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Abstract: In this study, a structurally improved spool was designed. The diameter of one side of the
spool stem was reduced, making the spool stem into a rounded table shape. A triangular groove was
circumscribed on the step and on the same side. After liquid flow was guided through the triangular
groove, the flow direction changed. A flow component in the negative direction was generated,
which reversely impacted the liquid flow in the positive direction. The liquid flow angle at the outlet
increased; that is, jet angle increased and flow force decreased. The simulation results show that,
increasing the depth, H, of the triangular groove has a positive effect on flow-force compensation and
was conducive to the stability of the valve core. Properly increasing the groove’s bottom diameter,
D1, of the triangular groove was conducive to the stability of the spool, but when D1 was too large,
the flow force increased. The experimental results are consistent with the simulation results, which
proves that the improved structure can effectively reduce the flow force of the spool.

Keywords: steady flow force; diversion; jet angle; compensation characteristics

1. Introduction

Hydraulic technology is widely used in modern industry because of its remarkable
characteristics of large power–weight ratio, high control accuracy and good stability [1,2].
The design and optimization of hydraulic components is an important link in improving
hydraulic technology [3,4]. A hydraulic control element is one of the basic components of a
hydraulic system. It mainly refers to hydraulic control valves, including pressure valves,
flow valves and direction valves, though slide and pilot valves are commonly used. The
working principle is to control the flow and flow direction of fluid through the relative
movement of the valve core and the valve body, and directly or indirectly controlling the
movement of an actuator [5]. As important parts of a hydraulic system, the static and
dynamic characteristics of hydraulic valves have an important impact on the stability of a
hydraulic system [6,7]. In recent years, flow force has become a research hotspot of scholars
the world over. Flow force is divided into transient flow force and steady-state flow
force, in which steady-state flow force has a great influence on the static characteristics of
hydraulic valves. As early as the 1950s, Lee and Blackburn [8] researched steady-state flow
forces. Amirante et al. [9,10] analyzed the driving forces on a 4/3 hydraulic open center
directional control valve. The valve was tested with different pump flow rates, as well
as with different pressure drops. Their results showed important differences between an
open-center valve and a closed-center one. Rannow and Li [11] proposed a soft switching
approach to eliminate the majority of valves’ transition losses. The simulation results
showed that the soft switching approach has the potential to improve the efficiency of
on/off-controlled systems. They studied the hydrodynamics of a hydraulic valve based on
one-dimensional and three-dimensional CFD modeling methods to analyze the flow-force,
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pressure and velocity characteristics of hydraulic valve. Ye et al. [12] clarified the effects
of a grooved shape on flow characteristics through computational fluid dynamics (CFD)
and experimental investigations. They furthermore analyzed the changes of restricted
locations along with the openings to calculate the flow areas of the notches. The discharge
coefficient, as a function of groove geometry, flow condition, fitting coefficients and its
stable value, was deduced, proving to be quite consistent in their experimental result.
Lu [13,14] researched the effects of radial flow force and static pressure upon the lateral
force. The jet angle was discovered not only to be related to the annular orifice opening
and gap clearance but was also influenced by the flow direction and control-surface profile.

