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Abstract: Objective: Schizophrenia (SZ) is a functional mental condition that has a significant impact
on patients’ social lives. As a result, accurate diagnosis of SZ has attracted researchers’ interest.
Based on previous research, resting-state functional magnetic resonance imaging (rsfMRI) reported
neural alterations in SZ. In this study, we attempted to investigate if dynamic functional connectivity
(dFC) could reveal changes in temporal interactions between SZ patients and healthy controls (HC)
beyond static functional connectivity (sFC) in the cuneus, using the publicly available COBRE dataset.
Methods: Sliding windows were applied to 72 SZ patients’ and 74 healthy controls’ (HC) rsfMRI
data to generate temporal correlation maps and, finally, evaluate mean strength (dFC-Str), variability
(dFC-SD and ALFF) in each window, and the dwelling time. The difference in functional connectivity
(FC) of the cuneus between two groups was compared using a two-sample t-test. Results: Our
findings demonstrated decreased mean strength connectivity between the cuneus and calcarine, the
cuneus and lingual gyrus, and between the cuneus and middle temporal gyrus (TPOmid) in subjects
with SZ. Moreover, no difference was detected in variability (standard deviation and the amplitude
of low-frequency fluctuation), the dwelling times of all states, or static functional connectivity (sFC)
between the groups. Conclusions: Our verdict suggest that dynamic functional connectivity analyses
may play crucial roles in unveiling abnormal patterns that would be obscured in static functional
connectivity, providing promising impetus for understanding schizophrenia disease.

Keywords: schizophrenia; static functional connectivity; dynamic functional connectivity; sliding
window; cuneus; variability; mean strength; standard deviation; rsFMRI; COBRE

1. Introduction

Schizophrenia (SZ) is a mental condition in which individuals experience hallucina-
tions [1], delusions, and profoundly disorganized thinking and behavior as a result of their
erroneous interpretation of reality. Positive symptoms such as hallucinations, delusions,
and flight of ideas are common in SZ patients, as are negative symptoms such as apathy,
emotionlessness, lack of social functioning, and cognitive symptoms such as difficulties con-
centrating and paying attention, as well as memory deficits [2]. Literature suggests that a
person’s risk of developing the illness is increased by a mix of physical, genetic, psycholog-
ical, and environmental variables. A stressful or emotional life experience may precipitate
a psychotic episode in some persons who are predisposed to SZ. Approximately half of
SZ patients have a history of drug abuse disorders [3], and nearly all of them smoke [4].
An Omega-3 polyunsaturated fatty acids (PUFAs) dietary imbalance could aggravate its
course while also raising the risk of metabolic complications [5]. Despite the availability of
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effective pharmacological treatments for HC, up to 50% of patients experience poor illness
outcomes [6,7]. Many possible outcome factors have been revealed in group-level research,
including disease-course characteristics, treatment adherence and response, comorbidity,
and cognitive impairments [8]. It is yet unclear which of these features should be used
for prediction, or whether findings at the group-level can be utilized to make meaningful
predictions for individuals with SZ [9].

We can now use neuroimaging technologies, such as MRI, computed tomography, and
positron emission tomography (PET), to research brain structure and function, thanks to
advances in neuroimaging technology. Through the measurement of the blood oxygenation
level-dependent (BOLD) signal, functional MRI (fMRI) can provide information about the
properties of FC—that is, collections of brain regions that are coactivated to support shared
functions—during task or at rest (i.e., in the absence of stimuli) [10–12]. Different task-
based studies of functional magnetic resonance imaging (fMRI) [13,14] unveiled changes
between SZ and HC groups, but they have faced the challenge of difficulty in interpretation
since subjects perform different scanning tasks [15]. Resting-state fMRI (rfMRI) examines
behavioral characteristics such as personality, psychological states, temperament traits, sus-
tained attention, and creative capacity, and cognitive abilities such as working memory and
motor function [16–19]. The majority of fMRI studies that have looked into FC in SZ have
used static functional connectivity (sFC) methods, which involve averaging FC across the
scanning time. These methods are based on the premise that the FC between brain regions
does not change significantly during the course of the scanning session, which lasts about
5–15 min. However, in light of mounting evidence suggesting significant changes in fMRI
FC across time, this assumption does not appear to be correct [20,21]. As a result, current
rsfMRI research has increasingly focused on time-varying FC or dynamic FC (dFC) [22,23].
The goal of these studies is to find connection patterns that can be seen across individuals
at different times during the scanning period [24,25]. When it comes to categorizing SZ
patients, dFC has been demonstrated to outperform sFC measurements [26,27].

