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Abstract: Accurate and up-to-date forest monitoring plays a significant role in the country’s society
and economy. Many open-access global forest datasets can be used to analyze the forest profile of
countries around the world. However, discrepancies exist among these forest datasets due to their
specific classification systems, methodologies, and remote sensing data sources, which makes end-
users difficult to select an appropriate dataset in different regions. This study aims to explore the
accuracy, consistency, and discrepancies of eight widely-used forest datasets in Myanmar, includ-
ing Hansen2010, CCI-LC2015, FROM-GLC2015/2017, FROM-GLC10, GLC-FCS2015/2020, and
GlobeLand30-2020. Firstly, accuracy assessment is conducted by using 934 forest and non-forest
samples with four different years. Then, spatial consistency of these eight datasets is compared in
area and spatial distribution. Finally, the factors influencing the spatial consistency are analyzed
from the aspects of terrain and climate. The results indicate that in Myanmar the forest area derived
from GlobeLand30 has the best accuracy, followed by FROM-GLC10 and FROM-GLC2017. The
eight datasets differ in spatial detail, with the mountains of northern Myanmar having the highest
consistency and the seaward areas of southwestern Myanmar having the highest inconsistency,
such as Rakhine and the Ayeyarwady. In addition, it is found that the spatial consistency of the
eight datasets is closely related to the terrain and climate. The highest consistency among the eight
datasets is found in the range of 1000-3500 m above sea level and 26°-35° slope. In the subtropical
highland climate (Cwb) zone, the percentage of complete consistency among the eight datasets is
as high as 60.62%, which is the highest consistency among the six climatic zones in Myanmar. There-
fore, forest mapping in Myanmar should devote more effort to low topography, seaward areas such
as border states like Rakhine, Irrawaddy, Yangon, and Mon. This is because these areas have com-
plex and diverse landscape types and are prone to confusion between forest types (e.g., grassland,
shrub, and cropland). The approach can also be applied to other countries, which will help scholars
to select the most suitable forest datasets in different regions for analysis, thus providing recom-
mendations for relevant forest policies and planning in different countries.

Keywords: land cover; forest datasets; validation; classification accuracy; spatial consistency

1. Introduction

Forest is the dominant component of the earth’s biogeochemical system, which pro-
vides critical refuge for terrestrial biodiversity [1,2]. Accurate and up-to-date forest cover
information is considered an important parameter to help humans to protect, conserve,
monitor, and sustainably manage forests and ensure their ecological functions [3]. As one
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of the most forested tropical countries in mainland Southeast Asia [4], forest cover is par-
ticularly important in Myanmar. This is because forests in Myanmar support many im-
portant and endemic species of great value to global biodiversity conservation [5], and
play a significant social and economic role in the country [6]. Due to its rapid socio-eco-
nomic development, Myanmar is facing a critical situation with severe deforestation [7].
Therefore, it is necessary to conduct forest mapping regularly to monitor forest cover and
its changes in Myanmar.

Satellite remote sensing technology is widely used for forest mapping and monitor-
ing [8-10]. Currently, many land cover datasets have been produced with different spatial
and temporal resolutions. Since the earliest 1 km resolution UMD [11] and IGBP [12,13]
were derived, many other land cover maps have been produced, such as the 1 km Global
Land Cover 2000 (GLC2000) [14] and 500 m MODIS Land Cover dataset [15,16]. The ad-
vent of medium-resolution satellites has facilitated the emergence of datasets with higher
spatial resolution such as GlobCover [17,18] and European Space Agency Climate Change
Initiative Land Cover (CCI-LC) products [19], which have a resolution of 300 m. The Finer
Resolution Observation and Monitoring Global LC(FROM-GLC) dataset [20,21] and
GlobeLand30 [22] both reach a spatial resolution of 30 m representing significant ad-
vances. Furthermore, now the resolution of the land cover dataset FROM-GLC10 has
reached 10 m [23]. There must be some discrepancies among these datasets due to their
different production purposes, satellite data sources, classification systems, and meth-
0ds[24-26], which make it difficult for end-users to select an appropriate dataset.

To help end-users to select their specific forest datasets, this study aims to evaluate
the accuracy, consistency, and discrepancies of eight forest datasets in Myanmar (i.e.,
Hansen2010, CCI-LC2015, FROM-GLC2015/2017, FROM-GLC10, GLC-FCS2015/2020, and
GlobeLand30-2020). Specifically, (1) we provide accuracy assessment by comparison with
sample points collected from multi-temporal high-resolution images on Google Earth
(GE); (2) we compare the area and spatial agreement among different datasets; (3) we ex-
plore the driving factor within the two recognized impacting factors (i.e., terrain and cli-
mate) over the discrepant areas.

