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Abstract: Interest in the use of organic electronic devices in radiation sensing applications has grown
in recent years. The numerous device configurations (e.g., diodes, thin film transistors) and potential
for improved tissue equivalence compared to their silicon-based analogues make them attractive
candidates for various radiation dosimetry measurements. In this work, a variation of the organic
thin film transistor (OTFT) is studied, in which a polymer electret is added. An OTFT electret design
can be used in either a wired or wireless configuration for in vivo dosimetry with the possibility of
real-time detection. The linearity, reproducibility, and dependence on energy of these devices were
measured through exposure to 100 kVp photons from an orthovoltage treatment unit (Xstrahl 300)
and 6 MV photons from a Varian TrueBeam medical linear accelerator. Prior to irradiation, all
transistors were programmed with a −80 V bias applied to the Gate electrode (Vg) for 3 s. In the
wireless configuration, after each delivered dose, the transfer characteristic was scanned to readout
the amount of erased charges by monitoring the drain current change. When the programmed
charge was sufficiently depleted by radiation, transistors were reprogrammed for repeated use. The
real-time readout in a wired configuration was performed by measuring the drain current with
Vg = −15 V; Vd = −15 V. The 6 MV photon beam was turned on and off at different dose rates of 600,
400, 300, 200, and 60 cGy/min to quantify the sensitivity of the device to changes in dose rate. The
wireless transistors showed a linear increase in current with increasing dose. The sensitivities for
different energies were 60 ± 5 nA/Gy at 6 MV at a dose rate of 600 cGy/min and 80 ± 10 nA/Gy at
100 kVp at a dose rate of 200 cGy/min. The sensitivity of detectors tested in a wired configuration at
Vd = −15 V; Vg = −15 V was 8.1 nA/s at a dose rate of 600 cGy/min. The principle of pentacene
OTFTs with polymer electret as radiation detectors was demonstrated. Devices had excellent linearity,
reproducibility, and were able to be reprogrammed for multiple uses as wireless detectors. The wired
transistors demonstrated an effective response as real-time detectors.

Keywords: organic semiconductor detector; organic thin film transistors with polymer electret;
radiation; radiation dosimetry

1. Introduction

Organic semiconductor dosimeters have been introduced recently [1–12]. Organic thin
film transistors (OTFT) have gained special interest in radiation dosimetry applications
as a new class of potentially tissue-equivalent radiation dosimeters. The sensitivity of
such dosimeters is generally defined as the ratio of the channel conductance change to
the absorbed dose and parameters, such as off current, on current, threshold voltage Vth,
and current ratio, can be monitored [13–16]. In a bottom-gate top-contact design with
poly(3-hexylthiophene-2,5-diyl) (P3HT) as a semiconductor on a silicon dioxide (SiO2)
dielectric layer, Raval et al. found a decrease in the on current by a factor of two, an increase
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in off current by a factor of 150, and a decrease in the mobility after a total dose of 41,000 cGy.
The threshold voltage was shifted negatively due to positive charge accumulation in the
silicon dioxide [13]. In a pentacene OTFT, after exposure to a total dose of 100 Gy, the off
current was increased 320 times, which resulted in a sensitivity of 20 nA/Gy. The threshold
voltage shift resulted in a sensitivity of 0.3 V/Gy [14]. Furthermore, the same group
introduced CuPc OTFT dosimeter after ,-irradiation, with a minimum dose of 10 cGy,
increasing to a maximum dose of 100,000 cGy. Three and five OTFTs, respectively, were
connected in parallel to increase the resolution of measuring the off current. The measured
sensitivity from off current shifts after irradiation was of 0.02/cGy for ∆IOFF/IOFF. From the
Vth shift measured at a constant drain current of 10−7 A, the sensitivity of 1.5 × 10−4/cGy
for ∆VTH/VTH was observed for a total dose of 100,000 cGy [15].

Kim et al. introduced a rubrene semiconductor OTFT as a dosimeter for electron
beam irradiation [17]. They showed that electrons can induce traps not only in SiO2
dielectric and Si/SiO2 interface, but also in the organic semiconductor. They found a
significant mobility change after irradiation of all layers of transistors and negligible
change of mobility after irradiation of dielectric only (before rubrene deposition), which
proves that radiation mainly affects the organic semiconductor. Basirico and colleagues
only partially related the reduction of charge carrier mobility with an increase of charge
carrier traps in 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene)-based field
effect transistors with organic dielectric irradiated by high energy protons [18]. The high-
energy protons induce defects in the organic dielectric and strains in the TIPS-pentacene
layer leading to mobility reduction.

