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Abstract: Quantum computing is suggested as a new tool to deal with large data set for machine learn-
ing applications. However, many quantum algorithms are too expensive to fit into the small-scale
quantum hardware available today and the loading of big classical data into small quantum memory
is still an unsolved obstacle. These difficulties lead to the study of quantum-inspired techniques using
classical computation. In this work, we propose a new classification method based on support vectors
from a DBSCAN–Deutsch–Jozsa ranking and an Ising prediction model. The proposed algorithm
has an advantage over standard classical SVM in the scaling with respect to the number of training
data at the training phase. The method can be executed in a pure classical computer and can be
accelerated in a hybrid quantum–classical computing environment. We demonstrate the applicability
of the proposed algorithm with simulations and theory.

Keywords: quantum-inspired algorithm; Deutsch–Jozsa algorithm; Ising model; support-vector
machine

1. Introduction

Quantum machine learning [1–3] is an emerging field using quantum information pro-
cessing for machine learning applications. Various quantum machine learning algorithms
have been proposed, such as quantum Boltzmann machines [4], supervised quantum au-
toencoders [5], reinforcement learning using quantum Boltzmann machines [6], quantum
circuit learning [7,8] and some quantum methods for linear algebra [9–11]. Even though the
exponentially large Hilbert space is expected to help tackling the “curse of dimensionality”
in machine learning, loading large classical data sets into a small quantum memory is a
bottleneck [12,13]. Even though this problem can be circumvented in some settings [14],
the available quantum information processors are restricted by the small number of qubits
and high operational noise in the current noisy intermediate-scale quantum [15] era. On the
other hand, these quantum algorithms have inspired various new classical efficient meth-
ods [16–19]. The dequantizing of quantum algorithms is not only for practical concerns,
but also for theoretical interests in complexity theory [20].

The support-vector machine (SVM) is a widely used classification algorithm [21–24].
There are also newly developed variants of the SVM [25,26] and several quantum versions
of the SVM have been proposed [27–29]. One proposal is to use the HHL algorithm [9]
to invert the kernel matrix [27]. Schuld et al. [28] proposed a QSVM algorithm in which
the distance for the kernel classifier is evaluated by single qubit gate circuits. Recently,
Havlicek et al. [29] implemented the quantum circuit learning classification and a quantum
kernel estimator for the SVM. However, due to the requirements of quantum coherence,
the applications of these algorithms to large-scale data sets has not been demonstrated yet.
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In this work, we propose a new quantum-inspired algorithm for classification tasks.
The support vectors are selected from the data by a principle inspired by the classical clus-
tering algorithm density-based spatial clustering of applications with noise (DBSCAN) [30]
and the quantum algorithm Deutsch–Jozsa (DJ) [31]. DBSCAN is a commonly used classical
clustering algorithm that determines clusters by considering numbers of data points within
some distance parameter ε. DBSCAN is efficient, noise-resilient and does not require the
input of the number of clusters. DJ is a deterministic quantum algorithm that determines a
specific property of a given Boolean function f : {0, 1}n → {0, 1} with a single oracle call
to the function f . The classical deterministic algorithm to solve the DJ problem requires
O(2n) calls. We combine DBSCAN and DJ to identify support vectors that are close to
the classification boundary. The support vectors are then used for prediction based on
an Ising model classifier. The prediction labels are identified as spins in an Ising model
and the prediction label is aligned with nearby support vectors through spin–spin interac-
tions. The training time complexity of the proposed algorithm scales according to O(l2d),
where l is the number of training data and d is the feature dimension. This is favorable
comparing to O(l3d) standard kernel support-vector machines, such as LIBSVM, used
in scikit-learn [21–24]. The proposed algorithm can be executed on classical computers,
while quantum devices could be used to accelerate several subroutines in the algorithm.
The numerical verification is presented. We also provide theoretical evidences for the
learnability of the algorithm. We show that the training algorithm is described by an
integer linear programming problem. We also derive upper bounds for the VC dimension
of the Ising classifier in two special lattices.