The following section describes global land cover datasets and ancillary data for as-
sessment, together with the overall methodology. Section 3 presents the results of the
study in terms of the accuracy and comparison of forest categories in different datasets,
with the limiting factors. Section 4 discusses the reasons for the discrepancy between da-
tasets and the future directions for improvement. Finally, Section 5 summarizes the re-
search significance and findings of the paper, as well as the challenges and suggestions
for future forest mapping.

2. Materials and Methods
2.1. Global Land Cover Datasets

The detailed information of used land cover datasets is summarized and shown in
Table 1.

Table 1. Summary of the main characteristics of global land cover datasets.

Dataset Time Satellite Spatla'l Classification
Resolution Scheme
Hansen 2010 Landsat 7 ETM+ 30 m
ENVISAT/MERIS/
CCI-LC 2015 SPOT-VGT/PROBA-V 300 m LCCS
2015 30m Two level classification
FROM-GLC Landsat TM/ETM+/OLI system of level 1 and level 2
2017 30 m 10 classes

FROM-GLC10 LandsatTM/ETM/OLI/ 10 m 10 classes
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(2017) Sentinel-2
2015 Landsat TM/ETM+/OLI 30m Global surface
fine classification
GLC-FCS Global surf
2020 Landsat/Sentinel-1SAR 30m obaisuriace
fine classification
Landsat TM5/ETM+/OLI/
GlobeLand30 2020 HJ-1/GF-1 30 m 10 classes

The Hansen 2010 Global Forest Cover Dataset was developed in collaboration with
the GLAD (Global Land Analysis and Discovery) Laboratory at the University of Mary-
land, Google, the U.S. Geological Survey, and NASA [27]. It used clear surface observa-
tions from more than 600,000 images analyzed by Google Earth Engine (a cloud-based
platform for earth observation and data analysis). The tree coverage per pixel was deter-
mined using supervised learning algorithms [28].

The ESA’s Land Cover (LC-CCI) project, built on the experience of the GlobCover,
delivered four consecutive GLC maps for five-year epochs centered around 2000, 2005,
2010, and 2015, with a spatial resolution of 300 m [19]. The product has a fine-grained
classification system, with a legend based on LCCS with 22 classes, which is more suitable
for large-scale, long-time series land cover change studies.

GLC-FCS has two datasets of different years. The first version became available in
2015. It is based on location information from the image spectral library and the time-
series Landsat8 surface reflectance product, combined with a multi-temporal classifica-
tion model and a time-series reflectance dataset [29]. On this basis, GLC-FCS30-2020 has
been produced, combining the 2019-2020 time-series Landsat surface reflectance data,
Sentinel-1SAR data, DEM, global thematic auxiliary datasets, and a priori knowledge da-
tasets [30]. The dataset contains a total of 30 types of land cover information for global
terrestrial regions. However, the secondary forest classes (dense and open) in 2015 are
only reflected in some local areas, and remain indistinguishable in most global regions,
including Myanmar. This problem is effectively improved in 2020.

FROM-GLC is the first 30 m resolution global land cover map by using a support
vector machine classifier from Landsat imagery [20,21]. Later, the world’s first 10 m reso-
lution global land cover product, FROM-GLC10, was released in 2019. Compared with
FROM-GLC30, which has a 30 m resolution, it provides more spatial details. In terms of
the classification system, FROM-GLC2015 produced to the secondary category, its forest
was subdivided into 6 subcategories. FROM-GLC2017 and FROM-GLC10 focused on the
primary category, and different types of tree species all corresponded to “forest”.

GlobeLand30 of the National Geomatics Centre of China (NGCC) was developed us-
ing a pixel-object-knowledge (POK) to derive a global land cover map at 30 m resolution
by multispectral images [22]. The 2020 version also used GF-1 multispectral images with
16 m resolution. Its classification system included ten land cover types, with forests as one
of them.

2.2. Auxiliary Data

To objectively perform an accuracy assessment, we used 934 randomly selected forest
and non-forest samples, which were collected via visual interpretation of high-resolution
images on GE for four years (i.e., 2010, 2015, 2017, and 2020). Based on the overlay of the
consistency distribution maps of the eight datasets, 747 sample points were obtained by
random sampling at different consistency levels at 0.01%, the remaining samples were
from the Global validation sample set [31]. The spatial distribution of the validation sam-
ples is shown in Figure 1.
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Figure 1. Spatial distribution of forest and non-forest validation samples in Myanmar (2020).

