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Abstract: KPIs (Key Performance Indicators) in distributed systems may involve a variety of anoma-
lies, which will lead to system failure and huge losses. Detecting KPI anomalies in the system is
very important. This paper presents a time series anomaly detection method based on correlation
analysis and HMM. Correlation analysis is used to obtain the correlation between abnormal KPIs
in the system, thereby reducing the false alarm rate of anomaly detection. The HMM (Hidden Markov
Model) is used for anomaly detection by finding the close relationship between abnormal KPIs. In our
correlation analysis of abnormal KPIs, firstly, the time series prediction model (1D-CNN-TCN) is
proposed. The residual sequence is obtained by calculating the residual between the predicted
value and the actual value. The residual sequence can highlight the abnormal segment in each
data point and improve the accuracy of anomaly screening. According to the obtained residual
sequence, these abnormal KPIs are preliminarily screened out from the historical data. Next, KPI
correlation analysis is performed, and the correlation score is obtained by adding a sliding window
onto the obtained anomaly index residual sequence. The correlation analysis based on the residual
sequence can eliminate the interference of the original data fluctuation itself. Then, a correlation
matrix of abnormal KPIs is constructed using the obtained correlation scores. In anomaly detection,
the constructed correlation matrix is processed to obtain the adaptive parameters of the HMM model,
and the trained HMM is used to quickly discover the abnormal KPI that may cause a KPI anomaly.
Experiments on public data sets show that the method obtains good results.

Keywords: convolutional neural network (CNN); temporal convolutional network (TCN); anomaly
detection of KPIs; hidden Markov model (HMM); correlation analysis

1. Introduction

KPI (Key Performance Indicator) anomaly detection is a low-level core technology
in intelligent operation and maintenance. It is mainly aimed at current events. By analyzing
the KPI curve, the abnormal behaviors of KPIs (sudden increase, sudden drop, and jitter)
imply that some potential faults have occurred in related applications, such as increased
access latency, network failure, or sharp decreases in access users [1]. Due to the huge
complexity of the system, KPIs of the monitoring system are numerous and various. When
the system fails, the efficiency of manually searching for abnormal KPIs is extremely low,
and consumes a lot of manpower and material resources. The manual analysis of system
failure will also cause many misjudgments and produce certain economic losses.

In the field of intelligent operation and maintenance, KPI anomaly detection for
a multi-index system is difficult. In KPIs of the system, there may be a temporal correlation
between two indicators; that is, when a KPI is abnormal, it will cause similar fluctuations
in the trends of other KPIs in a short time. Due to the presence of numerous monitoring
indicators and complex structures in the distributed system, fluctuations will continue
to spread to more KPIs. This causes more KPI anomalies in the entire system, making
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anomaly detection and root cause analysis very complicated. The correlation analysis can
give rise to multiple similar abnormal KPIs. For example, a CPU utilization rate increase
in the system will cause a class of CPU-related KPIs (such as CPU utilization rate of a single
machine, CPU idle state time, overall CPU load, etc.) to produce anomalies. Without
using correlation analysis, it is very difficult for operation and maintenance personnel
to analyze and infer the correlation between large numbers of complex KPI anomalies.
When faults occur in large-scale distributed systems, many redundant alerts will arise that
are relevant but distract operation and maintenance personnel. Correlation analysis can
narrow the scope of the analysis of important abnormal KPIs and preclude the interference
of redundant alerts; other KPIs unrelated to the fault can also be excluded. At the same time,
correlation analysis can reduce the misstatement of abnormal KPIs after anomaly detection,
and improve the accuracy of anomaly detection results. At present, most anomaly detection
methods based on correlation analysis use baseline methods such as Pearson or Granger to
calculate raw KPIs. However, these baseline methods can only obtain the correlation value.
They do not take into account important factors such as the shift value between KPIs along
the time axis and the order of influence, which often causes the misjudgment of abnormal
KPIs, reducing the accuracy of the correlation analysis. Meanwhile, the volatility of raw
KPIs will affect correlation analysis results at abnormal points between indicators [2].

At present, most of the time series anomaly detection methods for KPIs are con-
centrated in traditional machine learning and deep learning. The processing speed and
accuracy of traditional machine learning and deep learning for KPI time series data are
ideal. Some anomaly detection methods based on supervised learning [3,4] can perform fast
and accurate anomaly detection by relying on a large number of types of anomaly-labeled
data, but they are not suitable for the actual operation and maintenance environment,
which contains fewer anomalies. The new unsupervised and semi-supervised learning
anomaly detection methods [5–8] can better adapt to the actual operation and maintenance
environment. Some models use RNN and LSTM to analyze time series data, but RNN
and LSTM have problems, such as error accumulation and the need for a lot of training
memory, which leads to some false positives and false negatives in anomaly detection.

Most existing anomaly detection methods are for large-scale anomaly detection in all
the KPI timing data in the system. However, it is difficult to analyze all abnormal data
and solve faults in a short time during intelligent operation and maintenance. In the
actual maintenance process, it is necessary to find other KPIs that cause a KPI anomaly,
so as to reduce the time of investigation and improve the processing efficiency. Therefore,
it is necessary to quickly find the class of abnormal KPIs so as to repair and eliminate
the corresponding fault. The Hidden Markov Model (HMM) [9] can capture the transition
relationship between time-dependent data, and infer corresponding hidden states by
establishing the transition relationship between observation states and hidden states,
which fulfills the requirements of the system maintenance process.

There are some problems in the current KPI anomaly detection methods:

(1) Most of the current anomaly detection methods ignore the correlation between multi-
ple indicators. Without considering this correlation, false negatives may arise. In addi-
tion, the factors considered by the correlation analysis methods are not comprehensive
enough, and the effect of the volatility of the original data on the correlation analysis
of abnormal trends is also ignored.

(2) Some time series-based anomaly detection methods are processed by RNN, LSTM,
and other models, but these models themselves have the problem of error accumula-
tion and require a lot of training memory.

(3) Most anomaly detection methods only focus on the detection of indicators with
anomalies, and ignore the influence relationship between multiple indicators. A large
number of abnormal indicators will make the operation and maintenance personnel’s
troubleshooting efficiency low.