Although there is substantial evidence that the brain FC of patients with SZ is abnor-
mal [28–31] the differences in functional connectivity observed in SZ are inconsistent across
different studies. For instance, some works have revealed increased FC in the default mode
region in patients with SZ [32], and increased connectivity involving default mode region
nodes and cortical and subcortical domain nodes [33], whilst reduced or mixed FC was seen
between cortical regions and default mode regions [34]. Although this increased/decreased
FC could be due to differences in disease symptoms or subtypes, we believe that part of
the heterogeneity is due to comparisons made using a static connectivity measure of FC
that represents an average across different dynamic modes of brain activity during an
unconstrained resting state [15].

To discover the intrinsic neural changes in visual-related diseases, FC analysis has
been successfully used between the primary visual cortex and patients with amblyopia [35],
glaucoma [36], and retinal vein occlusion [37]. Our study focuses on the cuneus as it
plays a role in both primary and secondary visual processing such as spatial frequency,
orientation, motion, direction, and speed. It is located in the medial occipital gyri, part
of the occipital lobe, corresponding to Broadmann area 17, which receives input from
the contralateral superior retina corresponding to the lower visual field [38]. The cuneus
connects to activation in the precuneus of the parietal lobe via the dorsal stream, which
functionally is associated with spatial awareness and representations of object locations [39].
Activation in the ventral stream connects the cuneus to a smaller volume of activation
in the inferior temporal cortex of the temporal lobe, which is functionally involved with
object recognition [40] such as circles against the pattern of squares [41] and blue and red
color perception [42]. One study associated greater inhibitory control among patients with
Bipolar Disorder I with greater cuneus volume [43], and increased activity in the cuneus
when compared with controls was found in compulsive gamblers [44] in another study.
Patients with localized brain lesions are more likely to have associated with damage to the
cuneus [38]. Visual functions (e.g., movement perception) are also affected by damage to
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more anterior parts of the cuneus, though usually for higher-level operations such as object
perception and spatial processing, such as attention [45].

Different analysis tools have been used to describe brain FC using rsfMRI data, in-
cluding seed-based [11,38], independent component analysis (ICA) [15,46–48], principal
component analysis (PCA) [49], clustering [50,51], fisher discriminant dictionary learning
(FDDL) [52], centrality [53], multivariate pattern analysis (MVPA) [54,55], and graph the-
ory [56,57]. In this study, we used seed-based analysis, in which the connectivity patterns
are based on a selected seed region of interest (ROI). The advantage of this method is that
the results are focused on particular ROIs and, hence, could be easier to understand in
relation to neuropathology [58].

With rsfMRI data of 72 SZ patients and 74 HC groups from the COBRE dataset,
sFC and dFC were used to analyze the whole brain in both groups, and the dynamic
characteristics (standard deviation (SD) and mean strength (Str)) were used to estimates the
dFC. We used the proposed seed-based FC method to obtain the FC between the cuneus and
other brain regions and compare whether sFC and dFC might provide factual information
by identifying dFC indicators in order to understand SZ neural mechanisms better.

2. Materials and Methods
2.1. Participants

Data used in this study were from COBRE [59], consisting of 72 SZ patients (fourteen
females and fifty-eight males) and 74 HCs (twenty-three females and fifty-one males).
Participants were screened and ruled out if they had a history of neurological illness, mental
retardation, extreme head trauma resulting in more than 5 min of loss of consciousness,
or history of drug abuse or dependence during the previous 12 months. Diagnostic
information was collected using the Structured Clinical Interview used for DSM Disorders
(SCID) [59]. The inclusion was of men and women of 37.0 ± 12.78 years of age. Collected
T1-weighted (MPRAGE) image parameters were: voxel size = 1 mm × 1 mm × 1 mm flip
angle = 7◦, echo time (TE) = 1.64, 3.5, 5.36, 7.22, 9.08, repetition time (TR) = 2530, field
of view (FoV) = 256 mm × 256 mm, inversion time (TI) = 900 ms, thickness = 176 mm,
matrix = 256 × 256 × 176. Functional MRI data were gathered with: TR/TE = 2 s/29 ms,
33 slices, voxel size: 3 × 3 × 4 mm3, matrix = 64 × 64, and 150 time points. All participants
were asked to remain relaxed and keep their eyes open during the scan.

