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Abstract: The construction sector is one of the major global economies and is characterised by
low productivity and high inefficiencies, but could highly benefit from the introduction of robotic
equipment in terms of productivity, safety, and quality. As the development and the availability
of robotic solutions for the construction sector increases, the evaluation of their potential benefits
compared to conventional processes that are currently adopted on construction sites becomes com-
pelling. To this end, we exploit Bayesian decision theory and apply an axiomatic design guideline
for the development of a decision-theoretic expert system that: (i) evaluates the utility of available
alternatives based on evidence; (ii) accounts for uncertainty; and (iii) exploits both expert knowledge
and preferences of the users. The development process is illustrated by means of exemplary use case
scenarios that compare manual and robotic processes. A use case scenario that compares manual and
robotic marking and spraying is chosen for describing the development process in detail. Findings
show how decision making in equipment selection can be supported by means of dedicated systems
for decision support, developed in collaboration with domain experts.

Keywords: equipment selection; construction robot; decision support system; axiomatic design;
decision-theoretic expert system; construction industry; industry 4.0

1. Introduction

The broad adoption of automation and robotics is changing operations in many
business sectors [1]. Even though the construction sector is one of the major economies,
it suffers from inefficiencies and a low increase in productivity [2,3] and could, therefore,
highly benefit from the introduction of automation and robotics. The adoption of robotic
systems has the potential to increase safety, quality, productivity, and to reduce cost in
construction processes [4–6]. During the last decades, the interest towards the development
of robotic solutions for applications in the construction sector is constantly growing and
their potential deployment is addressed in several works [5–8]. However, compared
to other sectors, the construction industry can be considered as a traditional industry
that is characterised by a lack of interest in innovation [9,10] and a clear opposition to
changes [11]. Even though the awareness of potential benefits of automation and robotics
in the construction industry is increasing, the adoption of such technologies can be judged
as slow [5].

The purpose of this study is to facilitate the comparison of advanced technological
solutions with conventional manual construction processes. For this purpose, we illustrate
how a system for decision support in the field of robotic equipment adoption can be
designed and developed. This can be achieved by performing a structured evaluation of
the impact that advanced technologies may have on safety, quality, productivity, and cost,
and by assessing the utility of their adoption compared to conventional manual processes
in an unbiased way.
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Current research shows that one way to support decision making in this field is the
assessment of the actual performance of robots compared to traditional work practices on
the construction site [12] and to provide adequate tools for supporting decision makers
in the choice of replacing traditional processes with automated systems [13]. However,
uncertainty and interdependencies, typical of construction operations, often hinder the def-
inition of standardised approaches for decision-making [14]. Furthermore, when facing the
decision of whether to replace conventional work methods with automated counterparts,
the evaluation of alternatives should be able to reflect both preferences and knowledge
of the users [15]. Equipment selection problems in construction can also be supported by
different approaches and methods [16], as follows. The selection of cranes can be supported
by multi-criteria decision-making methods that are able to evaluate project specific require-
ments, the characteristics of the equipment and economic factors [17,18]. Multicriteria
decision-making methods that consider both qualitative and quantitative criteria are also
employed for the selection of excavation machinery [19,20]. Construction machinery selec-
tion for infrastructure projects can be performed by using a decision support framework
that evaluates risks and costs of the available alternatives [21]. In addition, the use of Build-
ing Information Modelling (BIM) is playing an important role in the field of automation
and robotics in construction [22]. BIM is a methodology supporting the management of
information within the construction sector. The result of the BIM methodology is a BIM
model, a model that contains both geometric and semantic data of a building that can be
employed along its whole lifecycle [23]. Current research shows how such BIM models
can be integrated into robotic control systems to support the deployment of robotics in
building construction and operation [24,25].