The sensitivity of OTFT dosimeters can be improved by introducing additional carrier
traps to the organic polymer or dielectric material. This distribution of traps within the
band gap are associated with donor and acceptor atoms, with other impurity atoms in
the bulk of the semiconductor, or with “dangling bonds” that occur at defects or exterior
surfaces and grain boundaries. Jain et al. improved the response of OTFTs to radiation
by increasing the density of trap states by introducing impurity atoms into the bulk of
the semiconductor. The TIPS-Pentacene and Polystyrene (TP-PS) blend was used as a
semiconductor material in OTFTs for sensing gamma rays from a cobalt-60 (60Co) radiation
source [19]. Devices irradiated before deposition of the TP-PS (only dielectric layer) and
devices irradiated after deposition of the semiconductor were compared to show the
amount of charge trapped in the bulk semiconductor (TP-PS blend) and in the SiO2/TP-PS
interface. The sensitivity of the SiO2/TP-PS detectors was significantly higher than the
sensitivity of detectors irradiated before TP-PS deposition [19].

The working mechanism of OTFT dosimeters is based on the trapping of photogener-
ated charges on the interface or within the organic semiconductor upon X-ray exposure. To
increase the sensitivity of OTFT dosimeters, we explore the use of organic memory devices,
such as polymer electret OTFTs, where additional charges are stored within the bulk of the
dielectric film and at the interface between gate dielectrics and dielectric/semiconductor
channels [20–23]. In a polymer electret, the channel conductance is modulated by the elec-
trostatically trapped charges inside the polymer electret upon applying a programming or
erasing gate voltage. Programming of the polymer electret provides a built-in electric field
in the dielectric of the device. Radiation-generated carriers within the dielectric recombine
with trapped charges, reducing the built-in field.

Although dosimeters based on the electret principle are not new, published literature
in this area has focused on gas-filled, ion chamber-like devices [24–27]. To the best of our
knowledge, there are no studies dealing with dosimeters based on an OTFT electret design.
An advantage of dosimeters based on an OTFT electret design is the ability to program it for
use in either a wired or wireless configuration for in vivo dosimetry. Wired devices permit
real time detection, whereas wireless devices are significantly more convenient for clinical
use. Additionally, such devices can be reprogrammed for repeated use. In this work, we
describe the design, fabrication, and testing of pentacene OTFTs with a polystyrene electret
gate on a silicon substrate for preliminary evaluation as ionizing radiation dosimeters. We
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propose a mechanism for charging a polymer electret and demonstrate wireless and wired
detection of 100 kVp and 6 MV energies X-rays, produced with an orthovoltage X-ray unit
and a medical linear accelerator, respectively.

2. Materials and Methods
2.1. Fabrication of Pentacene Transistors

N-type, heavily As-doped Si (100) wafers (0.001 Ohm-cm) with 300 nm thermal SiO2
were washed with deionized water, acetone, and ethanol; dried with an air gun; and
treated in a UV-ozone cleaner for 20 min. The polystyrene (Sigma-Aldrich, Saint Louis,
MO, USA, Mw = 280 kg/mol) was used as purchased to make a solution of 0.5% w/v in
toluene (99.5%, Sigma-Aldrich, Saint Louis, MO, USA). The PS solution was spin coated
at 6000 rpm for 1 min and subsequently annealed on the hot plate at 90 ◦C for 60 min,
forming a second, 45 nm dielectric layer on top of the SiO2.

The pentacene (TCI America, Portland, OR, USA) was thermally evaporated through
a shadow mask onto the PS layer at 10−6 mbar vacuum at a rate of 1 A/s, with the
substrate held at 50 ◦C during evaporation to a thickness of 50 nm. The source and drain
interdigitated Au electrodes were thermally evaporated through a shadow mask onto the
pentacene layer to a thickness of 50 nm at a rate of 1 A/s.

Finally, devices were encapsulated with an evaporated Parylene C layer (1 µm). For a
1 um of Parylene-C evaporation, 1 g of Parylene-C was placed into the deposition system
and left until all of the material was deposited.