2.2. Data Preprocessing

Data were pre-processed using Data Processing Assistant for Resting-State fMRI
(DPARSF, V5.0, http://rfmri.org [60], accessed on 23 November 2021, Statistical Parametric
Mapping (SPM V12) [61], and MATLAB V2018b [62] Toolboxes.

The steps for data preprocessing were as follows: one subject was discarded be-
cause of having too-few time points in image data (67 instead of 150). For the rest of
subjects, we removed the first five volumes, leaving 145 volumes; corrected slice-timing
and realigned images; manually reoriented the T1 and functional images; co-registered
T1 images into functional images then segmented images to gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF); nuisance covariates were regressed (including
Friston 24 head motion parameters [63] and white matter and cerebrospinal fluid signals),
functional images were then normalized into MNI space DARTEL Method [64] and resliced
to 3.0 × 3.0 × 3.0 mm3; spatial smoothing of normalized images was performed at 6 mm
FWHM; band-pass filtering images at 0.01–0.08 Hz as it was found that resting-state signals
are consistent low-frequency fluctuations in this range [65]. To address head motion in
fMRI, image volumes with mean framewise displacement FD (Jenkinson) > 0.5 mm were
scrubbed to reduce its effect using cubic spline interpolation [66,67]. Subjects were not
excluded as they did not exceed the head transition < 3 mm, rotation < 3◦ [68].

http://rfmri.org
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2.3. Regions of Interest Definition and Network

To identify differences in rsFC between SZ and HC groups, regions obtained from
the automated anatomical labelling template (AAL) [69] were applied to determine the FC
based on the region of interest (ROI). Except the cerebellum [70], the 90 ROIs of AAL were
divided into prefrontal regions, other regions of frontal lobe, parietal regions, occipital
regions, temporal regions, and subcortical regions. Finally, mean time courses from all
90 ROIs were extracted to calculate functional connectivity.

2.4. Static Resting-State Functional Connectivity

With the remaining 145-image volumes, we estimated the Pearson’s correlation coeffi-
cient of Fisher’s z transformation between each pair of the mean time course in 90 ROIs, to
enhance the normality of correlation distribution [70] and for the construction of the static
rsFC brain network.

2.5. Dynamic Resting-State Functional Connectivity

The sliding window method [50] was applied, implementing a window size at 30 TRs
(60 s) being that 30 s to 60 s is considered good enough [15,50,71]. We selected a sliding
temporal window length of 30 TRs (60 s) to 145 data length (290 s). Rectangular sliding
windows unconvolved with a Gaussian kernel were then used to capture sharper transitions
that could be undetected in a tapered window [72]. By sliding the window by the 2 s step
size 1 TR, 116 temporal windows (145 − 30 + 1) were generated. Finally, 116 Fisher’s
z-transformed Pearson’s correlation maps (90 × 90 matrix size, for each window) for each
subject were obtained as the dynamic functional connectivity maps (Figure 1).
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2.6. Measurements of the Dynamic Characteristics

Mean strength and temporal variability (standard deviation and the amplitude of
low-frequency fluctuation (ALFF)) were measured in order to demonstrate the dynamic
characteristics, as follows:

dFC− Str(i, j) =
1

T ∑T
t=1 z(i, j)t

(1)

dFC− SD(i, j) = √(1/(T − 1)
T

∑
t=1

(
z(i, j)t− z(i, j)m)2

)
(2)

where: z(i, j)t represents ROI i and j FC value at window t, z(i, j)m; mean/average of z(i, j)t
over the total of T windows [73], dFC-Str; strength and dFC-SD as temporal variability.

For the ALFF analysis, it was carried out using DPABI. The power spectrum was
produced by transforming the filtered time series of each voxel into the frequency domain
using a Fast Fourier Transform. We calculated ALFF for each voxel by taking the square
root of the signal at 0.01–0.08 Hz [74]. The ALFF of each voxel was further divided by the
global mean of ALFF values for each participant within the default brain mask from the
DPABI, with background and other non-brain tissue signals discarded, for uniformity and
to limit the influence of individual variance in ALFF values. This resulted in a standardized
ALFF map for the entire brain.

2.7. Characterization of dFC States’ Property

We examined the mean dwelling time (MDT), which measures the amount of time an
individual spends in a specific state, to see if SZ had any effect on the features of transient
states [24,75].