Nowadays, only few construction robots are actually used on real construction sites
and comparisons to traditional or conventional processes are rarely available [26]. The
performance of automated systems and traditional work methods for a given project can
be assessed by showing how they perform on the level of single construction specific
criteria or variables [12,15,27]. Analyses conducted in previous studies have shown that
the key parameters considered when evaluating the utility of robotic systems compared
to conventional processes are safety, quality, productivity, and cost [26]. Results of com-
parisons prove that construction robots have the capability to increase safety [12,26,28],
productivity [12,26,28,29], and quality [12,26,29] on construction sites. Some studies prove
that robots may have a positive impact on cost [5,8], while others find that extra costs can
occur for their deployment on site [12,26]. These considerations show that the deployment
of robotic equipment on construction sites can have both benefits and drawbacks. Although
many potential benefits of construction robots are described in the above-mentioned works,
other barriers can prevent their widespread adoption in practice, such as a low propensity
towards changing existing work practices [5,11]. This conservative attitude can be changed
by involving domain experts in the definition of potential application areas and the ex-
pected impacts of construction robots. Previous studies show how experts can be engaged
in the strategic definition of high-priority applications and the evaluation of the potential
impacts of construction robots in these fields [5].

The aim of this research is to illustrate the design of a decision support system (DSS)
for robotic equipment adoption that compares conventional and robotic processes by
evaluating their utility. To achieve this aim we apply an axiomatic-design guideline [27]
that supports the design of decision-theoretic expert systems based on Bayesian decision
theory to aid equipment selection in construction. Axiomatic design is a system design
methodology that is successfully applied in engineering, business, software, and product
development [30]. Decision-theoretic expert systems allow one to assess the utility of the
available options based on evidence, preference statements and expert knowledge. The
approach is illustrated by means of exemplary use case scenarios of a research project that
aims at developing configurable collaborative modular robotic platforms targeting use
cases in construction. The use case scenarios are defined in collaboration with domain
experts of the construction group participating in the project. We choose a use case scenario
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that considers the employment of collaborative robots for semiautonomous or teleoperated
marking and spraying for the detailed description of the approach.

As a result, this research shows how a DSS in the field of robotic equipment adoption
in construction can be designed. In particular, Axiomatic design allows us to divide the
complex design process of the decision theoretic expert system into small and manageable
steps that can be easily replicated in additional use cases. The structured involvement of
domain experts in every development step increases the reliability of the DSS, fills lack of
data with expert knowledge, and can increase the acceptance of the system by the potential
users.

The remainder of this article is organised as follows: in Section 2 we introduce the
preliminaries on the materials and methods considered; in Section 3 we describe the
development of the prototype and the obtained results; in Section 4 we discuss the results;
and in Section 5 we draw the conclusions.

2. Preliminaries on Decision Theoretic Expert Systems

Systems that exhibit artificial intelligence performing intellectual demanding tasks
restricted to a specific problem domain are defined as expert systems [31]. Expert systems
that rely on probabilistic networks are called decision-theoretic expert systems. These
systems perform reasoning under uncertainty while maximizing expected utilities of
the outcomes, and give advice on the best rational decision considering evidence and
preference statements [32].

Decision networks, often referred to as influence diagrams or Bayesian decision
networks, provide a formalism for modelling and solving decision problems following the
principle of Maximum Expected Utility (MEU). Decision networks can be described as an
extension of Bayesian networks [32,33]. A Bayesian network consists of a qualitative and
a quantitative part, a Directed Acyclic Graph (DAG) with an associated joint probability
distribution. The construction of Bayesian networks involves two main steps [31]: (i) the
identification of variables and causal relations between them for establishing the DAG,
and (ii) the elicitation of the conditional probability distributions of the random variables.
By extending Bayesian networks with actions and utilities we obtain decision networks.
Decision networks consist of the following components [31–33]: (i) decision nodes represent
the problem variables and refer to the decisions or choices that are available for the decision
maker; (ii) chance nodes represent the random variables, also referred to as information
variables that may be observed to provide information for solving the problem; (iii) utility
nodes represent the utility function of an agent and assess the expected utility for available
choices or actions; and (iv) arcs denote the influences and relations between variables.

3. Development of the Prototype

We follow the axiomatic design-based guideline that is presented in Table 1. The guide-
line is based on [27] and the development steps are defined as follows: (i) identification of
the problem domain; (ii) implementation of the knowledge base including the definition
of the qualitative and quantitative part of the decision model; (iii) implementation of the
inference engine with computation of the decision that yields the MEU, and Value of
Information (VOI) analysis; and (iv) definition of the functionalities that allow the user to
interact with the system. In addition to the guideline provided, we evaluate if the system
provides reasonable output.