2. The Learning Algorithm
2.1. Hypothesis Set

In this subsection, we briefly illustrate the hypothesis set and training and testing
algorithms. The flow chart is illustrated in Figure 1. The details are discussed in the
following sections. Given the training data set τ = {(~xi, yi)|i = 1, . . ., l}, where yi ∈ {±1}
are the labels for binary classification, the goal of a classification algorithm is to find a
hypothesis fθ : (~x1, . . .,~xnt) 7→ {−1,+1}nt with small prediction error, where nt is the num-
ber of test data. The classification algorithm consists of two parts, training and prediction.
A training algorithm finds a hypothesis by minimizing some loss function L( fθ(~xi), yi).
Our hypothesis set consists of the ground states of the Ising model. The hypothesis set is

fθ(~x1, . . .,~xnt) = (s1, . . ., snt), ~xi ∈ T for 1 ≤ i ≤ nt, (1)

(s1, . . ., snt+nsv) = arg min
{sk}

[− ∑
i<j

~xi ,~xj∈S∪T

Ji,j(~xi,~xj)sisj − ∑
i

~xi∈S∪T

hisi], (2)

where S = {support vectors} and T = {test data}, nsv = |S|, nt = |T|, si ∈ {−1, 1}.
hi = yi for ~xi ∈ S and hi = 0 for ~xi ∈ T. The free parameters of the model are, in general,
θ = (Jij). We use a physics-motivated ansatz to efficiently determine the support vectors
and θ from three free parameters, θ′ = (α, β, ε), as explained in the following subsections.
Finally, the training is performed by minimizing the loss function with respect to the
remaining three free parameters, θ = (α, β, ε), with particle swarm optimization (PSO).
The loss function is the cross-entropy loss function

L( fθ(~xi), yi) = −(1− q(~xi)) ln(p−1(~xi))− q(~xi) ln(p+1(~xi)), (3)

where q(~xi) = (1 + yi)/2; p±1(~xi) is the probability that si = ±1 for the Ising ground state.
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Figure 1. Outline of the proposed algorithm. The training data set is fed into the support vector
selection algorithm. The support vectors are then used in the Ising predictor for prediction. The sup-
port vector selection algorithm is described in Algorithm 1 and the Ising predictor is described in
Section 2.5.

2.2. DBSCAN Algorithm for Determining the Support Vector

The training algorithm is designed by applying the DBSCAN clustering algorithm to
a Deutsch–Jozsa decision problem on the training data. The idea is depicted in Figure 2.
Let us consider the hypersphere Bε(~xi) of radius ε centered in the data point ~xi. Near the
classification boundary, it is more likely that the data in the sphere have two different
classification labels. On the other hand, for the data in the interior of each cluster, it is more
likely that all the data points in the sphere have the same label. Hence, the classification
boundary can be identified by a DBSCAN scanning through all the data points. For each
data point, we query a decision problem, namely, whether the data inside the sphere is
constant or not. If the number of non-constant spheres around is large for a given data
point, we then select this point as a support vector for the prediction algorithm. This
decision problem takes the form of a Deutsch–Jozsa problem and the potential use of the
quantum DJ algorithm to enhance the training is discussed in Section 2.4.

After selecting the support vectors from the training data, we compute a kernel matrix
(Jsv)i,j = J(~xi,~xj) for ~xi,~xj ∈ {support vectors}. This kernel matrix will be used in the
prediction algorithm. The matrix elements are, in general, some functions of data positions.
We choose J to be the inverse of some power-law function of distances between data points:

J(~xi,~xj) =
1

||~xi −~xj||β
. (4)

The training algorithm can be described as the pseudo-code Algorithm 1.
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Figure 2. The training process. The red dots and blue dots are training data with two different
classification labels. (a) For each data point ~xi, we consider the hypersphere Bε(~xi) of radius ε

centered in the data point ~xi. We ask the question of whether all the data points in the sphere have
the same label or not. (b) If the data within the sphere are mixed (not constant), then all the data
within the sphere receive one count by c[j] = c[j] + 1. (c) After scanning through all the data, we rank
the data according to c[i]. (d) The data points with the highest c[i] are selected as support vectors.
The blue and yellow dots are support vectors for two different classes.

Algorithm 1: The training algorithm to determine support vectors.