To analyze the driving factors for spatial consistency from the aspects of terrain and
climate, we chose (1) the Digital Elevation Model (DEM) data with 30 m resolution from
Shuttle Radar Topography Mission (SRTM) [32,33] and calculated the slope data based on
it; (2) KOPPEN-Geiger climate classification [34] scheme includes six climate zones in My-
anmar (Figure 2): Tropical Monsoon Climate (Am), Tropical Savanna Climate (Aw), Hu-
mid Subtropical Climate (Cwa), Subtropical Highland Climate (Cwb), Sub-boreal Mon-
soon Climate (Dwc) and Boreal Tundra Climate (ET).
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Figure 2. KOPPEN-Geiger climate zones in Myanmar.

2.3. Forest Data Harmonization for Comparison and Analysis

Data harmonization is a key step to ensure the objectivity of the comparison among
different datasets. In this study, data harmonization included two steps, i.e., spatial reso-
lution unification and legend harmonization. First, land cover datasets and DEM data
were resampled to 300 m resolution by using the nearest neighbor method to match with
the coarse-resolution product (CCI-LC). Then, legend harmonization was performed be-
fore comparison, because each dataset defined forest differently and according to different
descriptors [35,36]. The Hansen Global Forest Cover Dataset contains only forest land clas-
ses, and the classification systems of the other seven datasets on forests need to be com-
bined. CCI-LC and GLC-FCS have more secondary classes and their classification system
is the Land cover classification system (LCCS) scheme. In this paper, we carried out the
unification of forest land classes of these two datasets according to the Intergovernmental
Panel on Climate Change (IPCC) standards. FROM-GLC and GlobeLand30 only need to
extract or merge (FROM-GLC2015) the forest land classes according to the data descrip-
tion. The specific forest land class conversion rules are shown in Table 2, and the spatial
distribution data of Myanmar forests extracted from each dataset is shown in Figure 3.
We chose to simplify the classification because detailed land cover type diversification
may create more uncertainty [37].

Table 2. Forest classification systems from the eight datasets and the conversion table.

Dataset Time Forest Related Types and Codes
Hansen 2010 Forest
(treecover)
50: Tree cover, broadleaved, evergreen, closed to open (>15%)
60, 61, 62: Tree cover, broadleaved, deciduous, closed to open (>15%)
CCI-LC 2015 70,71, 72 : Tree cover, needleleaved, evergreen, closed to open (>15%)

80, 81, 82: Tree cover, needleleaved, deciduous, closed to open (>15%)
90: Tree cover, mixed leaf type (broadleaved and needleleaved)
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100: Mosaic tree and shrub (>50%)/herbaceous cover (<50%)
160: Tree cover, flooded, fresh or brakish water

170: Tree cover, flooded, saline water

21: Broadleaf, leaf-on

22: Broadleaf, leaf-off

23: Needleleaf, leaf-on

2015 24: Needleleaf, leaf-off
FROM-GLC 25: Mixed leaf, leaf-on
26: Mixed leaf, leaf-off
2017 2: Forest
FROM-GLC10
(2017) 20: Forest

50: Evergreen broadleaved forest

60: Deciduous broadleaved forest

61: Open deciduous broadleaved forest (0.15 < fc < 0.4)

62: Closed deciduous broadleaved forest (fc> 0.4)

70: Evergreen needle-leaved forest

2015 71: Open evergreen needle-leaved forest (0.15 < fc <0.4)

72: Closed evergreen needle-leaved forest (fc > 0.4)

80: Deciduous needle-leaved forest

81: Open deciduous needle-leaved forest (0.15 < fc < 0.4)

82: Closed deciduous needle-leaved forest (fc > 0.4)
GLC-FCS 90: Mixed leaf forest (broadleaved and needle-leaved)

51: Open evergreen broadleaved forest

52: Closed evergreen broadleaved forest

61: Open deciduous broadleaved forest (0.15 < fc < 0.4)

62: Closed deciduous broadleaved forest (fc > 0.4)

71: Open evergreen needle-leaved forest (0.15 < fc <0.4)

72: Closed evergreen needle-leaved forest (fc > 0.4)

81: Open deciduous needle-leaved forest (0.15 < fc < 0.4)

82: Closed deciduous needle-leaved forest (fc > 0.4)

91: Open mixed leaf forest (broadleaved and needle-leaved)
92: Closed mixed leaf forest (broadleaved and needle-leaved)

2020

20: Forest (The land covered by trees with crown coverage of more than 30%,
GlobeLand30 2020 mcljudmg dec1?1uous broad-leaved forest, eyergreen broad—l.eaved forest,
deciduous coniferous forest, evergreen coniferous forest, mixed forest, and sparse

forest land with crown coverage of 10-30%)
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Figure 3. Spatial distribution of forests in Myanmar extracted from eight global land cover datasets.