2.2. Electrical Characterization

Capacitance of a Si/SiO2 PS/Au capacitor was measured using a 4274 A multi-
frequency LCR meter. For electrical characterization of the OTFTs, a dual channel SMU
(Keithley 2614B, Tektronix, Inc., Beaverton, OR, USA) was used. All transistors were placed
in a sample holder that was 3D-printed with polylactide (PLA). Metal spring pins were
used for electrical contacts, and a triaxial cable was used to connect the devices to the SMU,
which was housed outside of the treatment vaults.

2.3. Irradiation Experiments

All devices were irradiated with 6 MV photon beams on a Varian TrueBeam (Varian
Medical Systems, Inc., Palo Alto, CA, USA) medical linear accelerator and with a kilovoltage
(100 kVp) photon beam on an Xstrahl 300 orthovoltage X-ray unit (Xstrahl Ltd., Surrey, UK).

For 6 MV irradiations, the transistors in the 3D-printed sample holder were placed at
isocenter with a 5 × 5 cm2 field size on top of a 15 cm stack of Solid Water (Sun Nuclear
Corp., Melbourne, FL, USA) for backscatter and below an additional 5 cm of Solid Water, as
shown in Figure 1a. A PLA frame with a cap was used to protect the device from physical
compression by the Solid Water and to minimize the air gap (≈1 mm) between the device
and the solid water placed on top. The source-to-detector distance was set to 100 cm for
all irradiations. The output of the accelerator under these measurement conditions was
verified using a calibrated ion chamber. Devices were exposed to doses ranging from 1 to
10 Gy of 6 MV photon beams.

In the orthovoltage unit an applicator cone of 5 cm diameter, 30 cm length was used
to deliver dose directly to the diode. Diodes were placed on top of a 15 cm stack of Solid
Water for backscatter as shown in Figure 1b. These measurement conditions differed from
the 6 MV beam due to the less penetrating nature of the 100 kVp photons compared to the
6 MV photons. Doses between 1 and 30 Gy were delivered.

For wireless readouts, all transistors were programmed with a −80 V bias applied to
the Gate electrode (Vg) for three seconds at Vd = 0 V to write the charges to the polymer
electret. Transistors were then irradiated, and after each delivered dose, the transfer
characteristic was scanned to readout the drain current change at a fixed bias to quantify
changes in the I–V curve under these specific conditions. When programmed charges were
depleted by radiation, transistors were reprogrammed for repeated use.
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The real-time readout in a wired configuration was conducted after programing with
a Vg = −80 V bias for three seconds. The drain current was measured at an electric field at
Vg = −15 V; Vd = −15 V. After the drain current was stabilized, the 6 MV photon beam was
turned on and off at different dose rates of 600, 400, 300, 200, and 60 cGy/min for each step.

3. Results
3.1. Electrical Characterisation

Pentacene OTFTs were fabricated with a bottom-gate top-contact configuration as
shown in Figure 2. A highly doped n type Si wafer was used as the substrate and gate
electrode, a 300 nm SiO2 as a gate dielectric, and approximately 45 nm of polystyrene
as a polymer electret. The thickness of Polystyrene was estimated from the capacitance
value and was in good correlation with thickness measured on profilometer (48 nm). The
capacitance (Ctot) of the SiO2/PS dielectric was 3.26 nF at 1 kHz; the capacitance of the
Polystyrene layer was 45.45 nF, as determined from the capacitance expression (1):

1
Ctot

=
1

CSiO2

+
1

CPS
(1)

Figure 3 shows the output and transfer characteristics of the Pentacene transistors.
Output characteristics were scanned at Vd = from 0 to −15 V at Vgs = 0 V, −5 V, −10 V,
and −15 V. Transfer characteristics were scanned at Vg = from 0 to −15 V, at a constant
Vd = −15 V. On/Off ratios of transistors were typically 103, and a threshold voltage of
Vth =−8.4 V was extrapolated from

√
Id vs. Vg curves at Vd = −15 V. The charge carrier

mobility µsat = 0.6 cm2V−1s−1 was derived from Id in the saturation regime at Vd = −15 V
using Equation (2):

µsat =
2L

WC

(
d
√

Idsat
dVg

)2

(2)
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The charge carrier mobility µlin = 0.79 cm2V−1s−1 was derived from Id in the linear
regime at Vd = −1 V using Equation (3):

µlin =
L

WCVd

dId
dVg

(3)