3.1. Problem Domain

The problem domain concerns the execution of construction tasks that can be per-
formed both with the collaborative robot to be developed within the research project or
with a conventional manual construction method. We consider the following use cases
(UCs):

• UC1: Collaborative semi-autonomous transport and delivery of material and tools.
• UC2: Supervised and collaborative drilling.
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• UC3: Supervised and collaborative cutting.
• UC4: Semi-autonomous/teleoperated marking and spraying.
• UC5: Supervised/semi-autonomous documenting.

Within the project we will measure and verify the projected benefits and impact
of developed technologies in the individual UCs through measurable Key Performance
Indicators (KPIs) mutually agreed between the project partners. The results of the analysis
of the UCs and related KPIs serve as a basis for defining the knowledge base of the DSS.

Table 1. Design guideline based on [27].

3.1 Problem domain
Use of the collaborative robot or use of the conventional construction process?

3.2 Knowledgebase 3.3 Inference Engine 3.4 User interaction
3.2.1 Qualitative part 3.3.1 MEU computation

Computation of results based on
evidence and preferences.

Definition of the variables to be
considered in the evaluation and

definition of the relations between them.

Computation and selection of the
decision that yields the MEU.

3.2.2 Quantitative part 3.3.2 VOI analysis

Definition of the numbers that are
necessary for performing the

computations.

Computation of which information
should be acquired by the user.

3.5 Evaluation
Evaluation of reasonableness of the output of the system.

3.2. Knowledgebase

Within the knowledgebase, the qualitative and the quantitative parts of the decision
network are defined. We elicit the knowledge related to the problem domain by collecting
expert knowledge and by analysing available literature that addresses the comparison of
construction robots and conventional construction processes.

The relevant literature in this field is mapped by performing a manual search of
articles and conference papers on Elsevier’s database Scopus, a peer-review database in
the field of engineering sciences. The search is limited to English articles and conference
publications in the publication period from 2011 to April 2021. The search keyword is
“construction robot*”. The screening of the abstracts and papers is performed to exclude
articles with no to low relevance to our field of study. This reduces the data to 17 highly
relevant items that are further analysed to extract the parameters that are relevant for our
field of study. Out of these 17 remaining articles, only 11 do consider the comparison
between conventional approaches and the use of robots for the execution of construction
tasks and only nine contain relevant information in the field of robotic equipment adoption
in construction processes.

This analysis allows one to define, in collaboration with domain experts, the variables
to be considered for comparing robotic processes with conventional processes within our
research. In Table 2 we provide the description of the variables to be considered in the
assessment of the available options. The variables are presented along with the KPIs of the
project, their relevance for the different domains, their consideration within the previously
introduced UCs, and the supporting literature.

3.2.1. Qualitative Part

The elicitation of the qualitative part of the decision model is based on the list of vari-
ables presented in Table 2. Initially, we define the overall qualitative model, that considers
all the UCs in which the robotic system shall be applied (Figure 1). The decision node
(illustrated as a rectangle) represents the available choices, the chance nodes (illustrated as
ovals) represent the random variables involved in the decision along with their relevance
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for the different UCs, the utility node (illustrated as a diamond) represents the utility
function, and arcs represent the causal relations between the variables.

Figure 1. Decision model for UCs 1 to 5.

Table 2. List of variables to be considered in the evaluation.

KPI Variable Relevance
UC Supporting

Literature
Description

1 2 3 4 5

1 Time

Productivity
and Cost

x x x x x [12,29,34] Process time needed to perform the task
2 Cost x x x x x [12,26,28,34–37] Average cost needed to perform the task
3 Productivity x x x x [28,29,35,36] Labour productivity

4 Material x x [36,37] Consumption of material and resources
needed to perform the task

- Coordination
time x x x x x [26] Time needed for preparing the execution of

the task

5 Accuracy Quality x x x
[12,26,28,29,35,36]

Number of errors
6 Precision x Quality of the performed work

7 Ergonomics

Safety and
Risk

x x x [12,26,37] Reduction in unfavourable body postures
during the execution of the task

8 Transports x x x Number of transport processes of heavy
materials

9 Hazards x x x [6] Time of exposure to hazards and use of
protection equipment

10 Risks x x x [36,38] Reduction in the time of ladder use and
working at heights

11 Overall risks x x x x Overall assessment of risks that can lead to
accidents
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Table 2. Cont.

