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Abstract: Pyrophyllite (Al2Si4O10(OH)2) is a phyllosilicate often associated with quartz, mica, kaoli-
nite, epidote, and rutile minerals. In its pure state, pyrophyllite exhibits unique properties such as
low thermal and electrical conductivity, high refractive behavior, low expansion coefficient, chemical
inertness, and high resistance to corrosion by molten metals and gases. These properties make
it desirable in different industries such as refractory; ceramic, fiberglass, and cosmetic industries;
as filler in the paper, plastic, paint, and pesticide industries; as soil conditioner in the fertilizer
industry; and as a dusting agent in the rubber and roofing industries. Pyrophyllite can also serve as
an economical alternative in many industrial applications to different minerals as kaolinite, talc, and
feldspar. To increase its market value, pyrophyllite must have high alumina (Al2O3) content, remain
free of any impurities, and possess as much whiteness as possible. This paper presented a review
of pyrophyllite’s industrial applications, its important exploitable properties, and the specifications
required for its use in industry. It also presents the most effective and economical techniques for
enriching low-grade pyrophyllite ores to make them suitable for various industrial applications.

Keywords: pyrophyllite; properties; applications; specifications; enrichment; low-grade

1. Introduction

Pyrophyllite is a hydrous aluminum silicate with the chemical formula Al2Si4O10(OH)2
and is commonly associated with other minerals such as quartz, mica, kaolinite, epidote,
and rutile [1–3]. The pure pyrophyllite is composed of 28.3% Al2O3, 66.7% SiO2, and 5%
H2O on weight bases [4]. Pyrophyllite, when pure, is desirable for many applications
due to its unique properties [5]. For example, pyrophyllite provides low thermal and
electrical conductivity; high refractive behavior; a low expansion coefficient; high corrosion
resistance; low bulk density; and low hot-load deformation [6]. Therefore, this mineral is
widely used in the refractory, ceramic, fiberglass, pesticide, fertilizer, paper, paint, plastic,
rubber, cement, building-material, and pharmaceutical industries [7–9]. Furthermore, since
pyrophyllite has a lower coefficient of expansion and thermal conductivity compared to
clay, pyrophyllite is suitable for refractory applications [10,11]. Pyrophyllite, as a clay min-
eral, can be used as a substitute for kaolinite mineral group in many industrial applications,
such as in the ceramic, and pottery, and filler industries, because kaolinite mineral group
are rapidly depleting and expensive [12,13]. Furthermore, pyrophyllite can replace talc in
many applications, especially as a filler pharmaceutical and medical applications, since
pyrophyllite is safe and free from associated toxic minerals such as asbestos [14].

Determining the market price of pyrophyllite depends on the mineral’s Al2O3 content
and the presence of impurities (Table 1) [15]. Since pyrophyllite is formed via hydrothermal
alterations, it contains impurities such as iron, titanium, and alkalis [16,17]. The quality
of pyrophyllite products is greatly affected by these impurities [18]. In addition, the
presence of iron (Fe) and titanium (Ti) in pyrophyllite causes discoloration of the final
product [19]. Accordingly, when pyrophyllite is used in the ceramic industry, this mineral
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stains the product’s surface due to the presence of these impurities [12,20]. Moreover,
small amounts of iron lead to a decrease in the melting point of the refractory materials,
affect the transparency of glass products, and reduce transmission in optical fibers [1,3,8].
Therefore, the most desirable percentage of iron in the pyrophyllite ore for use in industrial
applications was determined in a previous study [8]. For example, in the refractory industry,
the ore should contain less than 1% iron; in pottery and tile manufacturing, the ore should
contain less than 0.5% iron; and in the paper industry, the ore should contain less than 1%
iron [21]. It should be noted that alkalis are also deleterious because alkalis in the form of
carbonates combine with silica (SiO2) under firing temperatures and form silicates that are
soluble in water [3]. The presence of these silicates in products is not desirable, especially
in the ceramic industry. Furthermore, alkali ions are electrically conductive [22,23].

Table 1. Pyrophyllite different grades [3,24–26].

Grade Main Specifications [3,24] Price, US$/t [24–26]

Filler grade 300 mesh, milled, 21–27% Al2O3 150–480
Ceramic grade 15–19% Al2O3 27–44

Fiberglass grade 18%-21% Al2O3 59–65
Refractory grade 18%-21% Al2O3 59–65

In 2017, a survey of the resource market showed significant growth in pyrophyllite pro-
duction. High-grade pyrophyllite is produced in Korea, Japan, and China. Moreover, Japan
and South Korea contribute more than 5% of the pyrophyllite produced globally [16,27].
Table 2 shows the world production of pyrophyllite (By Principal Countries) from 2015
to 2019. The increasing demand for high-grade pyrophyllite ores with low impurities
for industrial applications led to a scarcity in the reserves of such ore [5,6]. Despite the
presence of large quantities of low-grade pyrophyllite ores, the impurities in these ores
limit their use. Thus, there is an imperative need for techniques to improve the purity of
these low-grade ores [28].

Table 2. World pyrophyllite production in 2015–2019 in thousand metric tonnes (By principal
countries) [26].