To solve these problems, this paper first proposes a time series prediction model,
1D-CNN-TCN (1D Convolutional Neural Network and Temporal Convolutional Network),
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to predict and obtain a residual sequence of KPIs, as well as to screen abnormal KPIs
in a certain period. Then, a time series anomaly detection method for KPIs based on
correlation analysis and HMM is proposed to detect exceptional KPIs and find other KPIs
that may cause a KPI exception. The contributions of this paper are summarized as follows:

This paper considers such problems as the lack of consideration for the volatility of
original KPI data interfering with correlation and correlation factors. In the KPI anomaly
detection method, correlation analysis based on a KPI residual sequence is included.
The residual sequence can highlight an abnormal section of the time series data, and exclude
the influence of the original fluctuation trend of the time series data on the abnormal
fluctuation. At the same time, correlation analysis of KPIs is carried out by comprehensively
considering multiple factors, such as correlation value, shift value along the time axis,
and the order of influence. Through the above methods, the accuracy of the correlation
analysis is improved;

(1) This paper considers that RNN, LSTM and other methods have error accumulation
problems and require a large amount of training memory. 1D CNN (One-Dimensional
Convolutional Neural Network) and TCN (Temporal Convolutional Network) are
combined, and a time series prediction model, 1D-CNN-TCN, is proposed to predict
KPIs. The structural characteristics of 1D CNN and TCN make it possible to avoid
the gradient explosion and error accumulation caused by insufficient memory during
model training;

(2) In this paper, correlation analysis and HMM are combined to realize anomaly de-
tection in KPI time series. Using the correlation matrix constructed by correlation
analysis as the parameters, HMM can adaptively adjust the initial parameters and
quickly infer abnormal KPIs that affect specific KPIs.

The rest of this paper is organized as follows: Section 2 introduces the background
knowledge of KPI anomaly detection and the groundwork of correlation analysis. Section 3
elaborates the time series anomaly detection framework based on correlation analysis and
HMM. Section 4 evaluates the performance of the proposed framework and compares
it with related methods. Section 5 finally concludes the paper.

2. Related Work
2.1. KPI Time Series Anomaly Detection Method

With the development of artificial intelligence technology, some artificial intelligence
applications, such as intelligent operation and maintenance [1–3,5] and intelligent trans-
portation [10], have attracted researchers’ attention. Time series anomaly detection for
KPIs is a research hotspot in the field of intelligent operation and maintenance. At present,
the most popular methods of time series anomaly detection for KPIs are mainly based
on traditional statistics and machine learning models. The earliest KPI time series data
anomaly detection methods are based on traditional statistics, and the main applications
are anomaly detection based on ARIMA [11] and anomaly detection based on a Gaussian
Mixture Model [12]. However, the statistical method is based on abnormal detection with
certain assumptions. Although it has a degree of robustness, it is too dependent on as-
sumptions. With the continuous development of machine learning, the KPI time series
data anomaly detection method based on machine learning has increasing applicability.
For example, EGADS [3] proposed by Yahoo and Opprentice [4] proposed by Tsinghua Lab-
oratory both require a large number of anomaly label training models to achieve anomaly
detection in multiple types of KPIs, but also require a large number of labels that are in line
with the actual operation and maintenance situation. Li et al. [13] proposed the ROCKA
method, which is based on a clustering algorithm. Although this method does not rely
on a large number of labels for training, it has high computational complexity, and is too
dependent on the model.

With the continuous development of deep learning, many experts and scholars choose
to use deep learning models such as RNN (Recurrent Neural Networks) and LSTM (Long
Short-Term Memory) for anomaly detection [14,15]. For example, Hundman et al. [16] used
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LSTM for anomaly detection in spatial telemetry time series data. LSTM alleviates the prob-
lem of error accumulation found in RNN, but LSTM itself needs a lot of training memory
in the case of long input sequences [17]. To solve these problems, some methods [18,19] use
a Convolutional Neural Network (CNN) to replace, or work in combination with, RNN,
LSTM, and other models to analyze time series data. For example, Ren et al. [19] used SR and
CNN for anomaly detection in time series data, but CNN could not extract the dependence
between the time series. Then, Bai et al. [17] proposed a Temporal Convolutional Network
(TCN) model for processing temporal data, which reduces the error accumulation via ex-
tracting temporal features. Li et al. [20] used CPA-TCN to detect anomalies in time series
data, which overcame the gradient explosion caused by the presence of insufficient memory
in deep learning models such as RNN, and obtained dependence between time series.

2.2. Anomaly Detection of KPIs Based on Correlation Analysis

Time series anomaly detection of KPIs based on correlation analysis can solve the prob-
lem of multi-index anomaly detection. However, at present, time series anomaly detection
of KPIs based on correlation analysis ignores problems such as the volatility of KPIs itself,
and the presence of insufficient factors of correlation analysis. Usually, KPIs of the same
category are more correlated than those of different categories, and the trend in the origi-
nal data will cause misjudgment of the final results [21]. Correlation between abnormal
and normal KPIs of the same category is different due to the abnormal state, and uni-
versal correlation analysis methods cannot completely solve this problem. For example,
Jiang et al. [11] improved the Pearson method, and integrated it into anomaly detection.
Kao et al. [22] used Pearson correlation analysis to classify KPIs, and here, different models
were used for anomaly detection in different kinds of KPIs. In one method, more models
are used, but the influence of the fluctuation trend in the original data over the correlation
analysis results is not considered. The partial correlation analysis method [23] analyzes
the correlation between KPIs based only on correlation value, without considering the shift
value, the order of influence, and other factors. To accurately distinguish the fluctuations
in abnormal KPIs from normal fluctuations with different structures, Su et al. [2] proposed
the Coflux method, which can determine whether two KPIs are related to abnormal fluc-
tuations, and identify the relevant shift value and order of influence. However, due to
the large amount of data required and the complex calculation methods, this method takes
a lot of time.

At present, the anomaly detection method based on correlation analysis does not per-
form any processing after detecting all abnormal KPIs. However, for intelligent operation
and maintenance personnel, it is still necessary to identify the causes of faults from a large
number of abnormal indicators, and the efficiency is not high. The Hidden Markov Model
can derive observation data from known data by analyzing the time transfer relationship.
Some experts and scholars combine temporal data correlation analysis with HMM [24,25].
Correlation analysis results can be used as HMM parameters to adaptively adjust the HMM,
which helps avoid the limitations and low accuracy of the inference results.

To solve the above problems, this paper proposes an anomaly detection method based
on correlation analysis and HMM. The correlation analysis method in this paper can be
used to accurately detect anomalies between multiple KPIs in a short time, and HMM can
be used to infer the abnormal KPIs that affect a specific KPI from the abnormal KPIs caused
by a certain fault. This method can improve the accuracy of anomaly detection.

3. Method

This paper presents an anomaly detection method for KPI time series based on corre-
lation analysis and HMM. A time series prediction model, 1D-CNN-TCN, is proposed to
obtain residual sequences of KPI time series. Residual sequences can highlight anomalies
to improve the accuracy of anomaly screening and reduce the influence of the volatility
in the original KPI data. The correlation of abnormal KPIs is analyzed, and this generates
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a clustering matrix to realize alarm clustering. This correlation matrix is then treated as
an HMM parameter, and HMM is used for KPI anomaly detection.