Input: Training dataset {(~xi, yi)|i = 1, . . ., l}, ε, α, β
Output: Support vectors {(~xi, yi)|i = 1, . . ., nsv}, (Jsv)i,j

1 Allocate an integer array c[i], i ∈ {1, . . ., l} where l is the number of training data
2 for each data point ~xi in the training dataset : do
3 Making a query:
4 Examine the class label yj of all the training data points ~xj ∈ Bε(~xi)

5 Determine whether the training data in the sphere including the central data
point are all the same class (constant) or mixed with other classes (mixed)

6 if mixed then
7 c[j]← c[j] + 1 for all ~xj ∈ Bε(~xi)

8 end
9 end

10 Rank c[i]
11 The top 1/α data points in the ranking are the support vectors
12 Compute matrix (Jsv)i,j for ~xi,~xj ∈ {support vectors} according to Equation (4)
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2.3. Integer Linear Programming Formulation

We show that the training algorithm is equivalent to solving an integer linear pro-
gramming problem. We use the following definitions: Bε(~xi) is the hypersphere of radius
ε centered in ~xi; Yij =

1
2 (1 + yiyj) is the indicator y-correlation matrix of training labels;

Kε
ij = κε(~xi,~xj) = lim

γ→∞
1
2 [1 + tanh(γ(ε− ||~xi −~xj||))] = H(ε− ||~xi −~xj||) is the indicator

kernel matrix, where H(x) is the Heaviside step function. The indicator kernel matrix
satisfies

Kε
ij =

{
1, if ~xj ∈ Bε(~xi)

0, otherwise
. (5)

The indicator y-correlation matrix satisfies

Yij =

{
1, if yi = yj

0, if yi = −yj
. (6)

From the definitions, we have

l

∏
p=1

Y
Kjp
jp =

{
1, if {yk|~xk ∈ Bε(~xj)} is constant
0, if {yk|~xk ∈ Bε(~xj)} is mixed

. (7)

Then, the counting number returned by the DBSCAN-DJ training procedure is ci =

∑l
j=1 Kij(1−∏l

p=1 Y
Kjp
jp ). Since all ci > 0, the ranking algorithm selects support vectors

that satisfy the solution for the constrained integer linear programming problem:

min
αi

l

∑
i

ciαi (8)

αi ∈ {0, 1} (9)
l

∑
i

αi = b
1
α
c, (10)

where αi = 1 if and only if ~xi is selected as a support vector. Notice that, if the number
of training data is l, the sorting only takes O(l log l) time, while general integer linear
programming is NP-complete.

2.4. Quantum-Enhanced Algorithm with DJ

Given a Boolean function f : {0, 1}n → {0, 1}, that is guaranteed to be constant or
balanced, and its reversible circuit U f : |x〉|y〉 → |x〉|y⊕ f (x)〉, the DJ algorithm determines
whether f is constant or balanced with one call to U f . A balanced function means f (x) = 1
for half of the possible input string x. The DJ algorithm is conducted using operator
(H⊗n ⊗ 1)U f H⊗(n+1) on the initial state |0〉⊗n|1〉. The probability to measure an all-zero
string x = 00. . .0 is P0 = | 1

2n ∑x(−1) f (x)|2. Hence, if f is constant, the probability to obtain
a measurement result 00. . .0 is P0 = 1. If f is balanced, then P0 = 0. If f is not constant nor
balanced, then 1 > P0 > 0.