2.8. Statistical Analyses

We applied two-sample t-tests to test whether the mean strength (dFC-Str) and tem-
poral variability (dFC-SD and ALFF) within each temporal windowed connectivity map
present any significant differences between SZ and HC groups. False Discovery Rate (FDR)-
corrected activations with p < 0.05 [76,77] were conducted, with confounding variables such
as age, gender, IQ, and handed-ness (Table 1) as covariates in the GRETNA toolbox [78].
Permutation tests (p < 0.05) were also used to evaluate the differences between groups in
state properties (MDT).

Table 1. Participant demographics.

Schizophrenia (n = 72) Healthy Controls (n = 74) p-Value

Age (years)
Sex (Female/Male)
Handed-ness

Right/Left/Both

38.17 ± 13.89 35.82 ± 11.58 0.270 1

14/58 23/51 0.106 2

60/10/2 71/1/2 0.106 2

IQ (n = 68) (n = 67)
Verbal 97.88 ± 16.73 106.79 ± 11.16 <0.001 1

Performance 102.68 ± 16.64 114.03 ± 12.32 <0.001 1

Sum 99.59 ± 16.86 108.33 ± 11.83 <0.001 1

PANSS (n = 72)
Positive scale 14.96 ± 4.83
Negative scale 14.53 ± 4.83

General 29.22 ± 8.34

Education (years) 12.99 ± 1.84 13.52 ± 1.75 0.089 1

Illness duration (years, n = 71) 16.03 ± 12.41
1 Two-sample t-test. 2 Chi-square test. Data are shown in mean ± SD.
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3. Results
3.1. Participants’ Demographic and Neuropsychological Evaluation

Table 1 shows subjects’ clinical information, in which no significant difference was
seen between age, sex, handed-ness, and education years of the two groups (p > 0.05)
by two-sample t-tests. However, significant differences were seen in IQ (p < 0.05) using
two-sample t-tests. The PANSS scales were reported in the patients’ group and the primary
diagnosis information for the SZ patient group and the HC group are presented in Table 2.
Other information available in COBRE INDI Additional data in Supplementary Materials.

Table 2. Primary diagnosis information for schizophrenia patients and healthy controls.

Diagnosis (DSM Code) Number

Patients:
Dementia of the Alzheimer’s type, with late

onset, with delirium (290.3)
1

Disorganized type (295.1) 3
Catatonic type (295.2) 1
Paranoid type (295.3) 41
Residual type (295.6) 12
Bipolar type I (295.7) 1

Depresses type (295.7) 1
Schizoaffective Disorder type (295.7) 5

Undifferentiated type (295.9) 5
Bipolar Disorder type I, Most Recent Episode

Mixed, In Full Remission (296.4) 1

Unspecified type schizophrenia chronic state
(295.92) 1

Healthy Controls:
Major Depressive Disorder, Single Episode, In

Partial Remission (296.26)
1

Depressive Disorder type, Not Otherwise
Specified (311) 1

Other Healthy Controls (none) 72
DSM, Diagnostic and Statistical Manual of Mental Disorders.

3.2. Static Functional Connectivity

No significant difference (p > 0.05) was apparent in static rsFC between schizophrenia
patients and healthy controls (Table 3 at 290 s), suggesting that static rsFC might be
insensitive in capturing neural functional abnormalities underlying schizophrenia.

Table 3. The group difference of dFC-Str (four connections) for different window sizes (Movie S1).

Connections
Time/Windows

44 s (22 TRs) 60 s (30 TRs) 100 s (50 TRs) 150 s (75 TRs) 290 s (145 TRs)

CUN.L-CAL.R 6.17 × 10−6 5.68 × 10−6 6.13 × 10−6 6.33 × 10−6 -
CUN.R-CAL.R 1.53 × 10−5 1.56 × 10−5 4.60 × 10−5 - -
LING.R-CUN.R 1.89 × 10−5 1.98 × 10−5 2.40 × 10−5 2.12 × 10−5 -

TPOmid.R-CUN.R 4.72 × 10−5 4.89 × 10−5 2.58 × 10−5 2.80 × 10−5 -

Table shows p-values of group differences of dFC-Str. Numbers represent significant difference after FDR correction. L, left; R, right; Mid, Middle.