3.1. Method Flow

This paper presents an anomaly recognition method. The overall framework of
the method is shown in Figure 1, which mainly includes three modules: abnormal KPI
screening, alarm clustering, and abnormal detection. Firstly, we propose a 1D-CNN-TCN
prediction model. The model is used to learn the characteristics of past data to predict
future trends. The difference between a predicted sequence and an actual observation
sequence at the corresponding time point is calculated to obtain the residual sequence.
The 3-sigma method [26] is used to identify all KPI anomalies at a known time. Based
on the residual sequences, a sliding window is added to the correlation analysis of abnor-
mal KPIs to obtain correlation values, shift values, and the order of influences. Through
comprehensive analysis of these three factors, final correlations are obtained, and the corre-
lation matrix is constructed to further realize alarm clustering. All parameters of the HMM
are determined, including the correlation matrix that has been converted to be suitable as
an HMM parameter, and the HMM is trained. Then, other KPIs are found that may cause
a certain KPI anomaly using the trained HMM model.

Figure 1. Method flow chart.

3.2. 1D-CNN-TCN Time Series Prediction Model

The Convolutional Neural Network (CNN) was first proposed by LeCun et al. [27] and
is currently mainly used in the fields of image recognition and natural language processing.
1D CNN is suitable for time series with a one-dimensional structure and has characteristics
of easy parallel, and does not induce gradient explosion or error accumulation. However,
its ability to capture temporal dependency relations between time series data points is
poor. After the continuous optimization and development of a CNN, the Time-Series
Convolutional Neural Network (TCN) has appeared. The TCN mainly deals with time-
series data, and uses dilated convolution [28] and residual connection [29] to increase
the receptive field of a network and accelerate training speed. The general network
structure of the TCN algorithm is shown in Figure 2. The TCN can make up for the 1D
CNN’s inability to capture temporal dependence, and also has other characteristics of
the 1D CNN. The use of expanded convolution not only ensures that the network covers
all effective information, but it also enables the deep network to obtain more effective
information. The formula of expanded convolution is:

F(s) = (x ∗d f )(s) =
k−1

∑
i=0

f (i) · xs−d·i (1)
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Figure 2. Basic TCN network structure.

Here, d represents expansion coefficient, and k represents convolution kernel size.
When d is 1, the extended convolution degenerates into ordinary convolution. By control-
ling the size of d, the receptive field is broadened without changing the amount of calcula-
tion.

This paper combines 1D CNN with TCN. The first layer of the 1D-CNN-TCN model
uses 1D CNN to perform convolution on local regions of the input data to obtain its
local features. There are 128 convolution kernels in 1D CNN, and the convolution kernel
size is 2. The ReLU activation function is used to realize nonlinear transformation such
that the model is more convergent. After extracting local features with the 1D CNN,
the data dimension will expand. Therefore, in the second layer, a MaxPooling layer is
used to downsample the obtained feature sequence, so as to reduce the data dimension
of the feature sequence. The pooling window size is 2. Based on the extracted local
features, the third layer uses TCN to obtain temporal features, wherein the TCN has 64
convolution kernels, the convolution kernel size is 20, the activation function is LeakyReLU,
and the dropout rate is 0.5. Finally, the final prediction time series is output through a full
connection layer Dense. The specific network structure is shown in Figure 3. Compared
with RNN and LSTM, 1D-CNN-TCN has a better prediction effect and calculation efficiency.

Figure 3. 1D-CNN-TCN network structure.

The specific steps are as follows:



Appl. Sci. 2021, 11, 11353 7 of 23

(1) Firstly, time series data are processed in a sliding window, sliding one data point
forward each time to predict the value of the next moment;

(2) Preprocessed time series are input into the 1D CNN, and the convolution kernel
performs the convolution operation on the local region of the input sequence with
a certain step length to extract the local features of the time series. Then, the Relu
activation function is used to realize the nonlinear transformation, which can make
the model converge better and assume a sparse representation so as to prevent
the gradient from disappearing;

(3) After the convolution operation, the number of feature sequences extracted increases,
resulting in the expansion of the data dimension and the increasing of the computa-
tional complexity. Through the pooling operation, the feature sequence is downsam-
pled to reduce the dimension of the feature sequence data;

(4) Based on local features extracted by the 1D CNN, TCN is used to further extract time
features;

(5) Finally, the time series predicted via the full connection layer Dense is output.

3.3. Abnormal KPI Screening Based on 1D-CNN-TCN Model
3.3.1. Data Preprocessing

It is necessary to preprocess data before using a model for prediction. The original
data obtained via system monitoring will appear lacking, and will contain too much noise.
Interference factors in these original data will affect the training of the following model,
and thus ultimately affect the accuracy of the output results. Therefore, before model
training, this paper first conducts a simple preprocessing of the original data. In this
paper, the linear interpolation method is used to fill in the missing values, which reduces
errors and their impact on the ensuing model training. After filling in missing values,
the Z-score method is used to standardize the processed data. All data are scaled to remove
the unit limitation, and to convert them into dimensionless pure values, which can improve
the reliability of the results.

3.3.2. Acquisition of Residual Sequence

In this paper, the 1D-CNN-TCN time series prediction model in Section 3.2 is used to
predict KPIs. The predicted value is compared with the actual observation data of the same
period at the corresponding time point, and residual sequences are obtained. The formula
is shown as Equation (2). When an original sequence is found to be abnormal at a given
time, the corresponding position in the residual sequence will produce large fluctuations,
different from the normal trend of the time series data. The obtained residual sequence
can increase the fluctuation trend of the anomaly, reduce the influence of the original
trend in the KPI itself, facilitate correlation calculation and anomaly detection, and make
the results more accurate.

Suppose sequence X = (x1, x2, . . . , xl) is the predicted time series, and Y = (y1, y2, . . . , yl)
is the real time series. The calculation formula for each element zi in the residual sequence
Z = (z1, z2, . . . , zl) is as follows:

zi = yi − xi , i ∈ (1, l) (2)

3.3.3. Abnormal KPI Screening Based on 3-Sigma

Since the residual sequence values of each KPI are quite different, selecting a unified
threshold can have a great impact on the accuracy of results. The 3-sigma method [26]
conducts a separate analysis of each KPI data point, and considers that 99.7% of the prob-
ability of a given data point’s value is concentrated in the interval [µ− 3σ, µ + 3σ] (µ is
the average, σ is standard deviation). The probability of exceeding this range is only 0.3%,
which is very low. Therefore, values not in the [µ− 3σ, µ + 3σ] range are anomalies.
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In this paper, the 3-sigma method is used to filter all KPIs based on the residual
sequence. All kinds of abnormal KPIs in the known time period are obtained and constitute
a set. Finally, the time range of KPIs selected as outliers is recorded.