Given the data {(~xi, yi)} in a sphere, we construct the reversible circuit for the function
f : ~xi → (1 + yi)/2. This serves as the oracle function in the DJ algorithm. A four-data
point example is shown in Table 1 and Figure 3. For n data points, the reading of the
data and the construction of the oracle U f take O(n) time. However, once given the
oracle, the DJ algorithm can determine whether the function is constant or balanced with
a single call. In the case where the data are not constant, there is some probability to
obtain measurement results other than 0. . .0. We could repeat the algorithm several times
(the number of repetitions is another hyper-parameter that determines the precision) to
obtain a reasonable estimation of the probability of how likely that is a constant function.
Then, this probability provides an estimation for ci. For an efficient implementation of
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the U f circuit, one could utilize the single-step n-Toffoli gate [32] in a quantum computer.
While this scheme works in principle, it is difficult to implement and the overhead is large.
In our simulation, we take an simplified oracle consisting of one n-Toffoli gate and one
n-Toffoli gate with negative control, as shown in Figure 4. Each qubit is encoded in a
classical indicator state (1 + yi)/2 ∈ {0, 1}. Then, a single query to the oracle gives the
measurement result ∏i(1 + yi)/2, which indicates whether the data are constant or not.
This approach is simpler to implement, but requires more encoding qubits. In the original
DJ, it takes O(log n) for n data points, while, in this simplified approach, it takes O(n)
qubits. However, it has a potential acceleration similar to that of DJ, where a single call to
the oracle gives the desired result.

Table 1. An example of four training data’s look-up table for function f (x).

xi yi (1 + yi)/2

00 −1 0
01 1 1
10 1 1
11 −1 0

Figure 3. The quantum circuit for the 4-data point example in Table 1. (a) The oracle circuit U f .
(b) The circuit for the DJ algorithm.

Figure 4. The quantum circuit implementation for the DJ query. The circuit consists of one n-Toffoli
gate and one n-Toffoli gate with negative control.

2.5. Annealing Algorithm for Data Prediction

The classical SVM algorithm constructs ~w and b from the training data and then
predicts each test data by computing ~w · ~x + b. We propose an algorithm such that it is
possible to predict multiple test data points with a single run of the prediction algorithm.
The prediction is made by finding the ground state of the Ising model:

H = −∑
i<j

Ji,jsisj −∑
i

hisi. (11)
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The number of spins is N = nsv + nt, where nsv is the number of support vectors and
nt is the number of test data. The coupling constants are functions of the data positions
Jij(~xi,~xj) defined in Equation (4). We use the notation

Jij =


(Jsv)ij, if ~xi,~xj ∈ {support vectors}
(Jt)ij, if ~xi,~xj ∈ {testing data}
(Jint)ij, if ~xi ∈ {testing data},~xj ∈ {support vectors}

. (12)

Jsv is an nsv × nsv matrix, Jt is an nt × nt matrix and Jint is an nsv × nt matrix. Notice that
the Jsv matrix is given by the training algorithm and does not need to be computed again.
The magnetic field is defined as

hi =

{
yi, if ~xi ∈ {support vectors}
0, if ~xi ∈ {testing data}

. (13)

The prediction result is given by the ground state of the Ising model:

yi = si , for ~xi ∈ {testing data}. (14)

The configurations si of the support vectors are dummy variables and not used for
prediction. Intuitively, the model favors parallel spins, since Jij > 0. Hence, we expect
the prediction to have the same spin direction as nearby training data. In principle,
the Ising ground state can be calculated by any Ising solver. However, the problem of
finding the general Ising model ground state is equivalent to quadratic unconstrained
binary optimization (QUBO), which is NP-hard. In this work, we use adiabatic quantum
computing implemented on a quantum circuit simulator to find the ground state [33]. The
prediction labels are determined by

si =

{
−1, if p−1(~xi) > p+1(~xi)

+1, if p−1(~xi) < p+1(~xi)
, (15)

where p± is the probability that the point label is predicted to be ±1.

2.6. The VC Dimension

We further show that the Ising classifier has a finite VC dimension upper bound in two
simplified toy models in Figure 5. These simplifications can be regarded as regularization
methods. The intuition is that, for Jij > 0, anti-parallel spin configurations have higher
energy and it is difficult that they are a ground state. This difficulty sets a limitation on
how many points can be shattered and leads to an upper bound for the VC dimension.
The detail derivation is in Appendix A. We use the following definitions: nsv is the number
of support vectors; nt is the number of prediction data points; N = nsv + nt is the total
number of spins in the Ising model; d is the feature space dimension. We assume that
nsv ≤ nt. For the first toy model, we consider a simplification by introducing equal distance
constraints to the support vectors and test data. This means Jij =

1
||~xi−~xj ||

= J for all (i, j).