Lü et al. [15] applied a numerical simulation method based on the flow-solid inter-
action (FSI) to observe the variation of the jet force when the flapper is moving. They
established the relationship between the movement of the flapper, the flow field distri-
bution, the jet force and the inlet pressure. Lu et al. [16] the stability of two-dimensional
(2D) servo valve and its influencing factors and concluded that the steady-state flow force
generated by fluid flowing through the spiral valve port belongs to space force which is
not conducive to the stability of the valve core. Wang et al. [17] established the dynamics
characteristics of a poppet relief valve containing both a transient flow force and a steady
flow force. They observed that the flow force had an important impact on the stability of
the valve. Qu et al. [18] built a mathematical flow-force model of converged flow valves
and studied the influences of different fit clearances on the steady-state flow forces of
valves. The results showed that the fit clearance had an important influence on valves’
steady-state flow force. Zhang et al. [19] established a three-dimensional model of compu-
tational fluid dynamics by using CFD-ACE + software. The instantaneous flow field, spool
displacement, flow force and deformation of the hydraulic control directional valve with
three throttling structures were compared. The above literature shows that flow force has
an important impact on the stability of hydraulic valves. In order to ensure the operability
and accuracy of hydraulic valve, flow force must be compensated. Herakovic et al. [20]
defined the structure of a slide spool and a spool sleeve in detail and used CFD simulation
calculation to reduce the steady-state flow force by changing the geometry of the spool
sleeve and spool. Altare et al. [21] studied the 3D and 0D simulation of a conical popped
pressure-relief valve with flow-force compensation and created a dynamic model. The
model was able to determine the equilibrium position of the poppet in order to estimate the
regulated pressure as function of the flow rate. They also studied influence of the deflector
geometry on the opening force to realize the compensation of flow force. Tan et al. [22]
proposed a method aimed at reducing the steady-state axial flow force working on the
main spool of a diverged flow cartridge proportional valve; they found a rule governing
how these parameters influence flow force by a series of computational fluid dynamics
(CFD) simulations. Roberto and Massimo [23] studied the effect of poppet geometry on the
flow-pressure characteristics of a direct-acting pressure-relief valve. A dynamic 3D-CFD
model was built in ANSYS Fluent to predict the flow-pressure characteristics of the valve
for different spring preload settings and deflector geometries. Then, they calculated the
effect of the geometric parameters of the poppet and optimized the cone angle and the
position of the deflector to compensate for the flow force. Zhang and Li [24] proposed
machining an annular groove on a spool core to compensate for flow force, and analyzed
the influence of the depth of the spool sleeve’s sunk groove, the depth and width of the
annular groove of the spool core and other factors of its compensation characteristics. Dong
and Fu [25] used the Fluent simulation software to explore the effects of groove depth and
included angle of the throttling groove and the deflection the angle between the V-groove
and the symmetrical plane of the spool sleeve on the steady-state flow force acting on the
spool, as well as the flow characteristics of the spool port.

In this paper, the flow force of a hydraulic valve is analyzed, and an improved method
of spooling is proposed. Based on the force and jet angle of the spool, the influence law of
the structural parameters of the improved spool on flow-force compensation characteristics
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is further studied through simulation, and an experimental platform is built to verify the
simulation results.

2. Flow Force Analysis

Figure 1 shows the stress on the spool, and the flow force can be expressed as follows:

FF = Fτrod + Fs + Fd (1)

where FF is flow force. Fτrod is the viscous force generated by fluid acting on the spool. Fs is
the static force generated by fluid acting on the spool. Fd is the dynamic force generated by
fluid acting on the spool.
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Selecting ‘right’ as the positive direction, Fτrod , Fs and Fd can be expressed as follows:

Fτrod =
x

Arod

τroddA (2)

Fs =
x

Ar

ps2dA −
x

Al

ps1dA (3)

Fd =
x

Ar

pd2dA −
x

Al

pd1dA (4)

where τrod is the shear force generated by fluid acting on the spool stem. ps1 and ps2 are
the static pressure generated by fluid acting on the left shoulder surface 1 and the right
shoulder surface 3 of the spool. pd1 and pd2 are dynamic pressure generated by the fluid
acting on the left shoulder surface 1 and the right shoulder surface 3 of the spool. Arod is
the surface area of the spool stem. Al and Ar are the areas of the left shoulder surface 1
and the right shoulder surface 3 of the spool.