3.4. KPI Alarm Clustering Based on Correlation Analysis

On the basis of the previously detected abnormal KPI set, this section uses Coflux [2]
to analyze the correlation of all abnormal KPIs. A correlation matrix between KPIs is
obtained. Finally, alarm clustering is realized.

3.4.1. Correlation Analysis of Abnormal KPIs

A sliding window is added to analyze the correlation of abnormal KPIs based on
Coflux [2]. The time series of two KPIs with length l after feature amplification using
the Coflux method are X = (x1, x2, . . . , xl) and Y = (y1, y2, . . . , yl). For fixed sequence Y,
we let the sequencing slide forward and backward, and calculate the inner products for
each sliding step |s| of sequence X. The process is shown in Equations (3) and (4):

Xs =


[

|s|︷ ︸︸ ︷
0, · · · , 0,x1, · · · , xl−s], f or s ≥ 0
[xl−s, · · · , xl , 0, · · · , 0︸ ︷︷ ︸

|s|

], f or s < 0
(3)

With sliding s, the cross-correlation values of sequence X and sequence Y are calculated
as follows:

CC(Xs, Y) =

l−1
∑

i=−l+1
Xs[i]×Y[i]√

(
l−1
∑

i=−l+1
X[i]× X[i])× (

l−1
∑

i=−l+1
Y[i]×Y[i])

(4)

where CC refers to cross-correlation and FCC refers to flux-based cross-correlation. This enu-
merates all s that can calculate relevant row vectors of length 2l−1. The final correlation
value, FCC, between two sequences for all values of s is selected through the following
calculation process, and the shift values of two sequences are obtained. The calculation
process is shown in Equations (5)–(7):

minCC = min
s
(CC(Xs, Y)), s1 = arg min

s
(CC(Xs, Y)) (5)

maxCC = max
s

(CC(Xs, Y)), s2 = arg max
s

(CC(Xs, Y)) (6)

FCC(X, Y) =
{

[min CC, s1], f or|max CC| < |min CC|
[max CC, s2], f or|max CC| ≥ |min CC| (7)

Through the above correlation calculation steps, we can obtain correlation value
FCC and shift value |s| between two KPIs, as well as the temporal direction of sequence
X and sequence Y, that is, the order of influence can be obtained via the positive and
negative values of s. When the FCC value is within [−1, 1], the closer the value to –1 or 1,
the stronger the correlation to sequence X or Y. The shift value |s| indicates the possible
time interval between sequences X and Y. In the actual monitoring of KPIs, if two are
affected by the same anomaly, the shift time interval is short, and so it needs to be analyzed
according to different system data. If the time interval is exceeded, this indicates that there
is no correlation between two KPIs, even if the correlation value is high. By analyzing
the above problems, this paper adds a sliding window to the Coflux method to improve
the calculation speed. The length of the sliding window is set according to the shift values
of KPI and the abnormal duration. Finally, the correlation value, shift value, and temporal
order after adding the sliding window are obtained.
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3.4.2. Correlation Matrix Construction and Alarm Clustering

This paper proposes a correlation analysis method called R-SWFCC, and constructs
a correlation matrix to realize alarm clustering between KPIs. In this paper, we set the cor-
relation score of the KPIs as CCscore, and the CCscore comprehensively considers the corre-
lation value, offset, and influence sequence. Firstly, whether sequence Y affects sequence
X is determined. If not, a CCscore = 0 is set directly; that is, the sequence of correlation
influences is incorrect. If the temporal order is correct, the correlation scores will continue
to be calculated, and the calculation formula is shown in Equation (8):

CCscore =

{
0 , i f X → Y

W1 ∗ |SWFCC|+ W2 ∗ 1
|s|+1 , i f Y → X or X ↔ Y

(8)

Here, SWFCC represents the correlation calculation results after the sliding window is
added on the basis of Coflux. W1 and W2 in Equation (8) are the two weights corresponding
to the correlation value and the shift value, respectively, obtained via the correlation calcu-
lation with the sliding window. After the analysis and test, they are set as W1 = 0.8 and
W2 = 0.2. Shift value |s| is inversely proportional to correlation, that is, the higher of shift
value, the lower the similarity between two sequences. Therefore, the shift value is used
in the form of reciprocal calculation in Equation (8). Given that CCscore ∈ [0, 1] and the de-
nominator in the fraction cannot be zero, the influence of additional values on the overall
results needs to be minimized. After comprehensively analyzing the above problems, this
paper adds 1 to the offset, and then takes its reciprocal to prevent the denominator from
being zero. Therefore, the specific form of the offset is set as 1

s+1 .
Through Equation (8), a correlation between two KPIs can be calculated, and a cor-

relation matrix can be formed. Since there may be some abnormal KPIs with very low
correlation in the correlation matrix, said correlation matrix can be classified and clustered
through alarm clustering for all abnormal KPIs in a known period. Alarm clustering is used
to classify and merge similar, associated, or identical KPIs through correlation analysis.
Alarm clustering can reduce the impact of some irrelevant alarm KPIs. After the correlation
calculation, a correlation matrix M, with high correlation among multiple sets of KPIs,
can be obtained according to the threshold of alarm clustering, and this threshold can be
obtained through experimental analysis. There are multiple sets of KPIs in the correlation
matrix, and the correlation between KPIs in each group is high, while the correlation
between groups is low. Aiming at the abnormal KPIs in a certain period, KPIs with high
correlation are selected, and their correlation is determined by the final correlation ma-
trix. The calculation formulas for the matrix and each element in the matrix are shown
in Equations (9) and (10):

M =

 m11 · · · m1N
...

. . .
...

mN1 · · · mNN

 (9)

mij = CCscoreij, i ∈ (1, N), j ∈ (1, N) (10)

There are N different KPIs in the matrix, and mij ∈ [0, 1] represents the similarity of
the transition probability between ith and jth KPIs.

3.5. HMM-Based KPI Anomaly Detection

The Hidden Markov Model is a time series probability model that includes a hidden
state and an observation state. The implicit state is the actual state within the system,
and the observation state refers to the state that can be directly observed, and which
has a correlation with the implicit state. The HMM can be described by five elements,
including two state sets and three probability matrices. These five elements are the hidden
state set S, the observation state set V, the initial observation probability π, the hidden
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state transition probability matrix A, and the observation state transition probability matrix
B. Generally, HMM is represented as λ = (A, B, π).