Country 2015 2016 2017 2018 2019

Korea, Rep. of 596.86 590.00 431.458 346.76 327.62
Japan 160.00 160.00 160.00 160.00 160.00
India 167.00 170.00 170.00 170.00 170.00

Turkey 50.00 50.00 50.00 50.00 50.00
Thailand 45.50 96.80 54.00 50.92 6.50

Peru 26.21 17.87 22.76 26.67 25.03
South Africa 17.35 19.11 55.04 98.24 134.45
Saudi Arabia 40.00 42.00 44.00 46.00 48.00

Several techniques have been tested to remove impurities from industrial minerals,
such as removing iron from dolomite [29], talc [30], and kaolin [31,32]. Moreover, several
studies have used electrolysis, flotation, and electrification to remove sulfur, chlorine, iron,
and titanium from non-metallic minerals [20,28,33]. For pyrophyllite, gravity separation
techniques, flotation, magnetic separation, and leaching by ammonia and oxalic acid
have been explored [1,8,18,28,34,35]. Furthermore, microwaves combined with sequential
magnetic separation treatment have been used and considered as a promising method
for upgrading low-grade pyrophyllite ore [19,36]. Under this background, the present
study reviews the industrial applications of pyrophyllite and its required specifications in
addition to reviewing the most effective and economical methods for enriching low-grade
pyrophyllite ores.



Appl. Sci. 2021, 11, 11357 3 of 18

2. Unique Properties of Pyrophyllite

The unique chemical and physical properties of pyrophyllite make it suitable for use
in many industrial applications and as a substitute for several minerals such as talc and
kaolinite [37]. These properties are addressed in the following sections.

2.1. Chemical Properties

Pure pyrophyllite contains 66.7% SiO2, 28.30% Al2O3, and 5.00% H2O+. However,
high-purity pyrophyllite is rarely found in nature [38]. Table 3 shows the chemical com-
position of pure pyrophyllite in select deposits in South Korea and Russia [3]. One of
the most important chemical properties that gives pyrophyllite a unique advantage in
applied industries is that pyrophyllite is chemically inert and electrically neutral, making it
highly resistant to the strongest acids and alkalis [39]. Pyrophyllite crystals can be either
platy or fibrous (asbestine). Depending on their structures, these crystals break down into
plates/flakes or fibers when ground. A sheet-like structure exists in each flake or folium,
consisting of two silicate layers sandwiched by gibbsite [Al(OH)3] layers. Pyrophyllite with
a platy structure is desirable in industry, especially when used as a filler in the paint indus-
try. This platy configuration, which is caused by the silicate structure of pyrophyllite sheets,
increases resistance to film cracking, helps film dry, and promotes good dispersion [40].

Table 3. Pure pyrophyllite chemical composition in select deposits in South Korea and Russia [3,41,42].

Chemical
Composition %

South Korea Russia

Heanam Gussi Nohawado Chistugor Polar Urol Kul-Yurt-Tau

SiO2 66.0 66.2 67.6 67.0 66.9 66.5
Al2O3 28.6 28.7 28.9 28.2 27.7 28.6
FeO 0.2 0.1 0.3 NA 0.3 NA
K2O 0.3 NA * 0.1 0.1 NA 0.1

Na2O 0.2 0.2 0.2 NA NA 0.2

* NA: Not Available.

2.2. Physical Properties

Pyrophyllite has a hardness of 1–2 on the Moh’s scale of hardness. Therefore, py-
rophyllite is very soft and has a soapy and smooth surface, making it suitable for many
industrial applications, such as in the pharmaceutical industry [7,43]. The high softness
of pyrophyllite gives the mineral a high specific gravity of up to 2.9 [21]. Depending on
the content of impurities such as iron oxide, the color of pyrophyllite varies from white
to brownish green [43,44]. Moreover, it has a pearly luster in its foliated variety, with a
refractive index that ranges from 1.55 to 1.60. Pyrophyllite also features good mechanical
strength, thereby producing durable structures. Furthermore, pyrophyllite is a poor con-
ductor of electricity and has high dielectric strength. One of the most important properties
of pyrophyllite is its natural hydrophobicity [45]. This property is used to produce many
roofing products such as sealing and waterproof materials and asphalt felts. In addition,
ground pyrophyllite has a high oil absorption ability, especially the fibrous type of pyro-
phyllite. This property enables the use of pyrophyllite in the paint industry as an extender
pigment [46].

2.3. Thermal Properties

Thermal properties represent the most important characteristic of pyrophyllite and
combine the advantages of the thermal properties of both water and minerals. Like water
(and unlike metal), pyrophyllite retains heat for a long time, radiating the heat slowly
over an extended period, and, like metal, pyrophyllite heats up quickly. This behavior
occurs because pyrophyllite combines poor thermal conductivity and high specific heat.
Poor thermal conductivity means that the heat absorbed by the pyrophyllite does not
flow quickly, while high specific heat means that if a unit rises in temperature, a mass of



Appl. Sci. 2021, 11, 11357 4 of 18

pyrophyllite can absorb a large amount of heat. These properties enhance the durability of
refractory products that use pyrophyllite [12,47,48].

2.4. Pyrophyllite Thermal Phase Transformation

Pyrophyllite, when heated at different temperatures, passes through several thermal
transformation phases (Table 4). One of the most critical transformations is the conversion
of pyrophyllite into mullite at a temperature above 1200 ◦C. Mullite is an aluminum silicate
with the chemical formula Al4+2xSi2−2xO10−x and features distinctive technical properties.
These properties include a low coefficient of expansion, low thermal conductivity, and
resistance to corrosion from molten metals. Thus, mullite is used as a refractory material
and as a substitute for feldspar and silica in ceramic applications, such as in floor and wall
tiles [23,49].

Table 4. Pyrophyllite thermal phase transformation [50].