The Ising prediction model, in this case, is the fully connected infinite-dimensional mean
field Ising model:

H = −J ∑
i<j

sisj. (16)

Notice that this is a strong constraint which requires N ≤ d + 1, but there is still one
continuous parameter J, so the hypothesis set is still infinite. This model is exactly solvable.
The eigenenergy is Em = J(− 1

2 N(N− 1) + 2m(N−m)) for eigenstates with m spin up and
N −m spin down. If there are two test data, the anti-parallel state ↑↓ is always an excited
state; hence, it is impossible it is part of a ground state. We obtain the result dVC = 1 in
this case.
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Figure 5. (a) Fully-connected mean field Ising model. (b) A relaxed model where there are only
one-to-one couplings between support vectors and test data.

This upper bound can be relaxed by considering a model with less constraints. Con-
sider a second toy model where all the support vectors form a fully connected equal-
distance lattice defined by parameter Jsv. All the test data form another fully connected
equal-distance lattice defined by another parameter, Jt. The distance between support
vectors and prediction data is parametrized by a different variable Jint. Hence, there are
three continuous variables in the model. The interaction between support vectors and
prediction data points is restricted to one-to-one coupling. Let{

{support vectors} = {~x1,~x2, . . .,~xnsv}
{test data} = {~xnsv+1,~xnsv+2, . . .,~xnsv+nt}

. (17)

Then, the coupling for this model is

Jij =


Jsv, if 1 ≤ i < j ≤ nsv

Jt, if (nsv + 1) ≤ i < j ≤ (nsv + np)

Jint, if 1 ≤ i ≤ nsv and j = i + nsv

0, otherwise

. (18)

For this model, we obtain the result dvc ≤
√

2Jint
Jt

nsv. The intuition is that, if there are
more support vectors (large nsv), the model has more degrees of freedom. If the support
vectors are closer to the test data (large Jint), the model has stronger influences on the test
data. Hence, the Ising model can shatter more test data for larger Jint and nsv. On the other
hand, if the distance among test data is small (large Jt), then the strong interactions among
test data make it difficult to be shattered by the model.

3. Simulation Results

We demonstrate the classification task for two types of teacher data (linear classi-
fication boundary and non-linear classification boundary) using the proposed method.
The learning of the optimal (α, β, ε) parameters was performed by minimizing the cost
function. Since the (α, β, ε) parameters are associated with discrete ranking, we chose
gradient-free optimization instead of gradient-based optimization. We implemented the
Nelder–Mead method and particle swarm optimization (PSO) algorithms. We observed
that PSO generally gives better results; hence, we focused on the results obtained by PSO.
The hyperparameter N is the number of particles for PSO. The learned support vectors,
classification boundary and learning curves for N = 10, 50, 100 are depicted in Figure 6.
The learned parameters are shown in Table 2. In all the cases, the total number of support
vectors was fixed at nsv = 10, where five of them belonged to +1 and the other five be-
longed to−1. The α and the ε parameters were fixed to α = 3 and ε = 0.4. The optimization
was performed by minimizing the loss function Equation (3) for the optimal values of
β. We observed that the classification could be performed in all experiments. We also
observed that, for larger values of N, the optimized loss function had a lower value, but the
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test accuracy was also lower. This suggests possible overfitting for large values of N in
PSO optimization.

Figure 6. Support vector distribution, prediction probability and classification boundary from particle swarm optimization
(PSO) results. The experimental parameters and optimal values are listed in Table 2. (a) N = 10. (b) N = 50. (c) N = 100.
The small dots are the training data. The symbols bordered by white circles are the test data that were classified correctly.
The crossed circles are the test data that were classified incorrectly. The large sphere symbols are the support vectors. (d) The
learning curves for four experiments. The orange line is the Nelder–Mead experiment which does not converge. The other
three lines are PSO results. The black line is N = 10, the red line is N = 50 and the blue line is N = 100, respectively. (e) The
training and testing accuracy suggest overfitting for larger values of N.

Table 2. Particle swarm optimization results. N is the number of particles and β is the hyperparameter
being optimized. The optimization is conducted by minimizing the cross-entropy loss function
Equation (3). The optimized results are visualized in Figure 6.