The Baum–Welch algorithm [30] is often used to update the parameters of the HMM.
Viterbi [31] inferred the most likely explicit state in HMM. In this paper, the Baum–Welch
algorithm is used to update the initial parameters of the HMM, and then the HMM is
trained to obtain the most relevant and abnormal of the current KPIs. Finally, the anomaly
detection of KPIs is realized. This paper uses HMM combined with the KPI correlation
matrix obtained in the previous section to realize the detection of abnormal KPIs.

3.5.1. Construction of Hidden and Observed States and State Transition Matrix

In the distributed system, when an abnormal situation occurs, each KPI may be a direct
impact indicator of another KPI; that is, each KPI may be an implicit state or an observation
state. Therefore, this paper takes KPIs as being either in the hidden state or the explicit state,
while the hidden state and the observation state are the same. However, in a real system,
there are exceptions related to user timeout and data reading, and other abnormal states.
The hidden state set S and observation state V in HMM that are applicable to a distributed
system are represented by S = V = (s1, s2, . . . , sN), where N is the number of hidden states
and observer states in the HMM. The structure of this is shown in Figure 4, where element
aij denotes the probability at time t that the hidden state of the system transfers to state sj
at time t + 1, and bi(vk) denotes the probability of the observed state vk being emitted by
the system under state i at time t.

Figure 4. Hidden Markov State Model.

After determining the observed state set and hidden state set of the model, it is
necessary to construct the state space. In this paper, the KPI data in the system are
analyzed, and the observation state is the same as the hidden state, the number of which is
N. The state transition matrix is constructed as follows:

A =

 a11 · · · a1N
...

. . .
...

aN1 · · · aNN

 (11)

Here, the elements in the final correlation score matrix obtained in the previous section
are transformed according to the requirements of ∑N

j=1 aij = 1 in the state transition matrix
of HMM. The transformation formula for each transition probability in the matrix is as
follows:

aij =
mij

mi1 + · · ·+ miN
, i ∈ (1, N), j ∈ (1, N) (12)

In this paper, according to the data characteristics of distributed systems, the observa-
tion emission matrix is the same as the state transition matrix of hidden states. The internal
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transition probability of the matrix is the same as that of the state transition matrix. The ob-
servation emission matrix is obtained as formula (13) shows:

B = A =

 b11 · · · b1N
...

. . .
...

bN1 · · · bNN

 (13)

In the state transition matrix and observation emission matrix, horizontal represents
the observable state, and vertical represents the hidden state. bij represents the probability
that the jth hidden state generates the ith observable state.

3.5.2. HMM Training

This section will train HMM λ = {A, B, π}. HMM training first estimates the maxi-
mum likelihood of model parameters based on the observed state sequence, but the time
complexity of this direct calculation dependent on the probability formula is very high.
The Baum–Welch algorithm [30] is usually used to update transition probability aij, obser-
vation probability bi(vk), and initial observation probability πi, from which the updated
hidden state probability matrix Ã, observation state probability matrix B̃, and initial ob-
servation probability π̃ are obtained. After obtaining the updated parameters, the Viterbi
algorithm [31] is used to predict the state, and the final anomaly prediction result is
obtained; that is, the abnormal KPIs that are most likely to affect this KPI. The Viterbi
algorithm uses dynamic programming to find the maximum probability path and finally
realize a prediction of the HMM, using a class of KPIs that cause anomalies related to
a certain fault. Finally, other KPIs that cause a KPI exception are obtained.

4. Experiment

In this section, we conduct a large number of experiments to evaluate the efficiency
and effectiveness of the proposed model. We select sample data of the 2021 International
AIOps Challenge [32] to evaluate the method. Firstly, the abnormal KPIs are screened,
and then a correlation matrix of the screened abnormal KPIs is constructed to realize
alarm clustering. Then, we process the correlation matrix and train the HMM to find other
anomaly KPIs that cause a certain anomaly. Finally, the obtained anomaly detection results
are evaluated using the F1-score index. The experimental environment of this paper is
the Windows 10 (64 bit) operating system. The hardware configuration is Intel(R) Core(TM)
i7-1065G7 CPU@ 1.30 GHZ 1.50 GHZ, 16 GB RBM. The development language python3.7
is used. The Development tool is PyCharm 2021. The development framework is Keras,
and the back-end engine is Tensorflow.

4.1. Abnormal Screening of KPIs Based on 1D-CNN-TCN
4.1.1. Data Set

The data were provided by the 2021 International AIOps Challenge. The number of
anomalies in the real system environment is very small, and there is a lack of abnormal
samples available to evaluate the anomaly detection method. Therefore, to evaluate
the relevant model in detail, the competition data are injected into the real environment
of large commercial banks by replaying the real fault type and injecting it in batches.
This paper uses the first and second batches of data in the pre-match stage. The first
batch of data has no anomalies, and the second batch contains abnormal KPIs that inject
faults. In this experiment, the KPI data that do not contain anomalies for two days are
used as the input of the 1D-CNN-TCN model, and the corresponding prediction data are
obtained as the output. The residuals of the abnormal KPI and prediction data injected
in the next two days are calculated to obtain the corresponding residual sequence, and this
residual sequence is screened for abnormal KPIs. This experiment selects some KPIs from
the metric.csv file provided by the competition for illustration, with the KPI names shown
in Table 1. In Table 1, the “system” section shows that the experimental data are derived
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from the b system in the AIOps competition. “kpi_name” shows the specific name of
the KPI used in the experiment. “cmbdid” shows the object of the KPI index, namely,
the service node.

Table 1. Information about KPIs used in experiments. “System” represents the system wherein each
KPI is located, “kpi_name” shows the KPI name, and “cmbdid” shows the service node whereat each
KPI is located.

System kpi_Name cmbdid

system-b OSLinux-OSLinux_NETWORK_NETWORK_TCP-FIN-WAIT Tomcat02
system-b OSLinux-OSLinux_NETWORK_NETWORK_TCP-CLOSE-WAIT Tomcat02
system-b OSLinux-CPU_CPU-0_SingleCpuUtil MG02
system-b OSLinux-CPU_CPU-0_SingleCpuidle MG02
system-b OSLinux-CPU_CPU-1_ SingleCpuidle MG02
system-b OSLinux-CPU_CPU-1_SingleCpuUtil MG02
system-b OSLinux-CPU_CPU_CPUUserTime MG02
system-b OSLinux-CPU_CPU_CPULoad MG02
system-b OSLinux-CPU_CPU_CPUidleutil MG02
system-b OSLinux-CPU_CPU_CPUCpuUtil MG02
system-b OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKTps Tomcat03
system-b OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKPercentBusy Tomcat03
system-b OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKWTps Tomcat03
system-b OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKReadWrite Tomcat03
system-b OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKWrite Tomcat03
system-b OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKBps Tomcat03
system-b OSLinux-CPU_CPU_CPUidleutil Tomcat03
system-b OSLinux-OSLinux_MEMORY_MEMORY_MEMUsedMemPerc Tomcat03

The 2021 AIOps competition data were generated based on a simulation of large
commercial banks, and include the metric data file, the trace data file, the log data file,
and the specific description of the injected fault. The KPI data used in this paper are from
the metric file in the competition data set. In the metric file, the time stamp, service node
name, KPI name, and the specific values of each KPI under different timestamps are given.
An example of the format of the monitoring index data is shown in Table 2. In the fault
label file, the specific fault time, duration, fault category, fault content, fault service node,
and specific root cause index of the injected fault are described in detail. Due to the massive
content of the fault label file, the relevant information on fault time, duration, service node,
and specific root cause index of the fault label of the two periods addressed in this paper
are selected for display. These details can be seen in Table 3.