3.3. Dynamic Functional Connectivity

With resting-state fMRI, the SZ patient group demonstrated a significantly decreased
mean strength across time windows (dFC-Str) between the left cuneus (CUN.L) and right
calcarine (CAL.R) (p = 0.00000568), between the right cuneus (CUN.R) and the right
calcarine (CAL.R) (p = 0.0000156), between the right lingual gyrus (LING.R) and right
cuneus (CUN.R) (p = 0.0000198), and between the right-middle temporal gyrus (TPOmid.R)
and right cuneus (CUN.R) (p = 0.0000489) with t values −4.79, −4.54, −4.48, and −4.25,
respectively. (Figures 2 and 3, Table 3, Movie S1).
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In contrast to mean strength between the groups, variability (dFC-SD and ALFF)
within all temporal windows did not present significant differences (p > 0.05) between the
SZ patient group and the HC group. Furthermore, there were no significant differences
in the dwelling times of all states between the two groups. The significant level here was
FDR-corrected p < 0.05.

4. Discussion

This is one of the few dFC studies of schizophrenia based on the COBRE public
dataset [79–83]. In this study, we investigated differences in functional connectivity (FC)
dynamics at rest between schizophrenia (SZ) patients and healthy controls (HC). Sliding
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windows were used to construct dynamic resting-state functional connectivity maps whose
windowed cuneus-connectivity properties were assessed. We also explored the group
differences in large time-scale connectivity (static perspective), which were computed
as correlations of fMRI time series over the full range of scanning time. We found that,
while there were no significant differences in static functional connectivity (sFC), mean
strength (dFC-Str) analyses presented SZ patients with decreased cuneus-connectivity
findings that could not be identified in static analyses. However, the variability of cuneus
connectivity did not demonstrate any significant difference between the groups in all
temporal correlation-windows.

The cuneus is delimited by the parieto-occipital sulcus and the calcarine sulcus in the
occipital lobe, known for its role in both primary and secondary visual processing. With
respect to decreased functional connectivity, fairly similar findings to our observations
were reported in previous studies such as decreased gray-matter volumes in the cuneus
and lingual gyrus as compared to healthy participants [84,85]. Another study illustrated
that when glaucoma patients were compared to healthy people, the functional connectivity
of the cuneus decreased [36,86]. The cuneus also indicated substantial reduction in brain
neural homogeneity in people with acute open-globe injury [87] and retinal detachment [88]
in another study. Some other studies emphasize that smaller volumes of gray matter in the
right cuneus [89] and lower activity in the cuneus and precuneus [90] were associated with
suicide attempters. Tohid and colleagues found reduced activation in the right cuneus and
fusiform gyrus during episodic memory retrieval in SZ patients compared with HCs [91].
In a first-episode psychosis study, patients with poor insight had decreased gray matter
volume in the cuneus and medial gyrus of the right occipital lobe as compared to those
with good insight [92]. Together, these findings suggest that patients with schizophrenia
are characterized by altered cuneus connectivity in large scale brain networks.

Previous investigations, on the other hand, were unable to identify reduced connec-
tivity in the cuneus, but did find it in the occipital lobe. For example, Glahn et al. (2008)
found a reduced gray-matter density in SZ patients relative to HCs [93], lower global
connectivity [94], and decreased connectivity strength [95]. The previous study by Phillips
and colleagues revealed reduced external white matter fractional anisotropy, especially
in bilateral occipital lobes, in SZ patients compared to their relatives [96]. Hallucination
was also associated with a reduced volume of the occipital lobe in SZ patients [97], reduc-
tion in the overall volume of occipital lobe in SZ [97–99], lower white-matter volume in
first-episode patients, and decreased activation in fusiform gyrus [100–102]. No cuneus-
connectivity attenuation was reported by the authors in all these studies. One reason could
be the limitations of analysis techniques or because alterations in brain activity linked
to illnesses are not always supported by large-scale evidence. Rather, they are visible
across a small time-scale of seconds, necessitating short time-scale investigations to capture
those deficit patterns.

In our study, SZ patients exhibited decreased cuneus mean strength connectivity
(dFC-Str) in several brain areas, such as the left cuneus and right calcarine, the right cuneus
and right calcarine, the right cuneus and right lingual gyrus, and between the right cuneus
and right-middle temporal gyrus. These changes were all observed in dFC and not in
sFC, this may be because some brain disorders need short-time-scale analyses in order to
capture subtle deficits., Previous and current rsfMRI researches on SZ have increasingly
focused on dFC [1,22,23], especially in specific time intervals (windows) [15,23,103–107].
Our results are in accordance with Damaraju et al. in SZ and Nguyen et al. in Bipolar
Disorder studies, who demonstrated how dynamic FC has more predictive accuracy than
static FC [15,108]. We also observed similar connections in different time. The evidence in
Table 3 shows how the connections were lost in bigger window sizes (Table 3 at 75 TR) and
at full-length (145 TR). Together, these findings point to the conclusion that information
that is likely to be lost in static FC (bigger window sizes approaching to full-length) can be
trapped in the dynamic FC.
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Although we only found a decrease in cuneus connectivity in this study, previous
research has found that SZ can also cause an increase in cuneus connectivity. Notably,
increased dynamic ReHo was also discovered in the super temporal gyrus, postcentral
gyrus, thalamus, middle cingulum cortex, and cuneus in SZ patients [106]. Other regions
have also been linked to an increased functional connectivity in SZ illnesses, such as an
increased global-brain functional connectivity in the left superior frontal gyrus [109].