So, the flow force can be expressed as follows:

FF =
x

Arod

τroddA +
x

Ar

ps2dA −
x

Al

ps1dA +
x

Ar

pd2dA −
x

Al

pd1dA (5)

In this paper, the forces of the spool in the steady state are studied, and the transient
flow force is ignored; that is, the dynamic forces generated by the fluid acting on the spool
are ignored. The flow force of the spool can be expressed as follows:

FF =
x

Arod

τroddA +
x

Ar

ps2dA −
x

Al

ps1dA (6)
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Flow force can also be calculated by momentum theorem. Taking the fluid as the
research object, the fluid is subjected to two forces: the force exerted by the spool sleeve
and the force exerted by the spool. The force that the spool enacts on the fluid and the force
that the fluid enacts on the spool are the action and reaction forces. Therefore, the force
acting on the fluid can be expressed as follows:

Fliquid = Fsleeve − FF (7)

where Fliquid is the force on the fluid. Fsleeve is the force exerted by the sleeve on the fluid.
Fsleeve can be expressed as follows:

Fsleeve =
x

Asleeve

τsleevedA ≈ αµLq (8)

where τsleeve is the shear force generated by the spool sleeve acting on the fluid. Asleeve is
the contact area between the sleeve and the fluid. α, u and L are the geometry coefficient of
runner, fluid viscosity and effective length of the fluid, respectively. q is flow rate.

From the momentum conservation theorem:

Fliquid =
d
dt

y

C.V.

ρvxdV +
x

Ai

ρvxv × idA+
x

Ao

ρvxv × (−i)dA (9)

where ρ is fluid density, v is fluid velocity, vx is fluid axial velocity, i is the left unit normal
vector, Ai is the inlet area, Ao is the outlet area.

Ignoring the transient flow force, the following results can be obtained as follows:

Fliquid = ρqv2 cos θ2 − ρqv1 cos θ1 (10)

where v1 and v2 are the average speeds at the inlet and outlet. θ1 and θ2 are the jet angles
at the inlet and outlet. Steady-state flow force can be expressed as follows:

FF = Fsleeve − Fliquid = αµLq + ρqv1 cos θ1 − ρqv2 cos θ2 (11)

According to the above derivation, the steady-state flow force is in the direction of
closing the valve, that is, the negative direction. The steady-state flow force value depends
on the forces on the left and right shoulder of the spool and the side of the spool stem. The
jet angle at the outlet also affects the steady-state flow force.

3. Modeling and Simulation

The improved spool is shown in Figure 2. In this paper, the diameter of the right
spool stem is reduced on the basis of the original spool, so that the spool stem is in the
shape of a round platform. A triangular groove is circumscribed on the right step, which
is composed of surface 3 and surface 4. After part of the liquid flow is diverted through
surface 3 and surface 4, the flow direction changes, that is, a leftward flow component is
generated. This part of the liquid flow reversely impacts the liquid flow flowing to the
right, which increases the jet angle at the outlet and reduces the flow force. As the diameter
on the right side of the spool stem is reduced to form a round platform, the space on the
right side of the spool stem is larger. This allows more fluid to flow through surface 3
and surface 4, further reducing the flow force. As shown in Figure 3, the main structural
parameters of the improved spool are the right spool stem’s end diameter, D, the triangular
groove’s bottom diameter, D1, and the groove depth, H.
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The three-dimensional model was established in SolidWorks and imported into AN-
SYS/Fluent to simulate the fluid domain. In this paper, the initial parameters are D = 8 mm,
H = 4 mm, D1 = 16 mm. The diameter of the unmodified stem is 12 mm. Reynolds number
is 2351. There are three turbulence models K-ε, K-ω, and Reynolds stress in ANSYS/Fluent.
K-ε model is the most widely used turbulence model in the research of hydraulic valve.
Based on this model, the valve is simulated and analyzed in this paper. Turbulent kinetic
energy, K, and dissipation, ε, can be derived from the migration equation, as follows:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj
[(µ +

µt

σk
)

∂k
∂xj

] + Gk + Gb − ρε − YM + Sk (12)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj
[(µ +

µt

σε
)