To evaluate the spatial consistency among the eight products, we overlaid all forest
cover datasets to obtain a spatial consistency distribution map. Different consistency lev-
els were indicated by the magnitude of consistency. The consistency degree is divided
into eight levels, “8” indicates that the eight datasets on the pixel are the same, and the
pixel is judged to be a forest type. In this way, “1” indicates the worst consistency condi-
tion, i.e., only one dataset classifies the pixel as a forest type. In addition, to reduce the
influence of the time factor, we also selected three different datasets for 2015, i.e., CCI-LC,
FROM-GLC, and GLC-FCS, and performed spatial consistency analysis for these three
datasets, whose consistency levels correspond to a total of three levels.

To explore the spatial pattern of the disagreement and its potential causes, we further
analyzed the relationship of spatial consistency with terrain and climate. The landscape
forms are divided into five types according to elevation: plain (<200 m), hilly (200~500 m),
low mountain (500~1000 m), medium mountain (1000~3500 m), and high mountain (>3500
m). Meanwhile, the slope is divided into six classes according to the forestry slope class
plan, i.e,, flat slope (<5°), gentle slope (6°~15°), slope (16°~25°), steep slope (26°~35°), sharp
slope (36°~45°) and dangerous slope (246°). We calculated the spatial consistency among
different elevation and slope zones, and overlapped the climate distribution on the con-
sistency, then calculated it within each of the six climate zones.

3. Results
3.1. Accuracy Assessments

Table 3 shows the confusion matrix for the eight forest datasets. The FROM-GLC10
dataset in 2017 has the best accuracy, with an overall accuracy (OA) of 84.48% and a Kappa
of 0.65. Followed by FROM-GLC2017 with 30 m resolution and the GlobeLand30, they
both have an overall accuracy of 83.51%. The OA of the Hansen2010 and the FROM-
GLC2015 both exceed 80%. In contrast, CCI-LC and GLC-FCS have lower accuracy for the



Appl. Sci. 2021, 11, 11348

8 of 21

forest. Specifically, the GLC-FCS has a high misclassification rate on non-forest. In both
years of GLC-FCS, the user precision of non-forest is 60.92% and 60.96%, respectively.
Meanwhile, it has a relatively high percentage of omission of 31.81% for forests in 2015.
This percentage improves in 2020, which decreases to 25.74%. The CCI-LC has a high per-
centage of misclassification of 34.32% for non-forest and an omission of 26.71% for the
forest.

Table 3. Confusion matrix for eight forest land datasets.

Year Dataset Land Type UA (%) PA (%) Commission (%) Omission (%) OA (%) Kappa
f t 81. 91.33 18.3 8.67
2010 treecover ores 65 > 6 82.23 0.62
non forest 84.28 68.29 15.72 31.71
forest 84.76 73.29 15.24 26.71
CCI-LC 75.59 0.51
non forest 65.68 79.18 34.32 20.82
forest 80.72 90.51 19.28 9.49
2015 FROM-GLC2015 80.94 0.59
non forest 81.97 66.03 18.03 33.87
forest 82.03 68.19 17.97 31.81
GLC-FCS2015 71.41 0.43
non forest 60.92 76.44 39.08 23.56
forest 87.44 87.00 12.56 13.00
FROM-GLC2017 83.51 0.64
2017 non forest 77.01 77.25 22.99 22.75
f t 84. 93. 15.4 7.
FROM-GLC10 oes > 00 545 00 8448  0.65
non forest 84.93 69.16 15.07 30.84
forest 87.52 87.38 12.48 12.62
GlobeLand30 83.51 0.64
2000 non forest 76.47 76.23 23.53 23.77
forest 84.83 74.26 15.17 25.74
GLC-FCS2020 74.41 0.47
non forest 60.96 74.69 39.04 25.31

Although the OA and Kappa of FROM-GLCI0 are the highest among the eight da-
tasets, it has a lower mapping accuracy of 69.16% in non-forest. It means that there is a
higher possibility of omission in non-forest, i.e., there is a large amount of overestimation
in forests. In comparison, the OA and Kappa of the FROM-GLC2017 with 30 m resolution
and GlobeLand30 are slightly lower, but their user precision and mapping accuracy are
more stable. In the classification of forests, the misclassification and omission of
GlobeLand30 are slightly better than the FROM-GLC. Therefore, GlobeLand30 is the best
dataset in terms of the production of forest classification.

3.2. Comparison of Forest Area

We discussed the differences between these datasets by analyzing the distribution
and proportion of forest areas in 14 states of Myanmar in eight datasets. Figure 4 shows
the distribution of forest area for all forest datasets.