Table 2. Example of monitoring indicator data format.

Timestamp cmdb_id kpi_Name Value

1611224141 os_001 cpu_idle 80
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Table 3. Part of the fault tag file. The table contains two abnormal periods, each of which contains
multiple abnormal indicators suspected as root cause indicators.

Time Duration cmbdid Anomalous Indicator

8:39:00-
04-03-2021 300 MG02

OSLinux-CPU_CPU-3_SingleCpuUtil;
OSLinux-CPU_CPU-0_SingleCpuidle;
OSLinux-CPU_CPU-0_SingleCpuUtil;
OSLinux-CPU_CPU-1_SingleCpuidle;
OSLinux-CPU_CPU-1_SingleCpuUtil;
OSLinux-CPU_CPU-3_SingleCpuidle;

OSLinux-CPU_CPU_CPUCpuUtil;
OSLinux-CPU_CPU_CPUidleutil;
OSLinux-CPU_CPU_CPULoad;

OSLinux-CPU_CPU_CPUUserTime;

19:49:00-
04-03-2021 300 Tomcat03

OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKTps;
OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKWTps;
OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKWrite;

OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKReadWrite;
OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKBps;

OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKPercentBusy;

4.1.2. Results of Anomaly Screening Based on 1D-CNN-TCN

The KPI indexes in Table 1 are filtered to derive KPI indicators with overall anomalies
at known times. The anomalies for each KPI are shown in Figure 5. The red annotation
in the image shows the suspected anomaly point, and the blue line segment is the starting
time of the injection anomalies. In the anomaly detection diagram in Figure 5, the x-axis
represents the time in seconds, and the y-axis represents the value of each indicator at
each time point. After using the method of this paper to screen the indicators in Table 1,
the results are compared with the abnormal time points of specific KPIs given by the com-
petition. If 3-sigma screens out abnormal KPI points, the KPI anomaly is considered
in the whole period.

Figure 5a–s correspond to the abnormal screening results of the 18 KPIs given in Table 1.
In general, abnormal KPIs with the same cause usually show anomalies within the same
short period. The red node represents some of the abnormal points in the KPI abnormal
period, and the two blue lines represent the starting periods of the two different faults
given in the game fault label file. The abnormal times selected in Figure 5c–h,j are closer to
the starting period of the first fault (the first blue line), indicating that these seven KPIs
are anomalies caused by the first fault. The abnormal times selected in Figure 5a,k–p are
closer to the starting time of the second fault (the second blue line), indicating that these
seven KPIs are anomalies caused by the second fault. The abnormal periods of the 14
selected abnormal KPIs are near to the abnormal periods of corresponding KPIs in the fault
label file given by the 2021 AIOps competition, so the abnormality screening is accurate.
In Figure 5b,i, the time corresponding to the anomalies is too far from the starting time of
the two faults, and so it cannot be considered that these two KPIs are caused by the faults
marked by the blue line in the figure. The KPIs corresponding to Figure 5r,s do not filter out
outliers, and this conforms to the instructions given by the fault tag file. Figure 5 shows that
the abnormal period detected in Figure 5i does not conform to the description in the fault
label file. The abnormal KPI results obtained by abnormal screening are not accurate
enough. It is necessary to further analyze the abnormal KPIs screened via correlation
analysis to improve the accuracy of detection. At the same time, the abnormal influence
sequence between multiple indicators can be obtained.
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Figure 5. Cont.
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Figure 5. KPI curve of abnormal nodes detected during fault period. (a–r) The anomaly detection results of 18 KPIs in two
periods. The red nodes represent the anomaly point, and the two blue lines represent the starting times of two different faults.

In the experiment, after repeated tests, under the premise of ensuring a good balance
between time consumption and detection effect, the final hyperparameters are determined
as shown in Table 4. For example, the process of kernel size parameter adjustment is shown
in Figure 6. We evaluated different kernel sizes through MAE, and finally determined
the kernel size to be 20.

Table 4. The hyperparameters and value of the 1D-CNN-TCN.

Hyperparameter Name Value

kernels of CNN 128
kernel sizes of CNN 2

kernels of TCN 64
kernel sizes of TCN 20
number of iterations 100

dropout rate 0.5
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Figure 6. MAE under different kernel sizes.

4.1.3. Experimental Comparison

(1) Ablation experiment

In this paper, 1D-CNN-TCN is compared with models using only 1D CNN and only
TCN for ablation experiments. The evaluation results using the 2021 AIOps Challenge data
show that 1D-CNN-TCN had a better effect than 1D CNN and TCN. We used RMSE, MAE,
and MAPE to evaluate these three methods. The performance comparison of the three
prediction methods used on this dataset is shown in Table 5, and the best results are marked
in bold.

Table 5. The proposed 1D-CNN-TCN prediction model is compared with related models. The table
shows the evaluation results of the 1D-CNN-TCN, 1D CNN, and TCN ablation experiments using
RMSE, MAE, and MAPE, and the evaluation results of 1D-CNN-TCN compared with a novel
LSTM [33] and CNN-LSTM [34] using RMSE, MAE, and MAPE.

RMSE MAE MAPE

1D CNN only 3.8277 3.0511 12.1083
TCN only 3.0243 2.2045 8.2456

A novel LSTM [33] 3.5280 2.5353 10.5672
CNN-LSTM [34] 2.5629 2.6272 8.1959
1D-CNN-TCN 2.2100 2.2004 7.9307

In Table 5, we can see that the 1D-CNN-TCN prediction method achieves the best
performance among the three methods. 1D CNN alone cannot effectively capture the de-
pendencies between time series, and only TCN can derive all the time series features, but its
range is too large. Therefore, 1D-CNN-TCN first uses 1D CNN to obtain the local features
of the input data, and then it uses TCN to obtain the time-dependent features, meaning
the prediction results will be more accurate.