Thermal Transformation Phase Heating Temperature

Removal of water whether surface, in pores, and/or adsorbed <450 ◦C
Dehydroxylation 780 ◦C < T < 1100 ◦C

Formation of amorphous SiO2 950 ◦C < T < 1100 ◦C
Formation of mullite and crystallization of cristobalite from

amorphous SiO2
T > 1200 ◦C

3. Pyrophyllite’s Industrial Applications

Pyrophyllite is characterized by various chemical, physical, and thermal properties
that make it suitable for several industrial applications. It has wide applications as a
substitute for feldspar and silica due to its beneficial technical properties. The uses of
pyrophyllite in industry include its application as a refractory material in the refractory
industry and as a raw material in the ceramic, fiberglass, and cosmetic industries [51,52].
Moreover, pyrophyllite is used as filler in the paper, plastic, paint, and pharmaceutical
industries [53]; as a soil conditioner in fertilizer applications; and as a dusting agent in
the rubber and asphalt industries [54,55]. Figure 1 shows pyrophyllite consumption in
different industries in the US [51]. This section discusses the applications, specifications,
and grades of pyrophyllite ore required for different industries.
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3.1. Pyrophyllite as a Refractory Material
Refractory Industry

Refractory materials are resistant to high temperatures and have a melting temperature
of no less than 1580 ◦C, which is provided by pyrophyllite. Since pyrophyllite can be
converted into mullite, pyrophyllite is suitable for producing relatively low-cost refractories,
as mullite can withstand high temperatures up to 1810 ◦C [56]. Furthermore, pyrophyllite
is highly resistant to chemical attacks by many silicates and gas oxides. In addition to its
resistance to decrepitation, abrasion, and thermal shocks, pyrophyllite has high electrical
resistance, compressive strength, tensile strength, and impact strength [57]. Therefore,
pyrophyllite-based refractories are used in iron and steel furnaces for lining purposes. There
are many ways to make pyrophyllite-based refractories. For example, (1) pyrophyllite can
be crushed, bonded to sodium silicate, formed into bricks, and fired and (2) small amounts
of pyrophyllite can be combined with fireclay, zirconia, or bauxite to make high-alumina
refractories. Refractory products made from pyrophyllite include tile refractories, cement-
fired bricks, fired brick-roofing tiles, and special refractories [45,58]. The specifications,
grades, and properties of pyrophyllite required in the refractory industry are shown in
Table 5.

3.2. Pyrophyllite as a Raw Material
3.2.1. Ceramic Industry

Clay minerals are the most important components in ceramic products. Moreover,
several ceramic products can be prepared using different types of clay with different pro-
portions in the mixture and different firing temperatures [59]. Since pyrophyllite becomes
mullite under firing temperatures, which affords beneficial technical properties, pyrophyl-
lite is used as a component in certain ceramic products. Ceramic products containing
pyrophyllite include tiles, sanitary ware, white ware, and electrical components (e.g., in-
sulators, vacuum gaskets, resistors, and transducers) [12,48]. The use of pyrophyllite in
the ceramic industry improves mechanical properties, translucence, chemical resistance,
resistance to thermal shocks; this mineral also provides high dielectric strength and pro-
motes the crack-free glazing of the finished products. Further, pyrophyllite complements
the silica in raw-material mixtures. Moreover, pyrophyllite’s ability to heat quickly and
convert into mullite at a lower temperature (1100 ◦C) enables faster firing cycles than
similar materials [21].

According to the industrial specifications of ceramics, the percentages of impurities
such as iron oxide, titanium oxide, and alkalis should remain within the permissible
percentages because of their deleterious effects on products (Table 5) [51,60]. Iron and
titanium also have a coloring effect on the final product. In addition, iron oxide with
titanium forms a low-melting iron-titanate glass, which causes increased porosity in the
final product through the formation of blisters [3,21,61]. Alkalis are also deleterious because
alkalis in the form of carbonates combine with silica under firing temperatures to form
water-soluble silicates. Additionally, alkali ions are electrically conductive [62].

3.2.2. Fiber Glass Industry

Pyrophyllite is used as an alternative to feldspar in the glass industry as a source of
aluminum. Pure feldspar contains 18–19% alumina. Although pyrophyllite is used as a
source of aluminum in the glass industry, it contains high alkali content, which causes
problems in glass products, especially if the glass product is to be used in electrical and
electronic devices [37]. Naturally occurring pyrophyllite contains about 19% alumina and
is comparable to the content in feldspar. Moreover, pyrophyllite has low alkali content
compared to feldspar, supporting its use in the glass industry. Pyrophyllite is used to
prepare fiberglass batches and allows sand to be removed from the batch, thus improving
the batch-to-melt conversion efficiency and reducing conversion energy [63]. Further,
pyrophyllite provides excellent mechanical properties and low melting temperatures. The
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pyrophyllite used in fiberglass production should be high in alumina content; low in iron
oxide, titanium, and alkalis; and high in chemical stability, as shown in Table 5 [64,65].

3.2.3. Cosmetic Industry

Historically, talc has been used in the medical and pharmaceutical fields, especially in
cosmetics, due to talc’s desirable properties, such as chemical inertness and the lack of an
environment conducive to the growth of bacteria [66]. However, concerns have been raised
about talc being a carcinogen. These concerns stem from the fact that talc is naturally found
in co-deposits with asbestos [67,68]. Pyrophyllite, with its unique properties suitable for
the cosmetic industry, represents a safe alternative. Pyrophyllite has a natural white color,
chemical inertness, smoothness, softness, and hydrophobic properties. The hydrophobic
nature of pyrophyllite prevents the absorption of sweat and causes sticking. Accordingly,
high-quality pyrophyllite is used as a base in various face and body powders [9,14,21]. The
pyrophyllite used for this purpose should be very white, free from iron and other colored
minerals, and lacking grit and calcite since these properties affect the smoothness of the
final product (Table 5) [9].