KPI Variable Relevance
UC Supporting

Literature
Description

1 2 3 4 5

- Project size Project
information x x x x x [28,37] The project size can impact the decision of

whether adopting a robot or not

- BIM x x x x x [12,26]
The use of a BIM model is necessary for the
deployment of the collaborative robot that

is developed within the research project

For the sake of simplicity, and since the development process would be identical
for all UCs, in the following we describe the development process of the prototype for
UC4—marking and spraying. We define the decision model for UC4 in two steps. First, we
eliminate the variables that are not directly involved in the decision. Then, we simplify
the decision model for UC4 by combining variables. The resulting decision model for UC4
is presented in Figure 2. The final list of variables to be considered within the DSS, along
with the states that they can assume, is presented in Table 3.

Figure 2. Simplified decision model for UC4—marking and spraying.

3.2.2. Quantitative Part

The elicitation of the quantitative part of the decision model involves the definition
of the conditional probabilities, the utility function, and utilities in collaboration with
the domain experts. We propose to elicit the conditional probability tables by mapping
verbal statements of probability from “impossible” to “certain” to probabilities from 0
to 1 [31,39,40]. We defined the conditional probabilities for our use case scenario in col-
laboration with domain experts by performing educated guesses based on the expected
performance of the collaborative robot in comparison to the conventional manual process.
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Each variable has been studied singularly to associate a mutually agreed verbal statement
of probability. In Table 4 we present one of the conditional probability tables of our use
case scenario as an example. In particular, we see the conditional probabilities P(M|Q,D)
of the variable material (M), given quality (Q), and decision (D).

Table 3. Variables to be considered for UC4—marking and spraying.

Variables States of the Variables

Decision Collaborative robot Conventional
method

Ergonomics 50% increase unaltered 50% reduction
Hazards 80% reduction unaltered 80% increase

Risks 50% reduction unaltered 50% increase
Material 10% reduction unaltered 10% increase

BIM available not available
Coordination time 20% increase unaltered 10% reduction

Project size <10,000 m3 >10,000 m3

Time 20% reduction unaltered 20% increase

Safety and Risk 30% reduction in overall risk and
increase in safety unaltered 30% increase in overall risk

and reduction in safety

Quality 20% reduction in errors and 30%
reduction in variations unaltered 20% increase in errors and

30% increase in variations

Productivity and Cost 20% increase in productivity and 10%
reduction in cost unaltered 20% reduction

Table 4. Conditional probability table of coordination time P(M|Q,D).

Quality (Q) Decision (D)
Material (M)

Reduced Unaltered Increased

Increased
Conventional method 0.05 0.90 0.05

Collaborative robot 0.90 0.05 0.05

Unaltered
Conventional method 0.10 0.80 0.10

Collaborative robot 0.80 0.10 0.10

Reduced
Conventional method 0.00 0.50 0.50

Collaborative robot 0.00 0.50 0.50

Utility assessment or preference elicitation concerns the definition of the utility func-
tion, necessary for the construction of the decision-theoretic expert system [32]. We define
a utility function that allows one to capture the preferences of the users for our use case.
Our utility function is chosen as:

U = p × uP + q × uQ + s × uS (1)

The parameters p, q, and s sum to one and represent the coefficients that allow the user
to weight the utilities according to his preferences. uP, uQ, and uS represent the subjective
utilities as defined in Table 5. Subjective utilities are assigned by ordering outcomes from
worst to best [31]. We assigned utility 0 to the worst possible outcome, and utility 100 to
the best possible outcome.

Table 5. Subjective utilities outcomes, where 0 is the worst outcome and 100 the best possible
outcome.

Productivity uP Quality uQ Safety uS

Reduced 0 Reduced 0 Reduced 0
Unaltered 100 Unaltered 100 Unaltered 100
Increased 100 Increased 100 Increased 100
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3.3. Inference Engine

We use the previously defined decision model for performing the computations.
For this purpose, the model is defined and implemented by using the python wrapper
pyAgrum for the C++ aGrUM library for building and computing Bayesian networks [41]
that allows one to perform computations based on the algorithms described in [42,43]. This
implementation allows us to analyse the behaviour of the decision model and to verify if
the model provides reasonable output.