∂ε

∂xj
] + C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
+ Sε (13)

where Gk is the turbulent kinetic energy generated by the average velocity gradient. Gb is
the turbulent kinetic energy generated by liquid buoyancy. YM is the fluctuation expansion
of the overall dissipation rate in the compressible turbulent flow. C1ε, C2ε and C3ε are model
constants. σk and σε are the turbulent Prandtl number of k and ε, Sk and Sε are user-defined
values. µt is turbulent viscosity, which can be expressed as follows:

µt = ρCµ
k2

ε
(14)

In this paper, the form of the pressure inlet and pressure outlet are adopted; the inlet
pressure is 3 MPa and the outlet pressure is 0.5 MPa, and the fit clearance between the
spool and the spool sleeve is ignored. The fluid density is 870 kg · m−3. The dynamic
viscosity is 0.04 kg · m−1 · s−1.

4. Simulation Results and Analysis
4.1. When H and D1 Remain Unchanged, the Influence of D Changes the Flow Force

When the fixed values H = 4 mm, D1 = 16 mm, spool opening xv = 1 mm are unchanged,
D changes within the range of 4–12 mm, where every 2 mm is a measuring point. As shown
in Figure 4, when D changes within the range of 4–12 mm, the variation range of the force
on surface 1 is very small, and the maximum difference is only 0.45 N compared with the
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unimproved spool. The direction of the force on surface 1 is vertical surface 1 to the left.
This is because the liquid flow state at the left end of the spool and the spatial distribution
of surface 1 are basically not affected by the change of the diameter at the right end, and
the pressure on the left side remains basically unchanged. As shown in Figure 5, as the
diameter of the right end decreases, the force on surface 2 gradually increases, and the force
direction is negative, that is, in the spool’s closing direction. This is because the diameters
of the left and right ends of the spool are different, forming a certain stress area on the side
surface of the spool stem, resulting in the leftward force. With decreasing diameter, the
force on the surface 2 increases.
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The forces on the improved spool surface 3 and surface 4 are shown in Figure 6. The
force on the surface 3 of the improved spool increases with the decrease of diameter, D. This
is because when H and D1 remain unchanged, the smaller the D, the greater the included
angle between surface 3 and the horizontal plane, and the greater the impact of liquid flow
on plane 3, that is, the greater the force. At the same time, changing the diameter will not
affect the spatial distribution of surface 4, and the impact of fluid on surface 4 will not
change greatly, that is, the force on surface 4 is basically unchanged. As can be seen in
Figure 6, the sum of the forces on surface 3 and surface 4 of the improved spool is greater
than that on surface 3 of the unimproved spool, and it is in the positive direction. Although
this improvement will increase the force on surface 2, the forces in the positive direction
on surface 3 and surface 4 increases more. The resultant forces on surfaces 2, 3 and 4 of
the improved spool are greater than those of the unimproved spool, and the direction of
the resultant forces is positive. This resultant force is opposed to the flow force and can
counteract part of the flow force. So, the resultant force compensates for the flow force and
is conducive to the stability of the spool. The sums of forces on surfaces 1, 2, 3 and 4 of
two spools are recorded in Table 1.
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Table 1. Sums of forces on all surfaces of the two spools.

D (mm) Unimproved Spool Improved Spool

4 −17.80 −5.78
6 −17.80 −5.36
8 −17.80 −5.25
10 −17.80 −5.44
12 −17.80 −5.45

It can be seen from Figure 7 that changing the diameter D has little effect on the
jet angle. When D changes within 4–12 mm, the difference between the maximum and
minimum jet angle is only 1.3◦. Therefore, when changing the diameter, the flow force is
mainly compensated for by the resultant forces on surfaces 2, 3 and 4. The variation of
flow force with D is shown in Figure 8. With the decrease of diameter, the flow force first
decreases and then increases. When D = 8 mm, the flow force is least, which is −5.25 N.
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4.2. When D1 and D Remain Unchanged, the Influence of H Change on Flow Force