Even though the majority of SZ studies have emphasized the decreased FC patterns,
the lack of increased connection patterns in these studies and our study could be linked
to the type of SZ patients regarding the stage of illness and medication [110]. The brain
compensatory mechanism’s inability to recruit more resources to retain, maintain, or restore
cognitive functioning, or in response to cognitive demands, can be viewed as the main
indication of decreased connectivity in SZ. Since it has long been assumed that SZ is a
spectrum of diseases caused by several pathophysiological processes rather than a single
disease [111], other factors such as diverse samples and different preprocessing approaches
could also lead to this inconsistency.

Even though the cuneus is believed to be associated with cognitive functions such
as behavior engagement [112], working memory [113], and cognitive control [43]. It is
thought to be largely engaged in visual processing. The cuneus, in particular, appears
to be involved in detecting changes in ocular position as a result of spontaneous eye
movements [114]. Impairments in smooth-pursuit eye movements have been repeatedly
recorded, especially in SZ patients [115]. These studies reveal that SZ patients, or those
who are at risk of developing the condition, may have problems monitoring their own eye
movements and this could be because of reduced connectivity in the cuneus. Evidenced by
previous works, the SZ decreased connectivity in visual areas could also be because those
affected typically perform worse in visual motion [116] and visual contrast [117]. Whether
the cuneus anatomical abnormalities seen in the SZ subjects in this study are also related to
abnormal eye tracking is a topic worthy of future discussion.

Limitations

Our study, however, presented some limitations; first, 41 subjects (more than half
of SZ) were of Paranoid type, suggesting that it is unclear whether the observed results
were of all SZ patients or were influenced by the large paranoid-type data (57%). Second,
patients with schizophrenia may be using a variety of antipsychotic medications, which
may influence their cognitive functions. A previous study revealed that SZ patients showed
synchronized brain activity and decreased integration function across brain networks after
undergoing six-week treatment with second-generation antipsychotic medications [118].
These antipsychotic medications may also affect their brain activities. For example, olan-
zapine treatment increased default mode network (DMN) connectivity in patients with
SZ [119]. Hence, attention should be paid while interpreting our results. Third, although
we did not achieve statistical significance in variability, it is possible that a better-designed
study could provide more definite results. Fourth, the lack of neuropsychological tests for
SZ and HC may also limit the study since the data used in this study were obtained online
(COBRE), resulting in no correlation analysis between altered rsFC and neuropsychological
evaluation in both groups. Thus, intergroup difference in neuropsychological evaluation
also remains unknown. Fifth, the authors of this work acknowledge that the sliding win-
dow technique has a number of drawbacks [25,120,121], such as that multiple parameters
must be specified including window function, length, and step size, but due to a shortage
of ground truth in resting-state fMRI data, the ideal settings are still uncertain. We confirm
that our work, just like the vast majority of resting-state-dFC studies have employed this
technique, mainly due to its simplicity [71]. Lastly, our biggest challenge was to obtain the
dataset, and the main reason was the COVID-19 pandemic, which limited us only to use
publicly available dataset.
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5. Conclusions

In this study, we used seed-based method to obtain the FC between the cuneus and
other brain regions in individuals with schizophrenia. Results revealed that patients with
SZ indicated decreased mean strength connectivity in short-time-based analysis (dynamic)
in the cuneus, relative to their matched healthy control, while presenting no significant
differences in variability and full-time (static) sense. This suggests that strong insights
in understanding brain deficits underlying schizophrenia can be provided by dynamic-
connectivity analyses of the cuneus. This hypothesis will need to be investigated further,
utilizing various structural, functional, and metabolic methodologies. To address the
suppressing effect associated with the sliding windows, the authors of this work are
looking forward to use windows with a flattened spectrum within the bandwidth such as
modulated rectangular (mRect) [122] in our future studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
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