Overall, the eight datasets have a variable distribution of forest areas in Myanmar.
The CCI-LC has the least forest area and FROM-GLC10 has the most forest area. Among
the three datasets in 2015, the differences in forest area between CCI-LC and GLC-FCS are
small, while the forest area of FROM-GLC exceeds the other two datasets by about 100,000
km?. Since they are from the same year, the effect on the change in forest area due to the
expansion or reduction of the actual forest area is small. The reason for such a large dif-
ference is mainly related to the objective conditions, such as different remote sensing data
sources, classification systems, and production methods. The two datasets of 2017 are es-
sentially the same product FROM-GLC. The difference in forest areas is about 40,000 km?
as seen in Figure 4, and is mainly due to different spatial resolutions. The FROM-GLC10
not only has higher mapping accuracy but also has clearer spatial details, more forests can
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be identified. The difference in forest area between the two datasets in 2020 is about 60,000
km?2.

We further computed the forest proportion in 14 states of Myanmar in eight datasets.
As shown in Figure 5, Kayin, Tanintharyi, Mon, and Rakhine have a larger variation in
the proportion of different forest datasets. For example, the difference between the maxi-
mum and minimum percentages of forest area amounts to 40.34% in Rakhine. There is a
difference of 37.11% between the three datasets of the same year in 2015, and 28.03% in
the two datasets in 2020. In contrast, the difference between the two same products in 2017
is significantly reduced to 1.79%. However, despite the two datasets for 2017 being essen-
tially the same product, there are cases where there is a large difference in the proportion
of forests between states, such as Magway and Kayah. The difference in the proportion of
forests between the two datasets is 16.05% for Magway and 28.69% for Kayah. Neverthe-
less, the overall situation is significantly better than different source datasets, and such
large differences are only found in a few states.

s
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Figure 4. Eight global land cover datasets on forest area in Myanmar (Purple indicates the dataset of year 2010, Orange
indicates the dataset of year 2015, Green indicates the dataset of year 2017, Blue indicates the dataset of year 2020).
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Figure 5. Percentage of forest cover by state in different datasets.

Through the comparison of forest areas, it can be seen that the forest cover in Kachin,
Sagaing, Mandalay, Yangon is more similar in different datasets. Kachin and the northern
areas of Sagaing are higher in altitude, the landscape pattern is mostly plateau, the moun-
tainous forest features can be better identified [38]. Mandalay, Yangon and southern Saga-
ing are located on plains. These regions are low and flat and dominated by croplands.
Forests are better identified when the surrounding land type is mostly cropland [38].

3.3. Spatial Consistency Comparison
3.3.1. Spatial Consistency of Eight Datasets over Different Years

Figure 6 is the spatial consistency map among eight datasets. It can be seen that the
consistency of forest distribution in Myanmar is generally good. Sub-areas A and B are
regions with a better distribution of forest consistency. The best consistency is found in
northern Kachin and northwestern Sagaing (Sub-area A): Northern Myanmar is a highly
mountainous region. These areas have high topography, concentrated forest distribution,
better continuity, and a relatively homogeneous geographic landscape, so each dataset
can identify forests more accurately. Forest consistency is also better in southeastern Shan
(Sub-area B), but there are still gaps compared to area A: This is related to the year of the
datasets, where deforestation or reforestation affects the temporal distribution of forests.
It is also related to the undulating topography of Shan. As for sub-areas C and D, the
distribution of forest consistency is less desirable. The spatial distribution of forests in
Rakhine and is less consistent (Sub-area C): They are located in southwestern Myanmar
with a complex landscape. They are also hotspots of deforestation [39], so the consistency
is lower. Mandalay, Magway, and Southern Sagaing are located in the central part of My-
anmar (Sub-area D): These regions are flat and dominated by agriculture, the cover type
is mostly cropland. Most datasets can classify the land as non-forest. However, occasion-
ally a few datasets are misclassified, resulting in the “salt and pepper” phenomenon.
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Figure 6. Spatial consistency of eight datasets in Myanmar. Full agreement corresponds to a value of 8 (all eight datasets
agree), and full disagreement corresponds to a value of 1 (only one dataset identifies forest). White corresponds to non-
forest for all datasets. Sub-area (A-D), respectively, are the details of the consistency distribution for four major regions
((A) is the area of the best consistency, (B) is the area of good consistency, (C) is the area of poor consistency, (D) is the

area with “salt and pepper”).