3.2. Programming and Stability

To charge the polymer electret, a −80 V bias was applied to the Gate electrode for
three seconds at Vs = Vd = 0 V, as shown in Figure 4a. The observed change in transistor
characteristics is consistent with hole trapping in the PS layer. The trapped holes on the
interface with pentacene induce the more negative shift of the threshold voltage. The small
difference in the HOMO energy level between pentacene and PS facilitated the transfer of
holes from pentacene to the polymer electret. [21] Figure 4b shows the stability of the drain
current after programming with −80 V gate bias for 3 s. The drain current was measured
at Vd = −15 V and Vg = −15 V. The data indicate that incorporated charges persist for a
length of time that is sufficient to permit the use of devices in a clinical setting.
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The retention time of the pentacene OFETs after programing with gate pulse Vg = −80 V
is shown in Figure 4b. The programming is stable on the timescales of the experiments
and is maintained for at least 1000 s. The drain current was measured at Vd = −15 V and
Vg = −15 V. This level of stability would be considered acceptable for most clinical in vivo
dosimetry applications.

3.3. Irradiation Response and Linearity

Generally, X-ray photon interactions lead to the creation of Compton electrons, photo-
electrons, or electron-positron pair production, which in turn create electron-hole pairs and
phonons. Under the influence of an applied electric field, the electron-hole pairs separate
and drift to the respective electrodes, and on the way, can recombine with the trapped
charges, leading to a shift in threshold voltage toward the positive direction, as shown
in Figure 5a. This behaviour is accompanied by an increase in drain current at a fixed
gate voltage of −15 V because of the shift induced in the IV curve. Therefore, the shift in
drain current and/or threshold voltage can be considered as radiation dose metrics. In
this work, the drain current shift at Vg = −15 V is used as a sensing metric, as shown in
Figure 5. In a wireless readout configuration, devices were programmed and scanned then
irradiated and scanned again to check the current shift in response to doses between 1
and 15 Gy (in 1 Gy increments). The data shown in Figure 5b indicate that the response is
linear, following irradiation with a 100 kVp beam. The linearity of transistor response was
also observed at variable dose steps (1 Gy to 6 Gy per step) up to an accumulated dose
of 29 Gy, as shown in Figure 5c,d. These devices, like many solid state radiation sensors,
exhibit a change in sensitivity at low dose levels which then stabilize; thus, the 1 and 2 Gy
points have not been included in the fit for this reason.

The device sensitivity can be expressed as the change in drain current per unit dose:
S = ∆Id/D. Figure 6 shows the Id vs. dose relationship following a duplicate series of
programming and irradiation steps. The data demonstrate the potential of these devices to
be reused across multiple irradiations. The sensitivity of the device used in the 6 MV beam
remained essentially unchanged. The device used for the 100 kVp irradiations showed a
small change in sensitivity, though it preserved its linear response with dose.

After irradiation with a kilovoltage 100 kVp photon beam and megavoltage 6 MV
photon beam, programed charges were depleted. Some devices were then reprogrammed
for additional experiments. For the wireless readout configuration in the megavoltage pho-
ton beam, the average sensitivity of the devices studied was approximately 60 ± 5 nA/Gy.
At 100 kVp, the sensitivity of the devices was approximately 80 ± 10 nA/Gy.
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The pentacene OTFTs with polymer electret were also investigated for wired real-
time readout of the 6 MV photon beam. After programing with a Vg= −80 V bias for
three seconds, the drain current was measured at Vd = −15 V and Vg = −15 V. Figure 7a
demonstrates the response of the detector at the electric field at Vd =−15 V and Vg = −15 V,
when the radiation beam was turned on and off with variable dose rates during the beam-on
times of 600, 200, 300, 400, and 60 cGy/min for each step, respectively. Figure 7b represents
the corresponding slope of the current measured when the radiation beam was on.
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Figure 7. Real-time readout of a 6 MV photon beam after programing with a negative Vg = −80 V
bias for three seconds; (a) the drain current was measured at Vd = −15 V and Vg = −15 V with
radiation on and off with dose rates of 600 cGy/min, 200 cGy/min, 300 cGy/min, 400 cGy/min,
and 60 cGy/min. (b) The corrected slope values of the current when the radiation beam was on at
corresponding dose rates.