N β Test Accuracy

10 1.128 0.9675
50 0.6356 0.9610

100 0.6157 0.9335

We now compare the proposed method with scikit-learn SVM. The verification results
are shown in Figure 7. We used 28 teacher data (small dots) for each verification. The detail
numbers of data used are listed in Table 3. The large sphere symbols are the support
vectors. In the classification using the proposed algorithm, we set the radius of the scan
circle to ε = 0.5 (linear data) and ε = 0.6 (non-linear data). The power of the reciprocal of
the distance among data was β = 1 and the criterion for determining the support vectors
from the ranking was α = 3. For the traditional SVM, we used scikit-learn.svm.SVC
with default values. From Figure 7, we found that both the linear classification and the
non-linear classification performed by the proposed method could give a classification
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boundary similar to that of scikit-learn. However, if we changed only the positions of
teacher data without changing the number of teacher data, there were cases where it could
not be classified well. A possible cause is that the number of teacher data was too small.
As a result, the number of support vectors was insufficient and the classification accuracy
might have been reduced. Therefore, we expected a better classification result by using a
larger number of training data. However, we noticed that quantum adiabatic calculations
required a number of qubits of nsv + nt, where nsv is the number of support vectors and nt
is the number of test data. Our experiment was limited by this restriction.

Figure 7. Classification results. The small dots are the training data. The symbols bordered by white circles are the test
data that were classified correctly. The crossed circles are the test data that were classified incorrectly by scikit-learn SVM,
but correctly predicted by the proposed algorithm. The large sphere symbols are the support vectors. (a) Linear data
classification by the proposed algorithm. (b) Linear data classification by scikit-learn SVM. (c) Non-linear data classification
by the proposed algorithm. (d) Non-linear data classification by scikit-learn SVM.
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Table 3. The number of training and testing data used in the experiment in Figure 7.

Data Total +1 Label −1 Label

Linear Training 28 13 15
Linear Testing 12 5 7
Non-linear Training 28 9 19
Non-linear Testing 12 7 5

4. Computational Complexity

We investigate the efficiency of the proposed algorithm. Table 4 shows the time
complexity of the kernel SVM and the proposed algorithm. The training algorithm is
DBSCAN; hence, the worst-case complexity is essentially the same as DBSCAN which
takes O(l2) time for computing distances among l training data points. This is better
than the standard kernel SVM, which takes the worst-case time of O(l3) for kernel matrix
inversion (empirical scaling is O(l2+δ) for some 1 > δ > 0) [22,23]. The training algorithm
has also the feature of Deutsch–Jozsa; hence, it can be quantum-enhanced by using an
n-Toffoli gate to speed it up. The speed-up does not change the worst-case scaling of
the training algorithm’s complexity. The cost of the prediction part is O((nsv + nt)ntd)
for computing the Jt and Jint matrices. This scaling seems to be worse than that of the
kernel SVM, but, in practice, this is not an issue. We could divide the test data into nb
batches and run the prediction algorithm one time for each batch. The scaling becomes
O((nsv +

nt
nb
)ntd) in this case. For example, when nb = nt (i.e., we predict one datum at the

time, as in the kernel SVM), we recover the same scaling as the kernel SVM. The cost of the
prediction part depends on finding the ground state of the Ising model, which is equivalent
to solving a QUBO problem. This, in general, could take an exponentially large amount
of time, depending on the solver algorithm. However, to make a reasonable prediction, it
is not necessary to find the optimal solution. The Ising prediction part can be solved by
classical simulated annealing, or other QUBO solver and can be potentially accelerated by
using adiabatic quantum computation or quantum annealing [34]. One might question
about the possibility to combine the DBSCAN–DJ training algorithm with the kernel SVM
prediction. However, since our training algorithm does not produce ~w and~b vectors, it
cannot be used for kernel SVM prediction.

Table 4. Worst-case time complexity for the proposed algorithm comparing to the standard kernel
SVM [22–24]. d is the feature space dimension, l is the number of training data, nsv is the number of
support vectors, nt is the number of test data and nb is the number of batches for the test data. Ta is the
annealing time to find the Ising ground state, which depends on the choice of Ising solver algorithm.