3.3.1. MEU Computation

By applying the principle of MEU, we choose the decision that yields the highest
expected utility [32]. The preferences are captured by the utility function U(s) (1) that
assigns a number to the different states (Table 5). The expected utility (EU) of a decision
(d), given evidence (e) can be calculated by averaging the utility of the different outcomes
with the probability (P) that the outcome can be achieved [32]:

EU(d |e ) = ∑
s′

P
(
Result(d) = s′

∣∣a, e
)
×U

(
s′
)

(2)

decision = argmaxd EU(d|e) (3)

In Table 6 we see the results of the MEU computation when we consider different
weightings of preferences (p, q, or s). For equal weightings (p = q = s) we see that the best
rational decision is the collaborative robot (R) with a MEU of 93.24.

Table 6. Variation of results due to user interaction (R = collaborative robot, C = conventional
method).

Preferences [%] Result

Results with Evidence

VPIBIM Project Size

Not
Available Available Small Large

p q s D MEU D MEU D MEU D MEU D MEU BIM PS
33 33 33 R 93.24 C 95.56 R 95.28 C 95.71 R 95.18 4.72 4.74
100 0 0 C 92.99 C 92.70 C 93.38 C 93.20 C 92.83 1.77 1.77
80 10 10 C 93.79 C 93.57 C 94.10 C 93.95 C 93.66 1.92 1.92
60 20 20 C 94.58 C 94.42 C 94.82 C 94.71 C 94.49 2.07 2.07
50 25 25 C 94.98 C 94.85 R 94.15 C 95.09 R 94.03 2.09 2.12
40 30 30 C 95.38 C 95.27 R 94.83 C 95.46 R 94.72 2.22 2.25
0 100 0 R 94.34 R 94.99 R 95.15 R 93.57 R 95.08 5.65 5.65

10 80 10 R 94.01 C 95.16 R 95.19 C 95.21 R 95.11 5.38 5.38
20 60 20 R 93.68 C 95.33 R 95.23 C 95.42 R 95.14 5.10 5.11
25 50 25 R 93.51 C 95.41 R 95.24 C 95.53 R 95.16 4.96 4.98
30 40 30 R 93.35 C 95.50 R 95.26 C 95.64 R 95.17 4.81 4.84
0 0 100 R 99.91 R 99.91 R 99.91 R 99.91 R 99.91 0.00 0.00

10 10 80 R 97.91 R 97.19 R 98.52 R 97.23 R 98.49 1.06 1.06
20 20 60 R 95.90 R 94.48 R 97.13 R 94.56 R 97.07 2.14 2.14
25 25 50 R 94.90 R 93.13 R 96.43 R 93.22 R 96.36 2.68 2.68
30 30 40 R 93.90 C 95.90 R 95.74 C 96.04 R 95.65 4.22 4.24

3.3.2. VOI Analysis

VOI analysis allows one to define which information-gathering activities should be
performed by the user. In our case, we calculate the Value of Perfect Information (VPI),
also called value of clairvoyance, on the variables that are uncertain [33]. If exact evidence
of variables can be obtained, VPI can be calculated as follows [32]:

VPIe
(
Ej
)
=

(
∑
k

P(Ej = ejk |e)× EU(δjk|e, Ej = ejk)

)
− EU(δ|e) (4)
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where EU(δ|e) is the Expected Utility (EU) of the current best decision δ, EU(δjk|e,Ej = ejk)
is the EU of the new best decision δ with evidence Ej that is averaged over all the possible
values ejk that we may have for Ej. As VPI can be only computed for variables that are
non-descendants of decision nodes [43], we can perform this computation for the variables
BIM and Project size (PS). The EU of the new best action with evidence can be obtained by
adding an influence arc from the uncertain variables BIM and PS to the decision node [33].
In Table 6, we see the result of the VOI computations when we consider different weightings
of preferences (p, q, or s). For equal weightings (p = q = s), we see that VPI(PS) > VPI (BIM).
This means that the best information to be acquired is the value of Project Size (PS).

3.4. User Interaction

The user can interact with the system by stating his preferences, by inserting evidence,
and by answering to the questions of the inference engine to get advice on the best rational
decision [27]. The user has the option to influence the advice through a targeted interaction
with the system. The influence of the user interactions on the system, as well as the
information that should be provided by the user, are shown in Table 6. We see how
different preference statements (p, q, or s) lead to a different advice (D) of the system, how
the advice changes if we add evidence on the chance nodes BIM and PS, and which would
be the best information to be acquired by the user.

