1 calcu-
lated by short-time Fourier (STFT) transformation, with a sampling frequency of 1024 Hz.
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The spectrum diagram in Figure 13b was calculated by a Hamming window with a segment
length of 210 and a step size of 1. It is noticeable that excited frequencies were the same in
the entire time domain with white noise excitations. Acceleration signals in the interval of
20–30 s were locally amplified to analyze the characteristics of system responses (Figure 14,
where Figure 14a,b present the time-domain signal and the spectrum diagram, respec-
tively). The proposed frequency-domain integration algorithm was then applied to obtain
the dynamic displacement responses of the structure in the interval of 20–30 s. The target
frequency for reconstruction was selected as 1 Hz. Figure 15a compares the time histories
of measured accelerations and reconstructed displacements. It is clear from Figure 15b that
higher-order modal components for reconstructed displacement were dramatically reduced
as compared to those for measured accelerations. Therefore, reconstructed displacements
could eliminate peak responses in the high-frequency range of measured accelerations and
also reduce the non-stationarity of tested data.

Moreover, the modal parameters of the cantilever plate were obtained through a
sinusoidal frequency sweep experiment. The frequency range was set as 1–100 Hz, and the
excitation amplitude was 500 mV. Figure 16 displays the spectrum of measured accelera-
tions obtained from the sinusoidal frequency sweep experiment. The first four frequencies
were detected as 4.304, 20.839, 30.518, and 55.839 Hz respectively, and the corresponding
damping ratios were calculated by the half-power points of resonant peaks as 2.10%, 3.68%,
2.30%, and 3.88%, respectively.
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Figure 14. (a) Locally amplified acceleration signals at 20–30 s and (b) spectrum diagram of measured accelerations.
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Figure 15. (a) Time histories of measured accelerations and reconstructed displacements and (b) spectrum diagrams of
measured accelerations and reconstructed displacements.
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Figure 16. Spectrum diagram of measured accelerations obtained from the sinusoidal sweep experiment.

5.3. Modal Parameter Identification

Modal parameter identification with measured accelerations and reconstruction dis-
placements was performed with the same Hankel matrix in the same period of 20–30 s,
and the corresponding results are presented in Figure 17. The range of the state space
model order was 1–60, the line number of the Hankel matrix was 600, and the frequency,
damping, and modal shape thresholds were 1%, 5%, and 5%, respectively. Moreover,
the appropriate sliding window size was 2 s, and the corresponding sliding step was 1 s.
Figure 17a displays the stability diagram obtained from modal parameter identification
based on measured accelerations in the period of 0–2 s. It is noticeable that the first three
modal frequencies were accurately identified from measured accelerations; however, a
strong dependency of modal frequencies on the model order was detected. For example,
the frequency and damping ratio of the first mode could be determined when the model
order reached 30. The stability diagram obtained from modal parameter identification
based on reconstructed displacements in the period of 0–2 s is presented in Figure 17b.
Therefore, reconstructed displacement-based modal parameter identification could avoid
the loss of low-frequency modes of the plate.

In order to avoid the error caused by random factors, the modal analysis was per-
formed 30 times with different acceleration signals and reconstruction displacements. The
mean values of calculated modal frequencies and damping ratios are presented in Table 3.
It is evident that the displacement-based modal analysis had higher accuracy as compared
to the conventional acceleration-based modal parameter identification method. Meanwhile,
to establish the effectiveness of the proposed method, the energy-oriented categorization
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of modal components, SSI [1], was used to identify the modal parameters of the structure,
and the modal parameters are presented in Table 3.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 20 
 

model order was 1–60, the line number of the Hankel matrix was 600, and the frequency, 
damping, and modal shape thresholds were 1%, 5%, and 5%, respectively. Moreover, the 
appropriate sliding window size was 2 s, and the corresponding sliding step was 1 s. Fig-
ure 17a displays the stability diagram obtained from modal parameter identification 
based on measured accelerations in the period of 0–2 s. It is noticeable that the first three 
modal frequencies were accurately identified from measured accelerations; however, a 
strong dependency of modal frequencies on the model order was detected. For example, 
the frequency and damping ratio of the first mode could be determined when the model 
order reached 30. The stability diagram obtained from modal parameter identification 
based on reconstructed displacements in the period of 0–2 s is presented in Figure 17b. 
Therefore, reconstructed displacement-based modal parameter identification could avoid 
the loss of low-frequency modes of the plate. 

In order to avoid the error caused by random factors, the modal analysis was per-
formed 30 times with different acceleration signals and reconstruction displacements. The 
mean values of calculated modal frequencies and damping ratios are presented in Table 
3. It is evident that the displacement-based modal analysis had higher accuracy as com-
pared to the conventional acceleration-based modal parameter identification method. 
Meanwhile, to establish the effectiveness of the proposed method, the energy-oriented 
categorization of modal components, SSI [1], was used to identify the modal parameters 
of the structure, and the modal parameters are presented in Table 3. 

 
(a) 

 

(b)  

Figure 17. Stability diagrams obtained based on (a) calculated accelerations and (b) reconstructed 
displacements in the period of 0–2 s. 

Figure 17. Stability diagrams obtained based on (a) calculated accelerations and (b) reconstructed
displacements in the period of 0–2 s.

Table 3. Frequency and damping ratios of the cantilever plate.

Calculated by
Sinusoidal

Sweeps

Calculated by
Accelerations

Calculated by
Displacements

By the Method
of He [1]

First-order Frequency (Hz) 4.304 4.013 4.407 4.535
Damping ratio 2.10% 1.42% 2.31% 2.90%

Second-order Frequency (Hz) 20.839 20.241 20.189 20.351
Damping ratio 3.68% 2.71% 3.49% 4.20%

Third-order Frequency (Hz) 30.518 30.256 30.188 30.258
Damping ratio 2.30% 1.55% 1.50% 3.50%

Fourth-order Frequency (Hz) 55.839 51.821 55.449 53.556
Damping ratio 3.88% 4.80% 3.50% 5.10%

6. Conclusions

An improved modal parameter identification method using reconstructed displace-
ments was proposed in this work. The main findings are presented below:

1. In comparison to the acceleration-based modal parameter identification method,
the proposed method based on reconstructed displacements could suppress high-
frequency components and reduce the non-stationary characteristics of measured data
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more effectively. Therefore, this method could provide more reliable and accurate
parameter identification results for small model order selection.

2. In comparison to other integration methods, the proposed method had no error
accumulation and long period drift of reconstructed displacements, resulting in
higher computational efficiency.

3. Experimental results of the cantilever plate revealed that the improved SSI method
could improve the recognition efficiency and also identify more stable results for
low-frequency structures.
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