3.3.2. Spatial Consistency of Three Datasets in 2015

Having fixed the time variables, the forest consistency distribution for the three da-

tasets in 2015 is shown in Figure 7. The sub-areas A-D, respectively, correspond to the
sub-areas for the eight datasets. It can be seen that most regions can be guaranteed to have
two or more datasets with consistent distributions (Sub-area A and B). Similar to the con-
sistency results for the eight datasets, Rakhine is less consistent, with more areas having
a consistency level of 1 (Sub-area C). This is both related to its geographical location and
different data sources, classification methods, etc. The “salt and pepper” phenomenon in
central Myanmar is less pronounced than in the eight datasets (Sub-area D). The compar-
ison of the three datasets in 2015 removes the effect of time variables, the divergence is

mainly related to objective factors in the different datasets.
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Figure 7. Spatial consistency of three datasets in 2015. Full agreement corresponds to a value of 3 (all three datasets agree),
and full disagreement corresponds to a value of 1 (only one dataset identifies forest). White corresponds to no forest for
all datasets. Sub-area (A-D), respectively, are the details of the consistency distribution for four major regions ((A) is the
area of the best consistency, (B) is the area of good consistency, (C) is the area of poor consistency, (D) is the area with
“salt and pepper”).

3.4. Factors Influencing on the Spatial Consistency
3.4.1. Influence of Terrain on the Consistency

The changes in spatial distribution consistency under different elevations were com-
puted, as shown in Figure 8. In Figure 8a, the proportion of complete consistency is lower
in the plain area. While in high mountain areas, the proportion of forests per class de-
creases with increasing consistency in class. In the regions with hilly, low mountain, and
medium mountain (i.e., in the elevation range of 200-3500 m), the proportion of complete
consistency in eight datasets is higher. Especially in the medium mountain region, the
proportion of complete consistency among datasets exceeds 50%. It indicates that the for-
ests can be identified more accurately from various datasets in these regions. Moreover,
the mountains are the main plantation area of forests, the area is vast. It facilitates the
interpretation and classification of forests for each dataset. In the areas of plains, the lower
consistency among products may be influenced by the confusion of forests with shrubs or
cultivated land planted with fruit trees. In the case of high mountain areas, forest extrac-
tion is also difficult due to fragmented terrain and fewer planted trees. The distribution
pattern of consistency distribution with elevation in the three datasets in 2015 is similar to
that of the eight datasets (as shown in Figure 8b). The proportion of complete consistency
is also higher in hills, low mountains, and middle mountains.
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Figure 8. Consistency distribution among different elevation intervals.

Figure 9 illustrates the variation of the spatial distribution consistency under differ-
ent slopes. As shown in Figure 9a, it can be seen that the eight datasets have the highest
proportion of complete agreement in each slope interval. As the slope rises, the proportion
of complete consistency among datasets shows a trend of increasing and then decreasing.
The highest proportion of complete consistency is 62% in the steep slope (26°-35°) inter-
val. The percentage of complete consistency in both slope and sharp slope areas is also
over 50%. Except for the flat slope areas, the proportion of forest consistency classes 1-4
in the other slope intervals is very low, which does not exceed 10% or even 5%. It is rea-
sonable to assume that as the slope increases, the geographic landscape is more homoge-
neous and the forest can be better identified across the datasets. Thus, their consistency
results are better. The proportion of complete agreement for each slope interval is greatly
increased due to the fixed year variable and the reduction in the number of datasets (Fig-
ure 9b). The steep slope and sharp slope interval data sets, respectively, have the best
consistency, i.e., 26°—45°, with 74% and 76% complete agreement.
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Figure 9. Consistency distribution among different slope intervals.
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3.4.2. Influence of Climate on the Consistency

To analyze its influence on the consistency of forest datasets, the Képpen—Geiger cli-
mate zones were overlapped with the spatial agreement map of the datasets, as shown in
Figure 10. The statistics of spatial agreement in each climate zone were further calculated.
As elaborated in Figure 11, the highest percentage of complete agreements is mainly in
the Cwb and Cwa zone with 60.62% and 45.03%. These two climates are characterized by
a yearly suitable temperature and annual precipitation that is not less than the dry value
index. Cwb is mainly distributed in high-altitude areas at low and middle latitudes. The
objective conditions of combined climate and terrain are suitable for the growth of forests.
The dense distribution and large areas of forests make it easier for forest monitoring with
different sources of satellite data. The consistency distribution of Aw and Am climatic
zones, respectively, followed with 37.41% and 27.11% of complete agreement. Both have
monthly average temperatures of 18 °C and above throughout the year, with specific dif-
ferences in precipitation: Annual precipitation is higher in Am than in Aw, yet the degree
of forest complete agreement is higher in Aw. This is because Am is mainly distributed in
southwestern Myanmar, including Rakhine, Ayeyarwady, Yangon, and Mon. It is near
the sea and the landscape is complex and diverse, forests are easily confused by shrubs
and vegetation. While Aw is more distributed in central Myanmar, its feature types are
more homogeneous. It is possible to identify forests uniformly from different source datasets.
The Dwc and ET climatic zones are less distributed in Myanmar. They both have mostly
low temperatures throughout the year, and even ET areas have no precipitation indica-
tors. This makes them unsuitable for forest growth, so their consistency ratios are natu-
rally much lower than those of other climate types.
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Figure 10. Spatial consistency of eight datasets with KOPPEN-Geiger climate classification.
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4. Discussion
4.1. Discrepancies among Datasets