3.5. Evaluation

To evaluate whether the system provides reasonable output, the obtained results are
analysed in collaboration with the domain experts that contributed to the development
of the DSS following an axiomatic design guideline. For the development of the knowl-
edgebase, we agreed on the qualitative and quantitative part of the decision model also
involving the domain experts. The qualitative part concerns both the definition of the
variables to be considered within the DSS and their relevance for the different use cases, as
well as the structure of the complete decision model, and the simplified decision model for
UC4—marking and spraying. The quantitative part concerns the definition of the numbers
to be used for performing the computations within the inference engine. Here, we agreed
with the domain experts on the utility function, preferences, and on the subjective utilities
that are selected so that none of the available options can penalised or preferred by the
system. Due to missing comparison values between robot and conventional method, we
defined the conditional probability tables by performing educated guesses, by combining
both experience and the expected performance of the system.

The behaviour due to user interaction is also analysed in collaboration with domain
experts. For this reason, we explained how the inference engine is constructed and how
the system is reasoning and reacting to user interventions. The changes in the system’s
advice due to the user’s intervention are shown in Table 6:

• if we consider equal weightings of preferences without adding evidence the preferred
solution is the collaborative robot. Results change if we set evidence on the chance
nodes BIM and PS. The conventional system is suggested if the BIM model is not
available or if we have a small project. The robotic system is suggested if a BIM model
is available or if we have a large project. Looking at the VPI we see that the best
information to be acquired is the project size.

• if we focus on productivity and cost, the preferred solution is mostly the conventional
system. Additionally, different settings of preferences and evidence have an impact
on the decision and on the best information to be acquired by the user.

• if we focus on quality, the preferred solution is mostly the collaborative robot. The
conventional system is mostly preferred if the BIM model is not available or if we
have a small project.

• if we focus on safety, the preferred solution is mostly the collaborative robot. Here, the
conventional manual process is suggested for only one preference setting and when
the BIM model is not available or if we have a small project.
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The evaluation of the output with domain experts has been considered satisfactory.

4. Discussion

Previous studies have shown that impact of the introduction of robotic systems on the
construction site requires a careful evaluation of their potential benefits and shortcomings
on the construction process, which is very challenging due to the lack of available perfor-
mance data of construction robots [12,26]. The lack of available data concerns both the
conventional processes, where we have a lack of standardised work processes that cause
uncertainty [14], and the processes that employ new technologies, which have not yet been
sufficiently tested in real world scenarios [26].

Within this work, this challenge is addressed by developing a decision-theoretic-
expert system that can perform rational reasoning and allows one to fill the lack of data
with expert knowledge. The application of the guideline for the design of DSS [27],
with a fixed development procedure, simplified the development process and made it
possible to involve domain experts easily in the process. The close collaboration with the
domain experts makes the underlying reasoning processes of the system more transparent
and, therefore, increases the acceptance of the DSS. The increasing adoption of BIM in
construction with the provision of digital models that contain both geometric and semantic
data can be considered as a necessary condition for the efficient deployment of construction
robots.

5. Conclusions

This work provides two contributions for decision support in the field of robotic
equipment adoption in construction processes. On the one hand, it shows the applicability
of an axiomatic design guideline for the collaborative design of DSS for robotic equipment
adoption in construction processes, and it can serve as a basis for defining a software-tool
that allows the systematic development of DSS. On the other hand, it confirms the ability
of decision-theoretic expert systems to represent construction related decision problems
in an adequate way. The adopted approach allows us to highlight both shortcomings and
advantages of the robotic systems to be developed within the research project and conven-
tional construction methods, by systematically evaluating their impacts on productivity
and cost, quality, and safety and risk. The involvement of domain experts allows us to
define a DSS that acts reasonably and to fill the gaps in the availability of data often found
in decision problems that are related to construction execution processes.

The applicability of the approach is demonstrated by means of an exemplary UC of
an ongoing EU-funded project. The conditional probabilities needed for the computations
were defined by making educated guesses based on the target performance that the collab-
orative robot should reach in comparison to the conventional manual process. The values
will be refined when tangible results of the testing activities will be available. Further, the
DSS will be extended to all UCs of the project and allow the user to choose the different
tasks that can be performed by the system.
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