The sensitivity of detectors during real-time readout was determined as the slope of
the current-time plot when the radiation was on. The data are shown in Table 1. At this
electric field, the drain current did not stabilize and continued to shift negatively as a result
of charging of the electret (i.e., programming continued during the experiment). The slope
values (in units of nA/s) reported in Table 1 were corrected with the average value of the
slope 10 s before the beam was on and after the beam was turned off to determine the
net change in slope caused by irradiation. All devices showed an approximately linear
dependence on the dose rate range from 60 cGy/min to 600 cGy/min, with an average
sensitivity of devices from 1.0 nA/s to 8.1 nA/s, respectively, at Vd =−15 V and Vg =−15 V.
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Table 1. The sensitivity of the pentacene OTFTs with PS electret during real-time readout in a wired
configuration irradiated with a 6 MV photon beam.

Dose Rates Sensitivity (nA/s) at
Vds = −15 V; Vgs = −15 V

600 cGy/min 8.1

400 cGy/min 5.7

300 cGy/min 4.2

200 cGy/min 2.8

60 cGy/min 1.0

4. Discussion

Electrets are insulating materials with a quasi-permanent electric polarization once
the incorporated charge persists for ≈109 s [28]. To charge the polymer electret used as
a second dielectric layer in OTFT, a −80 V bias was applied to the Gate electrode. The
positive charges are induced from pentacene to the polymer electret and trapped in the
electret. The trapped holes near the interface with pentacene induce a more negative shift
of the threshold voltage. Radiation can erase the trapped charges and shift the threshold
voltage back to the original state.

The sensitivity of OTFTs with PS electret dosimeters was checked in wireless and wired
readout configurations. For the wireless readout configuration, the average sensitivity of
the devices was 60 ± 5 nA/Gy for the 6 MV beam and 80 ± 10 nA/Gy for the 100 kVp
beam. This was potentially due to the influence of high Z electrodes and a silicon wafer
introducing an enhancement to the photon interactions that would not be present in a
water medium (the medium in which the dose is being reported). At lower photon energies
where the cross section for photoelectric interactions increases rapidly, the influence of
high Z metal electrodes and non-tissue equivalent substrate on the collected current may
not be negligible [10–12]. In a wired configuration, Compton current can be induced in
the wires to increase the signal in a way that might not be proportional to the dose in the
active volume of the detector. That process will not happen in the wireless configuration
since the current is not collected while the beam is on. However, the presence of the Si
wafer and the gold electrodes may induce a signal in the active volume of the device that
will not be proportional to the dose in tissue because of the relative enhancement of the
photoelectric cross section. Future work will explore the fabrication of these devices on
organic substrates and use of conducting organic polymers as electrodes to determine if
energy dependence can be reduced.

For the wired, real-time readout, the device demonstrated a linear response with
dose rate over a range of 60 cGy/min to 600 cGy/min, with the sensitivity ranging from
1.0 nA/s to 8.1 nA/s, respectively at Vd = −15 V and Vg = −15 V.

Electron-hole pairs created after X-ray photon interactions must be separated and
drift to certain electrodes to be able to erase the trapped charges. Therefore, the dosime-
ter response to radiation can be higher due to the better charge separation in a higher
electric field and smaller in a lower electric field. Applying higher biases during readout,
however, may perturb the programming of the device. Future work will investigate the op-
timization of the programming and readout cycles of these devices to maximize sensitivity
and reproducibility.

5. Conclusions

OTFTs with an electret have demonstrated potential in radiation dosimetry appli-
cations. These devices in a wireless configuration possess excellent linearity over doses
between 1 to 30 Gy at both kilovoltage and megavoltage X-ray energies, with sensitivities of
60–80 nA/Gy as the change in drain current at Vg =−15 V. For wired real-time readout, the
sensitivity of the devices was around 8.1 nA/s at a dose rate of 600 cGy/min and electric
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field at Vd = −15 V and Vg = −15 V. The devices are well-suited to in vivo dosimetry appli-
cations in radiation therapy. Advantages of the design include: options for both wireless
and wired readout configurations, repeated readout due to signal storage, and repeated
use due to the ability to reprogram the device. Moreover, these organic devices can be
fabricated on flexible substrates with an organic dielectric to contain a tissue-equivalent
composition. A similar atomic number between the dosimeter and human tissue will
enhance precision and facilitate high quality measurement of patient doses. Future work
will include the quantification of signal fade post-exposure, lifespan of the devices, and
sensitivity improvement. For example, the sensitivity of the dosimeters can potentially be
improved by increasing the trap carrier density in organic semiconductor or dielectric layer.
Similar to organic memory devices, the dielectric layer can be complex or with a floating
gate to store more charges and thus show the improved response to ionizing radiation.
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