3.3. Pyrophyllite as Filler

Mineral filler is ground rock added to a specific mixture to enhance performance and
properties and reduce cost. Cost is reduced by replacing more expensive components
with less expensive, more efficient mineral fillers that take up space in the product matrix.
When choosing a filler material, factors that should be considered include the filler’s
chemical properties, cost, refractive index properties, particle size and shape, color, and
hardness [69,70]. The most common mineral fillers are talc, pyrophyllite, mica, dolomite,
calcium carbonate, wollastonite, and kaolin clay [70,71]. These fillers all provide cost
savings but differ in their applications based on their properties. Due to its chemical and
physical properties, pyrophyllite is very suitable as a filler and is thus used in the paper,
plastic, paint, insecticide, and pharmaceutical industries.

3.3.1. Paper Industry

Papermakers seek to reduce costs and increase product quality through the use of
fillers. The benefits of using fillers vary according to the product to be made. The most im-
portant characteristics of the final paper product are smoothness, brightness, opacity, print
quality, dimensional stability, and low total cost. There are different types of fillers used
in the manufacture of paper and can be either natural or synthetic. Natural fillers include
ground limestone (ground chalk), kaolin, talc, and pyrophyllite, while synthetic fillers
include precipitated calcium carbonate (PCC), precipitated aluminum silicate, titanium
dioxide, and gypsum. Finely ground pyrophyllite is used as a filler in the paper industry
because it is cheap and has excellent properties that improve the product quality, such as
chemical inertness, softness, high reflectance, a strong particle shape, and hydrophobic-
ity [3,72,73]. For this grade, the pyrophyllite should have high alumina content, low silica
content, and a high degree of whiteness (Table 5).

3.3.2. Plastic Industry

Pyrophyllite is used in the plastic industry as a filler in various applications, such as in
polyvinyl chloride (PVC), low-density polyethylene (LDPE), and high-density polyethylene
(HDPE). In these applications, the various properties of pyrophyllite are exploited, such
as its chemical inertness, high specific heat, high electrical resistance, platy structure,
high oil absorption, greasiness, and good mechanical strength. These improved plastic
materials are used in garden chairs and computer cases, which require high specific heat
and electrical resistance, and under conditions that require high mechanical strength, such
as in bumpers and automobile dashboards. In all these applications, pyrophyllite improves
the smoothness and greasiness of the product. The platy structure of pyrophyllite gives
the product a smooth finish. Further, pyrophyllite’s high oil-absorption properties offer an
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excellent mixture between pyrophyllite and oleo-resinous materials [9,21,74]. Moreover,
pyrophyllite’s chemical inertness prevents a chemical reaction from occurring between
the materials. The industry in question will determine the size of the ultra-fine particles
needed to achieve uniform dispersion within the matrix; the other specifications are shown
in Table 5.

Table 5. Specifications of pyrophyllite ore for different applications.

Industry (Role) Specifications
Ref.

Chemical Physical

Refractory (as refractory material)

• SiO2 60% Max
• Al2O3 18–21%
• Fe2O3 <1%
• TiO2 1% Max
• Alkalis 1% Max
• CaO <0.5%
• MgO <0.5%
• LOI 4%

• Required size

>150 mm (special refractory).
>15 mm (tile refractory).
>5 mm (cement brick).

• Density 2.8–2.9 g/cm3

• Pyrometric Cone Equivalent
(PCE) 28–30%

[3,8,9,45]

Ceramic (as raw material)

• SiO2 64 ± 2%
• Al2O3 15–19%
• Fe2O3 1% Max
• TiO2 1% Max
• Alkalis 1% Max
• CaO <0.5%
• MgO <0.5%
• LOI 4.5 ± 1%

• Required size 44 Microns [2,3,9,22]

Fiber glass (as raw material)

• SiO2 <70%
• Al2O3 18–21%
• Fe2O3 >0.5%
• TiO2 >1%
• Alkalis >1%
• CaO <0.5%
• MgO <0.5%
• LOI 4%

• Required size −45 microns [4,9,63,65]

Cosmetic (as raw material)

• SiO2 <70%
• Al2O3 <21%
• Fe2O3 >0.5%
• TiO2 >0.5%
• Alkalis >1%
• CaO <0.5%
• MgO <0.5%
• LOI 4%

• Required size Very fine
(5 microns).

• Softness
• Smoothness

[3,14,21]

Paper (as filler)

• SiO2 55–70%
• Al2O3 21–27%
• Fe2O3 >0.5%
• TiO2 >0.5%
• Alkalis >1%
• CaO 1% Max
• MgO <0.5%

• Required size −45 microns
• Whiteness ≥ 85%
• Moisture 3% (min)
• Stable particle distribution

[3,9,21,72,75,76]

Plastic (as filler)

• SiO2 <70%
• Al2O3 21–27%
• Fe2O3 >0.5%
• TiO2 >1%
• Alkalis 1% Max
• CaO >1%
• MgO <0.5%

• Required size −5 microns
• Density 2.8–2.9 g/cm3

• Mohs hardness, 1–2
[3,9,51,72]
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Table 5. Cont.

Industry (Role) Specifications
Ref.