1D CNN is commonly used in 2D image data processing, and its time complexity
is expressed as O(k · n · d2), where k is the convolution kernel size, n is the sequence
length, and d is the dimension [35]. Since 1D CNN cannot effectively obtain temporal
dependencies, its time series prediction results are not ideal. In contrast, TCN combines
one-dimensional full convolution and causal convolution, and also uses residual network
and dilated convolution, so its time complexity will be higher. However, TCN can derive
the long-term temporal dependencies of time series data, and there is no problem of error
accumulation. Its performance is significantly improved compared with LSTM and 1D
CNN. In addition, this paper adds a layer of 1D CNN to obtain local features based on
TCN, which can reduce the analysis of some secondary features and improve the efficiency
of TCN processing. At the same time, in this paper, 1D-CNN-TCN achieves the fastest
convergence rate compared with 1D CNN, which can make up for the problem of its high
time complexity.
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(2) Results and Analysis

We also compare 1D-CNN-TCN with novel LSTM [34] and CNN-LSTM [35] models,
and the results are shown in Table 5. The novel LSTM consists of an LSTM network and
a fully connected layer. The ability of LSTM to obtain longer time dependence is poor, so its
experimental results are poor. CNN-LSTM uses LSTM instead of the TCN used in the 1D-
CNN-TCN method. From the experiments, we can see that the TCN achieves better results
for longer time series data prediction, while 1D CNN can capture local features, which is
beneficial to the prediction effect of 1D-CNN-TCN.

Through experiments, we found that when only using CNN to predict, the time
is the shortest, but the effectivity of CNN is far less than that of the novel LSTM and
other time series prediction methods. The running time of 1D-CNN-TCN in this paper
mainly depends on the running time of TCN. In general, the running time of 1D-CNN-
TCN is longer than that of the novel LSTM, but there is no significant difference. This is
because LSTM requires much training memory to increase the running time. However,
the convergence rate of 1D-CNN-TCN in this paper is the fastest, and the ideal prediction
effect can be achieved with fewer iterations.

4.2. Construction of Correlation Matrix

The correlation score of the KPI residual sequence is derived after abnormal KPI
screening, and then the correlation matrix is constructed to realize alarm clustering. In this
experiment, we divided the KPIs screened in the previous section into two groups for
correlation calculation and correlation matrix construction. The specific KPIs of each group
of experiments are shown in Tables 6 and 7. In Tables 6 and 7, the KPI numbers in the first
column show each of the KPI indexes in the experiment. The meanings of “kpi_name”
and “cmdbid” in the second and third columns are the same as those in the second and
third columns in Table 1. For each group of KPIs, the F1-score (see Formula (14)–(16))
is used to evaluate the effectiveness of R-SWFCC in this paper as well as in those of
Pearson [22] and Coflux [2]. Table 8 describes FP (false positive) and FN (false negative)
in the correlation analysis.

Table 6. KPIs used in the first set of correlation analysis.

KPI Number kpi_Name cmdbid

KPI 1 OSLINUX-CPU_CPU_CPUUSERTIME MG02
KPI 2 OSLinux-CPU_CPU-1_SingleCpuUtil MG02
KPI 3 OSLinux-CPU_CPU-0_SingleCpuUtil MG02
KPI 4 OSLinux-CPU_CPU-0_SingleCpuidle MG02
KPI 5 OSLinux-CPU_CPU_CPULoad MG02
KPI 7 OSLinux-CPU_CPU-1_SingleCpuidle MG02
KPI 8 OSLinux-CPU_CPU_CPUCpuUtil MG02
KPI 9 OSLinux-CPU_CPU_CPUidleutil MG02
KPI 10 OSLinux-OSLinux_NETWORK_NETWORK_TCP-FIN-WAIT Tomcat02
KPI 11 OSLinux-OSLinux_NETWORK_NETWORK_TCP-CLOSE-WAIT Tomcat02
KPI 12 OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKWTps Tomcat03
KPI 13 OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKReadWrite Tomcat03

Table 7. KPIs used in the second set of correlation analysis.

KPI Number kpi_Name cmdbid

KPI 1 OSLINUX-OSLINUX_NETWORK_NETWORK_TCP-FIN-WAIT Tomcat02
KPI 2 OSLinux-OSLinux_NETWORK_NETWORK_TCP-CLOSE-WAIT Tomcat02
KPI 3 OSLinux-CPU_CPU_CPUUserTime MG02
KPI 4 OSLinux-CPU_CPU-1_SingleCpuUtil MG02
KPI 5 OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKTps Tomcat03
KPI 7 OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKPercentBusy Tomcat03
KPI 8 OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKWTps Tomcat03
KPI 9 OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKReadWrite Tomcat03
KPI 10 OSLinux-OSLinux_LOCALDISK_LOCALDISK-sdb_DSKWrite Tomcat03
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Table 8. Descriptions of FP and FN in correlation.

FP/FN Ground Truth Output

Existence
FP X ∼ Y X ∼ Y
FN X ∼ Y X ∼ Y

In Table 8, if the final correlation between X and Y is higher than the threshold, then X~Y.
Otherwise, X 6∼Y. We use the F1-score to evaluate the effectiveness of our method, as well as
those of Coflux and Pearson. The calculation of the F1-score is shown in Equations (14)–(16):

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1− score =
2× Precision× Recall

Precision + Recall
(16)

Table 9 shows the best F1-scores of the three methods employed on two datasets.
In these two datasets, the performance of proposed method is better than that of the other
two methods. In the first set, the highest F1-score is 0.9162, which is derived from
the method in this paper, and in the second set, the highest F1-score is 0.9020, again
derived from the method in this paper.

Table 9. The best F1-scores of three algorithms for two sets of data.

Data Set Algorithms F1-Score

The first set
R-SWFCC 0.9162

Coflux 0.9043
Pearson 0.8848

The second set
R-SWFCC 0.9020

Coflux 0.8909
Pearson 0.7209

Figure 7 shows the times required for the correlation analyses of SWFCC, Coflux,
and Pearson for different lengths of KPIs. It can be seen from the figure that the calcu-
lation speed of SWFCC is in the mid-range, and the calculation time increases linearly with
the increase in KPI data length. The Pearson method is faster and the Coflux method is slower.