Our study also screened regions with levels 14 in the forest consistency map, com-
pared to sample points in the corresponding regions to investigate the misclassification of
forests in each dataset.

Figure 12 shows the correct classification of forests and specific misclassification
forms for 2015, 2017, and 2020, respectively. The agreement rate between classification
and sample points for all three datasets in 2015 is higher than 50%, and the highest correct
rate is FROM-GLC at 62.26%. Among the misclassification cases of forests, FROM-GLC
mainly misclassified non-forest as forest, while CCI-LC and GLC-FCS more often misclas-
sified forest as non-forest, their percentages are both higher than 30%. In a comprehensive
analysis based on the year, the proportion of correctly classified datasets in 2015 is 58.28%.
The proportion of forest misclassified as non-forest is 25.58%, which is higher than the
proportion of non-forest misclassified as forest at 16.14%. In 2017, the difference is gener-
ally lower than in 2015 and 2020 because these two datasets are essentially homogeneous.
FROM-GLC has a slightly higher percentage of the misclassified forest as non-forest at
18.24%. FROM-GLCI10, on the other hand, has a slightly higher percentage of misclassified
non-forest as forest at 23.90%. In 2020, GlobeLand30 has a correct classification of 66.67%,
which is also the highest in all datasets. In contrast, GLC-FCS has a lower percentage of
correct classifications, and both misclassifications are higher than GlobeLand30, where
the misclassification of forest as non-forest is as high as 34.59%.

Several reasons account for the discrepancies among different forest datasets. Firstly,
different datasets have their classification schemes [40,41], directly leading to discrepan-
cies. For example, in the classification of low trees, some datasets consider them as forest,
as in the case of FROM-GLC, which overestimates its forest area. While some products
classify them as shrubs, as in the CCI-LC and GLC-FCS datasets, the forest area is slightly
underestimated. There is also a complex definition of “Transitional Woodland” [42]. There
is a wide divergence in the interpretation of land types in transition areas across datasets,
which may lead to confusion between forest and other vegetation types.

Secondly, different datasets use different satellite images, produced in different
ways, and with different spatial resolutions, which will inevitably lead to discrepancies.
Furthermore, due to the difference in topography, the spectral response of similar features
on the sunny side and the backside of the mountainous area differs greatly. Furthermore,
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different types of features may reflect similar spectral characteristics, resulting in the phe-
nomenon of “different spectra for the same thing and different things for the same spec-
tra”. In forest mapping, the same tree species may show different spectral reflectance phe-
nomena, presenting different colors and tones in the image. Different tree (shrubs/other
vegetation, etc.) species may have similar spectral reflectance properties; they show al-
most the same color and hue in the image, resulting in interpretation difficulties and lead-
ing to confusion or misclassification of forests.
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Figure 12. Proportion of forest datasets correctly classified and two incorrectly classified in 2015/2017/2020.

Thirdly, it was found that both terrain and climate can affect the distribution of for-
ests. Most of Myanmar is dominated by a tropical climate, including tropical monsoon
climate and savanna climate. The climate is above 18 °C per month throughout the year
and precipitation is abundant, providing strong natural conditions for forest growth.
Thus, the degree of forest consistency across datasets is relatively better. However, the
tropical climate is more prevalent in central and southern Myanmar. The terrain is flatter,
human activities are complex, the total amount of forest is reduced, and the landscape
type is dominated by cropland and constructed land. In contrast, although northern My-
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anmar has a predominantly subtropical climate, temperatures and precipitation condi-
tions slightly less favorable than those of the tropics. However, its high terrain allows for
less human interference and dense, continuous forest growth. The high altitude also limits
deforestation, so northern Myanmar has the best forest consistency.

The actual forest changes due to the year’s changes cannot be ignored. Figure 13 spe-
cifically depicts the differences between datasets due to actual forest changes.
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(a) Differences between datasets (b) Actual forest change during 4 years

Figure 13. Examples of actual forest change in Myanmar, 2010-2020.