Chemical Physical

Paint (as filler)

• SiO2 <65%
• Al2O3 <21%
• Fe2O3 >0.5%
• TiO2 >1%
• Alkalis >0.5%
• CaO <0.5%
• MgO <0.5%

• Required size −53 microns
• Density 2.8–2.9 g/cm3

• Mohs hardness, 1–2
• Brightness < 85%
• Oil absorption < 24%

[3,9,21,77,78]

Insecticide (as filler)

• SiO2 <70%
• Al2O3 19–21%
• Fe2O3 1.5 Max
• TiO2 >1%
• Alkalis >0.5%
• CaO <0.5%
• MgO <0.5%
• LOI −7%

• Required size −75 microns [9,24,79–81]

Fertilizer (As soil conditioner) • SiO2 <70%
• Al2O3 19–21%

• Required size 5 to 0.1 mm
• Mohs hardness 1.5

[3,10,54,82,83]

Rubber (as dusting agent) • SiO2 >70%
• Al2O3 <19%

• Required size −75 microns
(Max)

• Smooth, greasy feel
[7,9,51,71,84]

Roofing (as dusting agent) • SiO2 >70%
• Al2O3 <19%

• Required size −45 microns [7,9,51,85,86]

3.3.3. Paint Industry

High-quality finely ground pyrophyllite is used in paints as a pigment extender and
suspending agent. Using pyrophyllite as an extender enhances the nature of a product by
increasing the volume of paint when mixed with the product and increases resistance to film
cracking. Moreover, pyrophyllite helps film dry and promotes good dispersion. The main
properties of pyrophyllite exploited in the paint industry as an extender are the mineral’s
high refractive index, platy structure, softness, smooth surface, white color, chemical
inertness, mechanical strength, and pearly luster. Another application of pyrophyllite in
the paint industry is as a suspending agent in powder form. The fibrous crystalline type
of pyrophyllite is used as a substitute for other, more expensive materials such as China
clay. The fine fibers of pyrophyllite trap the primary pigment particles and keep them
suspended long enough to facilitate brushing. In this way, the use of pyrophyllite ensures
the pearly appearance, luster, and smooth brightness of the painted surface. Recently, finely
ground paint-grade pyrophyllite has been used in wallboard joint cement and mastics to
increase crack resistance and control rheology [3,51,53,87]. All these applications must
consider the effects of iron oxide content, moisture, and volatile substances on the quality
of the coating, along with the other specifications shown in Table 5.

3.3.4. Insecticide Industry

Pyrophyllite is used as a carrier in insecticides because it is cheap, fluffy, nonhygro-
scopic, and neutral in pH, making pyrophyllite compatible with both acid and alkaline
ingredients. Other properties of pyrophyllite also make it desirable in this industry, such
as the mineral’s low water content, high specific gravity, and inertness. Further, pyrophyl-
lite can be easily blown through a nozzle and quickly sticks to the leaves and stems of
plants. When passing through the blower of a machine, an electrostatic charge is picked
up, which attracts pyrophyllite to the undersides of the leaves and exposed upper plant



Appl. Sci. 2021, 11, 11357 9 of 18

surfaces [9,24,54,79–81]. The most important industrial specifications for pyrophyllite to be
used in insecticides are shown in Table 5.

3.4. As a Soil Conditioner

Recently, there has been increasing global interest in using aluminosilicate minerals
to improve and maintain soil productivity. It is known that clay minerals can increase
the ability of the soil to retain nutrients. The unique properties of pyrophyllite, such
as its adsorption, ion exchange, and talc-like structure, have led to pyrophyllite’s use
in agriculture as a soil conditioner [54]. Pyrophyllite is used as a fertilizer carrier in
agriculture, where it improves the ability of the soil to hold nutrients and reduces leaching.
Furthermore, pyrophyllite, as an aluminosilicate mineral, is used to retain heavy metals in
the soil due to the mineral’s high surface area, high cation-exchange capacity, and large
pore volume, allowing heavy metals to enter and be retained in its inner layers. Several
studies have proven the ability of pyrophyllite to reduce the mobility of heavy metals in the
soil, including Cu, Mn, Zn, Ni, Pb, Cd, and Cr. Pyrophyllite also contains certain amounts
of potassium, calcium, magnesium, and iron, contributing significantly to plant growth
and development. This grade of clay should contain a nearly neutral pH when mixed with
other chemicals to provide stability over time (Table 5) [88].

3.5. As a Dusting Agent
3.5.1. Rubber Industry

Low-grade pyrophyllite is used as a dusting agent in the rubber industry to reduce
costs, lubricate molds, and prevent surfaces from adhering together during production.
Several properties of pyrophyllite are exploited in these applications, such as its platy
structure, chemical inertness, smoothness, and greasy feel, as these combined properties
affect the quality and smoothing of rubber tires [9,21,55,89]. One of the most important
specifications that must be considered is the fineness of the grains, and grit is highly
undesirable (Table 5).

3.5.2. Roofing Industry

Low-grade pyrophyllite is also used in the roofing industry. Pyrophyllite is added
to asphalt roofing materials (i.e., in shingles and roll roofing) to prevent adhesion during
manufacturing and storage and improve the materials’ resistance to weathering. The size,
fineness, chemical inertness, and high absorbency of pyrophyllite are among the most
crucial criteria to be considered for this application (Table 5) [71].

4. Enrichment of Low-Grade Pyrophyllite Ore

Since high-grade pyrophyllite ores are rare globally, to be suitable for industry, low-
grade pyrophyllite ores must be enriched to remove impurities such as Fe and Ti and
increase the alumina content [37–39,52]. Techniques for upgrading low-grade pyrophyl-
lite ore vary depending on the characterization of the outcomes; these methods include
physical separation techniques, chemical separation techniques, and separation techniques
that combine the two [8,19]. Physical separation techniques include dry/wet magnetic
separation, attrition-scrubbing, and flotation. Chemical separation techniques include
calcination/roasting and leaching using oxalic acid and an ammonia solution. Separation
techniques that combine chemical and physical separation techniques include sequential
calcination or roasting followed by magnetic separation [90–94]. These techniques are dis-
cussed based on researchers’ contributions to the processing of low-grade pyrophyllite ore.