When the fixed values D1 = 16 mm, D = 8 mm, spool opening xv = 1 mm are unchanged,
H changes within a range of 2–6 mm, and every 1 mm is a measuring point. As can be seen
from Figure 9, when H increases, the force on surface 1 basically remains unchanged, and
the difference is only 0.59 N compared with the unimproved spool. The reason for this is
the same as in the above analysis. As shown in Figure 10, since changing H does not affect
the spatial distribution of surface 2, the force on surface 2 remains basically unchanged.
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As H increases, the included angle between surface 3 and the horizontal plane de-
creases, and the impact of liquid flow on surface 3 decreases, resulting in a small increase in
force on surface 3, as shown in Figure 11. As the included angle between surface 4 and the
horizontal plane becomes smaller, the liquid flows to surface 4 after the diverting effect of
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surface 3; the impact effect on surface 4 increases, as does the force on surface 4, as shown
in Figure 12. As can be seen from Figure 13, as H increases, the reverse flow angle of the
liquid flowing through surface 4 increases, and the reversed, diverting effect of surface 4
increases. The liquid flowing in the negative direction reverses the liquid flowing in the
positive direction, resulting in an increased jet angle at the outlet.

As shown in Figure 14, the jet angle of the improved spool is significantly larger than
that of the unimproved spool. The relationship between the jet angle and H is shown in
Figure 15. As the jet angle increases, the flow force decreases, and the change of flow force
is shown in Figure 16.
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4.3. When H and D Remain Unchanged, the Influence of D1 Changes the Flow Force

When the fixed values H = 4 mm, D = 8 mm, spool opening xv = 1 mm are unchanged,
D1 changes within a range of 14–22 mm, and every 2 mm is a measuring point. As can
be seen from Figure 17, when D1 becomes larger, the force on surface 1 basically remains
unchanged. Compared with the unimproved spool, the difference is only 0.74 N, and the
reason for this is the same as in the above analyses. Since changing D1 does not affect the
spatial distribution of surface 2, it can be seen from Figure 18 that the force on surface 2
remains basically unchanged.
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With the increase of D1, the included angle between surface 3 and the horizontal plane
becomes larger, the impact of the liquid flow on surface 3 increases and the force on surface
3 increases, as shown in Figure 19. As can be seen in Figures 20 and 21, with the increase
of D1, the included angle between surface 4 and the horizontal plane decreases, the force
along the positive direction generated by the liquid flow impacting surface 4 decreases,
the reverse diversion effect of surface 4 increases within a certain range and the jet angle
also increases.
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Although the force in the negative direction on surface 2 of the improved spool
becomes larger, it can be seen, in Figure 19, that the sum of the forces on surface 3 and
surface 4 of the improved spool is larger than that on surface 3 of the unimproved spool,
both in the positive direction, and the resultant forces on surfaces 2, 3 and 4 of the improved
spool are larger than those of the unimproved spool, which produces a compensatory effect.
It can be seen from Figure 22 that the flow force first increases with the increase of D1, and
the minimum flow force is generated near D1 = 18 mm, which then decreases slightly. This
is because when D1 is too large, the included angle between surface 4 and the horizontal
plane is too small; the force in the positive direction generated by the liquid flow impacting
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surface 4 becomes smaller, and the decrease is greater than the increase of the force on
surface 3. Thus, the sum of the forces on surface 3 and surface 4 becomes smaller. When
the angle between surface 4 and the horizontal plane is too small, the reversed, diverting
effect of surface 4 is weakened, and the jet angle increases slowly or even decreases. The
relationship between jet angle and D1 is shown in Figure 23.
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5. Experimental Verification

The testbed consisted of a driving device, force sensor, data acquisition card, pressure
gauge, displacement sensor, solenoid valve, accumulator, relief valve, hydraulic pump
and throttle valve. The hydraulic circuit is shown in Figure 24 and the testbed is shown in
Figure 25. The improved spool and unimproved spool are shown in the Figure 26.
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gauge, (5) displacement sensor, (6) solenoid valve, (7) accumulator, (8) relief valve, (9) hydraulic
pump, (10) throttle valve.
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Figure 26. Improved spool and unimproved spool.