Figure 7. Calculation time of three of the methods under different KPI lengths. In the figure,
the calculation speed of the SWFCC method proposed in this paper is close to that of Pearson,
and the calculation speed of the Coflux method is slower.
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A thermal diagram is used to show the specific correlation, as in Figure 8. A thermal
diagram can show experimental results more clearly and intuitively. The matrix in Figure 8a
is a heat map of the correlation matrix calculated by the first set of experimental KPIs
in Table 6, and that in Figure 8b is a heat map of the correlation matrix calculated by
the second set of experimental KPIs in Table 7. The value at (x, y) in the graph represents
the absolute value of correlation between KPI x and KPI y. The correlation between each
KPI can be more clearly shown using a thermal diagram. The higher the correlation
between two KPIs, the deeper the blue in the corresponding thermal diagram; conversely,
the lighter yellow in the corresponding thermal diagram means a lower correlation. It can
be seen from the figure that, in the first group of experiments, the correlations between
KPI 1, KPI 2, KPI 3, KPI 4, KPI 5, KPI 6, KPI 7, KPI 8, KPI 9, and KPI 10 are high, shown
by the deep blue rectangle. In the second group of experiments, the correlations between
KPI 5, KPI 6, KPI 7, KPI 8, KPI 9, and KPI 10 are high, again presented by a deep blue
rectangle. Therefore, we selected KPIs with exceptions and high correlations in this period
for the next round of anomaly detection.

Figure 8. Heat map of KPI correlation matrix: (a) correlation matrix for the first set of KPIs; (b) corre-
lation matrix for the second set of KPIs.

4.3. Performance Evaluation of Anomaly Detection

After the construction of the KPI correlation matrix, alarm clustering is employed
to filter out KPIs with low similarity or no exception in the known period. We then
train the HMM, and finally infer the most likely implicit state corresponding to a KPI.
In order to verify the effectiveness of the anomaly screening model proposed in this
paper, the detection effects of Isolation Forest, One-Class SVM, and this model are tested
on the 2018 AIOps [36] Challenge dataset and the 2021 AIOps Challenge dataset, named
Dataset 1 and Dataset 2, respectively. We use precision, recall, and F1-score to evaluate
the performance of anomaly screening. TP is the number of abnormal points correctly
detected, and FP is the number of normal points wrongly identified as abnormal points.
FN is the number of abnormal points wrongly identified as normal points.

Table 10 shows the F1-scores of the three methods. Compared with the other two
methods, our evaluation results are the best, indicating that our method achieves better
results. However, the experimental results show that there are still false positives in this
method. Moreover, because Dataset 2 contains a large number of indicator types and
quantities, its F1-score will be lower than that of Dataset 1. Without the addition of a cor-
relation analysis method, a wide variety of indicators in the system will affect the results.
This shows the importance of correlation analysis when confronted with a large quantity
of diverse data.
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Table 10. F1-score evaluation results of different methods.

Isolation Forest One-Class SVM 1D-CNN-TCN

Dataset 1 0.8432 0.8064 0.8602
Dataset 2 0.8356 0.7807 0.8534

In order to verify the generalization ability of 1D-CNN-TCN, the model is tested by
5-fold crossover validation, and the evaluation index is accuracy. In the experiment, we use
the 2018 AIOps challenge data, and divide the KPI data into five equal scores. One of
these is taken as the test set each time, without repetition, and the other four are used as
the training set to train the model. Finally, the specific accuracy values are obtained; please
see Table 11.

Table 11. Accuracy of 5-fold crossover validation.

1 2 3 4 5

accuracy 0.9799 0.9862 0.9803 0.9656 0.9825

It can be seen from Table 11, after 5-fold crossover validation, that the accuracy
of the model in this paper is in the range of 0.97–0.99, and the average value is 0.9824.
It shows that the model has good generalization ability. However, we can see from
the comparison between F1-score and accuracy that there are still some false positives
in the anomaly screening model in this paper. Therefore, correlation analysis is needed to
reduce the number of false positives of abnormal KPIs.

In Table 12, if the final correlation between X and Y is higher than the threshold, then
X ∼ Y; otherwise, X ∼ Y. If X ∼ Y, we continue to judge the temporal order. If X affects
Y, that is, X shows an anomaly before Y, then X → Y ; otherwise, Y → X . The F1-score
(see Formulas (14)–(16)) is used to evaluate the performance of anomaly detection in this
paper. Table 12 describes FP (false positive) and FN (false negative) in related issues of
anomaly recognition. The experimental results of anomaly detection in this paper are
shown in Table 13.

Table 12. Descriptions of FP and FN in anomaly detection.

FP/FN Ground Truth Output

Existence
FP X � Y X ∼ Y
FN X ∼ Y X � Y

Temporal direction FP X → Y Y → X
FN Y → X X → Y

Table 13. Best F1-scores for anomaly detection using two sets of correlation matrices.

Correlation Matrix
Best F1-Score

Existence Temporal Order

The first set 0.94 0.90

The second set 0.92 0.86

According to the evaluation results of F1-score shown in Table 13, the optimal F1-
scores of anomaly detection and temporal order (based on the two groups of correlation
matrices) are 0.94 and 0.90, respectively, indicating that this method has a good effect on
anomaly detection.
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5. Conclusions

This paper proposes an anomaly detection method for KPIs based on correlation anal-
ysis and HMM. It can identify abnormal KPIs within a set period from a large number of
KPIs in a system and the transfer state between them. In the anomaly detection method ad-
dressed in this paper, we first propose a 1D-CNN-TCN prediction model to predict the KPIs
and obtain the residual sequence for screening the possible abnormal KPIs. This model
combines CNN’s local feature acquisition ability with TCN’s temporally dependent feature
acquisition ability to improve the prediction accuracy. The residual sequence of abnormal
KPIs can highlight the abnormal segment in each KPI, such that the correlation analysis is
not disturbed by the original fluctuation of KPIs, and thus the accuracy of the correlation
analysis is improved. The experimental results show that the F1-score of the correlation
analysis method in this paper is also the best. HMM parameters are confirmed accord-
ing to the correlation matrix. After training the HMM, other KPIs that may cause a KPI
anomaly are found, which reduces the time required for operation and maintenance staff
to find a large number of abnormal KPIs. The results of the ablation experiment in this
paper compared with the baseline method are relatively good, showing that it has certain
advantages in analyzing the relationship between multiple abnormal indexes.

The method in this paper can further determine the relationship of influence between
KPIs by obtaining abnormal KPIs, which can help build a fault propagation diagram and
help the operation and maintenance personnel to perform rapid troubleshooting. However,
the method in this paper still has some limitations, and the specific threshold of the cor-
relation analysis method still needs to be adjusted according to different environments.
The HMM can only obtain the influence relationship of KPIs for adjacent times, and cannot
determine the continuous influence relationship of multiple KPIs over a long time.

There is still room for improvement in our research. Next, we will attempt to adjust
the threshold adaptively, and optimize the acquisition of the relationship between KPIs.
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