4.1. Magnetic Separation

Fe is a component in pyrophyllite that causes a decrease in the mineral’s grade and
affects the quality of the final product in terms of coloring and mechanical properties [95,96].
A magnetic separation process is one of the most important methods for removing Fe from
low-grade pyrophyllite ore [27]. This technique can be performed either dry or wet. The
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most important parameters considered when applying the magnetic separation method for
low-grade pyrophyllite ore are the feed rate, feed% of solids, particle size, and magnetic
intensity [97]. Several studies have investigated the use of magnetic separation to remove
ferro and paramagnetic iron-bearing minerals from pyrophyllite. One study proved the
efficiency of using magnetic separation to remove Fe from low-grade pyrophyllite. The
studied samples contained pyrite and hematite phases, increased silicate content, and low
alumina content. When high-intensity magnetic separation was applied, 97.6~98.8% Fe
was removed from the treated samples [27]. In another study, dry magnetic separation with
an intensity of 4000 Gauss was applied to low-grade pyrophyllite ore samples containing
pyrite, hematite, and rutile phases (Table 6). The Fe removal rates obtained were 96% and
93% [36].

Table 6. Methods of beneficiation for low-grade pyrophyllite ores, description, and results obtained from the literature review.

Ore Country ROM Chemical
Composition Main Gangue Minerals Treatment Methods Major Concentrate

Features Ref.

South Korea

• SiO2 78.02%
• Al2O3 10.12%
• Fe2O3 2.99%
• TiO2 2.33%
• Alkalis 0.54

• Hematite and
pyrite phases

• Magnetic
separation (Dry
high intensity
magnetic
separation)

• The Fe removal rates
obtained were 96% and
93%.

[98]

India

• SiO2 63.62%
• Al2O3 21.36%
• Fe2O3 0.26%
• TiO2 0.12%
• Alkalis 5.57%

• Quartz and
feldspars

• Flotation
(Direct)

• The Al2O3 content
increased between 26.2
and 29.5%.

• The SiO2 content
decreased to 55.71%

• The product’s
brightness was
enhanced.

[10]

Turkey

• SiO2 73.41%
• Al2O3 20.64%
• Fe2O3 0.06%
• TiO2 0.42%
• Alkalis 0.92%

• Quartz and
kaolinite

• Collectorless
• Froth flotation

(Direct)

• The Al2O3 content
increased between 25
and 27%.

• The SiO2 content
decreased to 65.56%.

[94]

Turkey

• SiO2 73.41%
• Al2O3 20.64%
• Fe2O3 0.06%
• TiO2 0.42%
• Alkalis 0.92%

• Quartz and
kaolinite

• Attrition-
scrubbing

• A high Al2O3 grade of
29.33% was obtained
alongside a decrease in
SiO2 content to 61%

[94]

India

• SiO2 68.13%
• Al2O3 21.6%
• Fe2O3 2.5%
• Alkalis 1.5%

• Quartz, muscovite,
orthoclase, and
goethite

• Leaching by
oxalic acid

• The Fe removal rate
obtained was 99.3%. [8]

South Korea

• SiO2 71.64%
• Al2O3 18.56%
• Fe2O3 3.57%
• TiO2 0.57%
• Alkalis 0.48%

• Quartz and dickite.
• Euhedral cubic

pyrites were
observed

• Ammonia
leaching
solution

• A high Fe removal rate
was obtained. [35]

South Korea

• SiO2 72.37%
• Al2O3 17.93%
• Fe2O3 2.77%
• TiO2 1.39%
• Alkalis 1%

• Impurities appear
in the form of
pyrite, hematite,
and rutile.

• Kaolinite, quartz,
and dickite.

• Sequential
microwave
roasting and
magnetic
separation

• Iron and Ti were
removed from the
pyrophyllite ore with
86.3% and 68.3%
efficiency, respectively.

[19]
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4.2. Flotation

The main objective of enrichment by flotation is to recover pyrophyllite from the asso-
ciated minerals, thus increasing the Al2O3 content and decreasing the SiO2 content [98,99].
Several studies have found that pyrophyllite responds to cationic collectors because of
its lower aluminum: silica ratio, and its crystal structure contains the greatest number of
cleavable planes. The most common flotation-based cationic collector for pyrophyllite is
dodecylamine due to its satisfactory ability to collect aluminosilicate minerals at specific
pH ranges [10,100,101]. The flotation of pyrophyllite was studied using dodecylamine
and found to recover 96% of pyrophyllite. In a previous study, flotation was applied
to pyrophyllite. In this study, the main associated minerals were quartz and feldspars
(Table 6), and the collector was dodecylamine [101]. The study concluded that the Al2O3
content increased from 26.2 to 29.5%, the SiO2 content decreased from 63.62% to 55.71%,
and the product’s brightness was enhanced [10]. Flotation of the pyrophyllite was also
carried out using 3-diaminoprpopane and N-dodecyl-1, with a recovery rate higher than
80%. There were also attempts to use an anionic collector for the flotation of pyrophyllite
ore containing quartz as a gangue mineral. It was found that using sodium oleate (SO) as a
collector can improve the flotation efficiency of pyrophyllite [38].