4.2. Challenges and Prospect of Forest Mapping at Large Scale

Through the comparative analysis of forests in Myanmar, we found that a challenge
in forest mapping at large scales was the spatial resolution and classification methods. The
current land cover dataset is still dominated by low to medium resolution and with auto-
matic classification methods, which impose limitations on the mapping of forests. From
the results of the accuracy assessment in this paper, the forest mapping accuracy of
FROM-GLC10 with 10 m resolution is the highest, but the best forest classification of
GlobeLand30 is obtained by combining various accuracy indicators. Firstly, the higher
spatial resolution of GlobeLand30 plays an important role in high precision mapping.
Multiple imaging sources from satellites such as Landsat 8, sentinel, and GF, as well as
the development of machine learning, also provide sufficient guarantees for high spatial
resolution mapping [43,44]. Secondly, GlobeLand30 adopts the POK classification
method, while adding manual checking and knowledge modification based on automatic
computer classification. It can achieve better accuracy results, although the mapping effi-
ciency is reduced. Mixed image elements also affect forest mapping. Even the FROM-
GLC10 inevitably has mixed pixels, but improving the spatial resolution can alleviate the
problem to some extent. In terms of the solution method, a decision tree combined with
mixed image element decomposition can be used [45]. A percentage soft classification
scheme can also be used instead of the traditional binary classification, the ratio can reflect
the distribution of forest within a pixel [25]. They can also effectively solve the problem of
mixed image elements.

NDVI, EVI], and reflectance data are still the three main types of satellite data for
forest mapping, making full use of the implied phenological information in NDVI and
EVIis important [46]. In the development of remote sensing mapping, it has been shown
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that adding other data sources such as radar data, hyperspectral data, and so on, can pro-
vide new possibilities for surface coverage mapping [47-50].

Nowadays, remote sensing mapping and applications are developing rapidly. Data
sources are becoming more abundant and progressively more accurate. The WFV (Wide
Field of View) image of GF-6 has two new red-edge bands compared with the similar
image of GF-1, which is helpful to improve the monitoring capability of the forest [51].
The methods of land cover monitoring have also evolved with the times. Tsinghua Uni-
versity has proposed the conceptual framework of smart remote sensing mapping. They
led to the completion of the 30 m resolution global day-by-day satellite remote sensing
data cube (SDC), and the seasonal global surface coverage map over 36 years [52]. It helps
to significantly advance the development of remote sensing applications, provides deci-
sion support for land resource management, and contributes greatly to future forest mon-
itoring and mapping. In addition, the development of cloud computing also supplies an
effective means for remote sensing forest monitoring. For example, Google Earth Engine
(GEE) provides a global-scale geospatial analysis service [53] that can be used to monitor
global forest changes.

5. Conclusions

This study presented a comparative analysis and comprehensive evaluation of forest
cover from widely-used land cover datasets in Myanmar: Sufficient forest samples over 4
years were randomly collected from GE, which are used to conduct an accurate and ob-
jective evaluation of each dataset. The similarities and differences in the spatial distribu-
tion were compared for these forest datasets. The influence on spatial consistency was
further analyzed from the aspects of terrain and climatic conditions.

The results indicate that GlobeLand30 has the best comprehensive accuracy in My-
anmar, followed by the FROM-GLC series, Hansen Forest cover, and the last is the CCI-
LC and GLC-FCS series. The consistent forest distribution of these datasets is best in
northern Myanmar. There, the terrain is relatively high, forest distribution is continuous,
and the feature types are relatively homogeneous, so the remote sensing images have a
certain degree of differentiation. The mapping results are quite good, even for the data
with low spatial resolution. In contrast, the southwestern region of Myanmar is at a lower
altitude and near the sea, the landscape is more complex, the mixing of forests, shrubs,
and cropland is serious. This will be the key direction for future efforts in forest mapping.
In addition, this study also analyzed the limiting factors (terrain and climate) affecting
forest consistency. We found that the areas with the best consistency are, respectively,
distributed in the range of 1000-3500 m in elevation and 26°-35° in slope, and the sub-
tropical highland climate (Cwb) zone. Although the tropical climate is more favorable for
forest growth, it is mostly distributed in lower terrain areas with fewer forests and high
human activity. The higher terrain of northern Myanmar, with its Cwb climate, is more
conducive to forest growth than a tropical climate.

Nowadays, all countries in the world are facing a critical situation of forest degrada-
tion, especially in tropical countries. Comparing multiple datasets can help users to select
the appropriate data in different regions to conduct research. It can provide policy recom-
mendations in line with local forest planning. As for Myanmar, forest monitoring is still a
challenging task, with data sources, landscapes, and classification methods being the main
constraints to its accuracy [38,54,55]. In the future, forest monitoring can be improved with
multi-source remote sensed data and deep learning approaches.
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