Training Prediction

Kernel SVM O(l3d) O(nsvntd)
This work O(l2d) O((nsv +

nt
nb
)ntd) + Ta

5. Conclusions

In this work, we propose a quantum-inspired algorithm for classification. The algo-
rithm has an advantage over the traditional kernel SVM in the training stage. The algorithm
can be performed on a pure classical computer and can be enhanced in a hybrid quantum–
classical computing environment. We experimentally verify the algorithm and provide
theoretical background for the algorithm. The applicability to more general classification
problems and possible improvements will be studied in future works. For example, multi-
class classifications could be treated by one-versus-rest or one-versus-one approaches [35].
The optimal value for ε could be determined by other methods [36].
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Appendix A. VC Dimension of Ising Predictor

In this appendix, we provide the derivation for the VC dimension of the Ising classifier
toy models. First, we show a simple result that one test datum can always be shattered
by one support vector; hence, there is a general lower bound dVC ≥ 1. If there is only
one support vector s1 and one test datum s2, the Hamiltonian is H = −Js1s2 − h1s1 =
−s1(Js2 + h1). Given any s2, we can choose s1 = s2 to produce the desired ground state.
Hence, one point can always be shattered by one support vector. Hence, dVC ≥ 1.

Then, we consider the fully connected Ising model H = −J ∑i<j sisj. The eigenenergy
Em = J(− 1

2 N(N − 1) + 2m(N − m)) for eigenstates with m spin-up and (N − m) spin-
down. The spectrum is a parabolic curve concave downward as a function of m. The doubly
degenerated ground states are all spin-up and all spin-down states with energy E0 =

− J
2 N(N − 1). The highest energy state occurs at m = bN

2 c with half spin-up and half
spin-down and the energy is Emax = JbN

2 c.
Now, we can consider the first prediction model defined in Equation (16). Let us

consider two configurations of prediction data: (A) half spin-up and half spin-down;
(B) all spins aligned in the same direction. To shatter the prediction data, the model has
to be able to achieve a ground state when the given test data are in the highest energy
state EA

t = Jb nt
2 c. The best possible choice of the support vectors is that all spins are

aligned in the same direction with some energy Esv. The interaction between support
vectors and test data gives the energy EA

int = −
J
2 (nt mod 2). The resulting total energy

is EA
total = EA

t + EA
int + Esv = Jb nt

2 c −
J
2 (nt mod 2) + Esv. To predict configuration (A),

EA
total must be lower than the state EB

total , where all prediction spins are aligned with all
support vectors. The total energy in the second case is EB

total = −
J
2 nt(nt − 1)− Jntnsv + Esv.

The requirement EA
total ≤ EB

total means Jb nt
2 c −

J
2 (nt mod 2) + J

2 nt(nt − 1) + Jntnsv ≤ 0.
Since only the second term is negative, this condition can never be satisfied for any nt ≥ 2.
Hence, the model can never shatter two points, so dVC ≤ 1. Since we also have dVC ≥ 1,
we conclude that dVC = 1.

Then, we consider the second relaxed model defined in Equation (18). To simplify the
derivation, we assume that nsv and nt are both even numbers. The support vectors can
be in the configuration of half spin-up and half spin-down. The spin-up support vectors
are one-to-one-coupled to the spin-up test data. The interaction energy is EA

int = −Jintnsv
and the total energy is EA

total = EA
t + EA

int + Esv = Jt
nt
2 − Jintnsv + Esv. We also have EB

total =

EB
t + EB

int + Esv = −1
2 Jtnt(nt − 1) + 0 + Esv. The requirement EA

total ≤ EB
total then implies

np ≤
√

2Jint
Jt

nsv. Hence, dVC ≤
√

2Jint
Jt

nsv. We may also consider that all support vectors are

aligned in the same direction. In this case, we have EA
total = EA

t + EA
int + Esv = Jt

nt
2 + 0+ Esv

and EB
total = EB

t + EB
int + Esv = −1

2 Jtnt(nt − 1) + Jintnsv + Esv; therefore, the upper bound
remains the same.
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