It should be highlighted that the hydrophobic surfaces of pyrophyllite serve as nat-
ural adsorption sites for non-polar organic molecules. As a result of its hydrophobicity,
pyrophyllite can be easily separated from quartz and feldspar using collectorless flotation
and a single type of frother. Based on this phenomenon, a study was conducted using a
collectorless froth flotation to enrich pyrophyllite using Methyl Isobutyl Carbinol (MIBC)
as a frother reagent. The associated minerals were quartz and kaolinite (Table 6). The study
concluded that using collectorless flotation to upgrade the pyrophyllite with different doses
of MIBC produced an increase in Al2O3 content between 25% and 27% and decreased the
SiO2 content from 73.41% to 65.56% [94]. The XRD analysis in Figure 2 shows that the major
crystalline phase was pyrophyllite, which increased via flotation with MIBC compared to
raw pyrophyllite in which quartz was a major phase.
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In other cases, the flotation of pyrite from pyrophyllite was studied using N-dodecyl
mercaptan as a collector along with a novel depressant (i.e., glucan) to achieve the selective
flotation of pyrite and depress the pyrophyllite minerals. The studies demonstrated that a
high recovery of Fe up to 98.51% could be obtained [98,102].

4.3. Attrition-Scrubbing

The Attrition-scrubbing technique is a simple beneficiation process in which the
mineral particle is scrubbed under a high-slurry-flow speed, which also allows the particles
to be affected by each other. This attrition leads to friction and collisions between the
particles themselves. The attrition cell walls, impellers, and deflectors cause scrubbing,
abrasion, and particle disintegration. This technique has wide applications for removing
clay minerals from low-grade ores and has proven to be efficient in enriching several
mineral ores, such as uranium and sand [103]. Moreover, this technique was shown to
effectively concentrate low-grade pyrophyllite ore by significantly increasing the Al2O3
content and decreasing the SiO2 content [104]. In another study, the attrition-scrubbing
method was used to upgrade pyrophyllite ore that contains quartz and kaolinite as gangue
minerals (Table 6). The study showed a significant improvement in the Al2O3 grade, where
a very high Al2O3 grade of 29.33% was obtained for the finest size (−75 microns) compared
to 21% for the Al2O3 grade in the feed, alongside a decrease in SiO2 content to 61%,
indicating high purity rates for pyrophyllite. Further, this study indicated that the attrition-
scrubbing technique is effective for separating quartz and kaolinite from pyrophyllite [94].
Figure 3 presents an XRD analysis showing that the pyrophyllite was concentrated at a
size of 75 microns under attrition-scrubbing. The major crystalline phase was pyrophyllite,
which was increased via scrubbing compared to raw pyrophyllite, in which quartz was a
major phase. Attrition-scrubbing clearly gives excellent results in separating clay minerals
associated with pyrophyllite, which in turn improves the processing economy and energy
consumption at the level of industry.
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4.4. Leaching

In some cases, chemical treatment is used when physical treatment does not remove
iron contaminants effectively from low-grade pyrophyllite ore. Leaching is the most im-
portant chemical treatment process for clay minerals and can use either organic acids
(e.g., citric acid and oxalic acid) or inorganic acids (e.g., hydrochloric acid, sulfuric acid,
and sodium hypochlorite). However, there are limitations when using inorganic acids with
clay minerals due to environmental pollution and the contamination of products with Cl
and SO4

−2. Therefore, organic acids are more widely used. Oxalic acid is preferred for
dissolving iron contaminants in clay minerals because of its high leachability under differ-
ent conditions [105,106]. The effectiveness of oxalic acid in dissolving Fe from low-grade
pyrophyllite ore to improve the quality of pyrophyllite was investigated in previous stud-
ies [8,107,108]. The critical parameters affecting the dissolution of Fe from pyrophyllite ore
are the particle size, acid concentration, solid/liquid ratio, leaching time, temperature, and
stirring speed. A study was also conducted to remove iron from pyrophyllite using oxalic
acid leaching. The main gangue minerals were quartz, muscovite, and orthoclase (Table 6).
Fe, mostly goethite, was present as inclusions or intergranular spaces within the silicates.
When oxalic acid was used to dissolve iron using a concentration of 0.3 M, a temperature
of 90 ◦C, a pulp density of 5%, a particle size below 100 microns, and a leaching time of
60 min, it was able to remove up to 99.3% of the iron in the pyrophyllite [8]. Oxalic acid is
utilized with other chemical processes such as calcination, filtering, and drying to improve
the quality of pyrophyllite by increasing its whiteness and brightness. These processes
were applied to pyrophyllite micro powder with a particle size of 325–1200 meshes, and
whiteness of greater than 87% was obtained [107,108].

There were previous attempts to use ammonia as a solvent to improve the quality of
low-grade pyrophyllite ore via the dissolution of iron because ammonia is characterized
by a low rinsing cost, low toxicity, and high efficiency in separating iron components [35].
In a previous study, the effectiveness of using an ammonia solution to remove iron from
pyrophyllite was further investigated. The associated gangue minerals were quartz and
dickite, and euhedral cubic pyrites were also observed (Table 6). The effect of variables
such as the ammonium sulfate amount, particle size, addition of hydrogen peroxide, and
sulfuric acid concentration were investigated. The study concluded that iron removal using
an ammonia leaching solution could be effective [35].

4.5. Microwave Roasting and Magnetic Separation

Chemical separation methods are often applied alongside physical separation meth-
ods to obtain a higher-purity product [109]. Recently, the efficiency of using microwave
heating and magnetic separation in removing impurities (e.g., Fe and Ti) from pyrophyllite
was investigated and considered a promising and environmentally friendly method for
enriching low-grade pyrophyllite ore [36]. Through previous studies, the use of microwave
roasting and magnetic separation removed up to 96% of pyrophyllite impurities based on
operating variables such as irradiation time and magnetic field intensity [36]. An increase
in impurity removal efficiency was caused by phase changes of the impurities, which
became magnetized during microwave roasting. Additionally, the impurity-removal ef-
ficiency can be improved by adjusting the operating conditions related to roasting and
magnetic separation. Another study confirmed that sequential microwave roasting and
magnetic separation could remove Fe and Ti with high efficiency. Kaolinite, quartz, and
dickite were the main gangue minerals, and impurities in pyrophyllite occurred in the form
of oxide and sulfide minerals. The study results indicated that Fe and Ti were removed
from pyrophyllite with 86% and 68% efficiency, respectively, under 30 min of microwave
irradiation and a magnetic field intensity of 2000 Gauss. Moreover, the study found that
extending the microwave irradiation time and increasing the magnetic field intensity could
improve impurity-removal efficiency, especially for paramagnetic Ti impurities [19]. This
method can effectively upgrade low-grade pyrophyllite ore and clay minerals, which can
then be exploited after removing impurities. However, to use this technique in industry,
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more studies are needed to better optimize the mineral-phase changes to achieve effective
separation and energy consumption.