Figures 27–29 show the change of flow force with the spool opening under different
inlet and outlet pressure differences. The flow force increased greatly with increasing
opening. Compared with the unimproved spool, the flow force of the improved spool is
significantly reduced. With the increase of the opening, the decrease in flow force of the
improved spool is more obvious.
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In order to quantitatively study the flow-force compensation of the improved spool,
the compensation coefficient γ is defined as the flow-force increment per spool opening,
and γ can be expressed as follows:

γ =
∆Ff low

∆xv
(15)

Obviously, when γ > 0, it indicates that the flow force is completely offset and produces
a flow force in the opposite direction, that is, it produces over-compensation. When γ = 0,
it indicates that the flow force is completely offset. When γ < 0, it means that part of the
flow force is compensated for; and, the smaller the absolute value of γ, the more the flow
force is compensated for, and the more stable is the compensation characteristic.
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The flow forces under different pressure difference were fitted to the spool opening to
obtain various compensation coefficients, as shown in Table 2. With the increase of pressure
difference, the absolute values of γ for the two spools became larger, the compensation
effect decreased, and the compensation characteristic became unstable. However, at
the same pressure difference, the absolute value of the compensation coefficient of the
improved spool was less than that of the unimproved spool. When the pressure difference
was 1.5 MPa, the absolute value of the compensation coefficient of the improved spool was
53.3% lower than that of the unimproved spool. When the pressure difference was 3.5 MPa,
the absolute value of the compensation coefficient of the improved spool was 36.5% lower
than that of the unimproved spool; the compensation effect is more obvious in the case of
small pressure differences.

Table 2. Compensation coefficients.

Pressure Difference (MPa) Unimproved Spool Improved Spool

1.5 −6.3 −13.5
2.5 −8.9 −17.5
3.5 −12.2 −19.2

6. Conclusions

In this paper, an improved scheme was proposed to reduce flow force. We reduced the
diameter of one side of a spool stem to make shape it into a round platform. A triangular
groove was circumscribed on the step of the same side, which could control the flow
direction of the fluid. This increased the jet angle at the outlet and reduced the flow force.
As the diameter of one side of the spool stem was reduced, the space on this side of the
spool stem was also increased, such that more liquid flow could be guided through the
triangular groove, further reducing the flow force.

Further, by analyzing the structural parameters of the spool, we concluded that:

(1) When fixed, H and D1 remained unchanged and D became smaller, the flow force
first decreased and then increased. When D = 8 mm, the flow force in the negative
direction was the smallest.

(2) When fixed, D and D1 remained unchanged; with increasing H, the jet angle increased,
the flow force compensation effect increased and the flow force decreased, accordingly.
Increasing H had a positive effect on flow-force compensation and was conducive to
the stability of the spool.

(3) When fixed, D and H remain unchanged; with increasing D1, the jet angle increased
and the flow force decreased. When D1 was too large, the jet angle increased slowly
or even decreased, and the flow force increased.

Further, the flow force of the spool under different opening diameters was analyzed
experimentally. The experiment results were consistent with the simulation results, which
verifies the effectiveness of the improvement. The compensation coefficient was defined
and calculated. The calculation results show that the absolute value of the compensa-
tion coefficient of the improved spool was less than that of the unimproved spool. The
improved spool had obvious flow-force compensation characteristics. With increasing
pressure difference, the absolute value of the compensation coefficients of the two spools
became larger, the compensation effect decreased, and the compensation characteristic
became unstable. When the pressure difference was small, the compensation effect was
more apparent.
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