5. Conclusions

Pyrophyllite is a hydrated silicate mineral with unique properties that make it easily
processable and suitable as a substitute for several clay minerals, such as kaolinite, talc, and
feldspar, in many industrial applications. The properties of pyrophyllite can be exploited
to use the mineral as a refractory material in the refractory industry; as a raw material in
the ceramic, fiberglass, and cosmetic industries; as a filler in the paper, plastic, paint, and
pesticide industries; as a soil conditioner in the fertilizer industry; and as a dusting agent
in the rubber and roofing industries. These industries require particular specifications of
pyrophyllite to use the mineral, the most important of which is the grade of Al2O3 and
the content of impurities. The grade of Al2O3 and the content of impurities determine
the price of pyrophyllite, so obtaining high-alumina and low-impurity pyrophyllite is a
goal for industrial applications. Since high-grade pyrophyllite is rare worldwide, low-
grade pyrophyllite beneficiation is necessary to obtain a suitable product for industry.
Enrichment methods for pyrophyllite aim to increase the alumina content and remove
objectionable impurities (e.g., Fe and Ti). Techniques for improving low-grade pyrophyllite
ore vary depending on the characterization outcomes and include physical separation
techniques, chemical separation techniques, and separation techniques that combine the
two. The most vital and efficient physical separation methods to remove impurities from
low-grade pyrophyllite are magnetic separation, flotation, and attrition-scrubbing, mainly
when the gangue minerals are quartz and clay minerals. Previous studies found that these
physical separation techniques are more efficient and commercially viable for low-grade
pyrophyllite ores. In terms of chemical methods, dissolution with oxalic acid works to
remove iron efficiently and increase the degree of whiteness of the pyrophyllite when the
process is carried out alongside other chemical processes, such as calcination. Finally, based
on previous studies, it is clear that sequential microwave roasting with magnetic separation
is a promising, environmentally friendly, and economical method for enriching low-grade
pyrophyllite ore and other clay minerals.
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50. Erdemoğlu, M.; Birinci, M.; Uysal, T. Thermal Behavior of Pyrophyllite Ore during Calcination for Thermal Activation for
Aluminum Extraction by Acid Leaching. Clays Clay Miner. 2020, 68, 89–99. [CrossRef]

51. McGonigle, F.; Ciullo, P.A. Industrial Minerals and Their Uses: A Handbook and Formulary, 1st ed.; Ciullo, P.A., Ed.; Noyes
Publications: Westwood, NJ, USA, 1996.
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the use of pyrophyllite in ensiling maize plant. Food Feed. Res. 2020, 47, 109–118. [CrossRef]
89. Surya, I.; Muniyadi, M.; Ismail, H. A review on clay-reinforced ethylene propylene diene terpolymer composites. Polym.

Compos. 2021. [CrossRef]
90. Zhai, J.; Chen, P.; Wang, H.; Hu, Y.; Sun, W. Flotability Improvement of Ilmenite Using Attrition-Scrubbing as a Pretreatment

Method. Minerals 2017, 7, 13. [CrossRef]
91. El Gaidoumi, A.; Rodríguez, J.M.D.; Melián, E.P.; González-Díaz, O.M.; Santos, J.A.N.; El Bali, B.; Kherbeche, A. Synthesis of

sol-gel pyrophyllite/TiO2 heterostructures: Effect of calcination temperature and methanol washing on photocatalytic activity.
Surf. Interfaces 2018, 14, 19–25. [CrossRef]

http://doi.org/10.3390/min10050388
http://doi.org/10.1097/JOM.0000000000001800
http://doi.org/10.1177/1091581815586797
http://doi.org/10.1166/mex.2020.1596
http://doi.org/10.13140/RG.2.1.3559.0005
http://doi.org/10.1080/14680629.2020.1826351
http://doi.org/10.15376/biores.11.1.2886-2963
http://doi.org/10.15376/biores.15.2.2117-2118
http://nbjiahe.sell.everychina.com/p-107503386-pyrophyllite-powder-used-as-fillers-for-rubber-and-paper-production.html
http://nbjiahe.sell.everychina.com/p-107503386-pyrophyllite-powder-used-as-fillers-for-rubber-and-paper-production.html
http://doi.org/10.1002/jcc.24530
http://doi.org/10.15159/AR.20.009
http://doi.org/10.5829/idosi.mejsr.2013.18.11.12423
http://doi.org/10.1016/j.clay.2003.12.005
http://doi.org/10.5937/ffr47-29445
http://doi.org/10.1002/pc.25956
http://doi.org/10.3390/min7010013
http://doi.org/10.1016/j.surfin.2018.10.003


Appl. Sci. 2021, 11, 11357 18 of 18

92. Huang, Z.; Zhong, H.; Wang, S.; Xia, L.; Zhao, G.; Liu, G. Gemini trisiloxane surfactant: Synthesis and flotation of aluminosilicate
minerals. Miner. Eng. 2014, 56, 145–154. [CrossRef]
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