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Abstract: Based on the features of cracks, this research proposes the concept of a crack key point as 

a method for crack characterization and establishes a model of image crack detection based on the 

reference anchor points method, named KP-CraNet. Based on ResNet, the last three feature layers 

are repurposed for the specific task of crack key point feature extraction, named a feature filtration 

network. The accuracy of the model recognition is controllable and can meet both the pixel-level 

requirements and the efficiency needs of engineering. In order to verify the rationality and applica-

bility of the image crack detection model in this study, we propose a distribution map of distance. 

The results for factors of a classical evaluation such as accuracy, recall rate, F1 score, and the distri-

bution map of distance show that the method established in this research can improve crack detec-

tion quality and has a strong generalization ability. Our model provides a new method of crack 

detection based on computer vision technology. 

Keywords: crack detection; deep convolutional neural network; object detection; crack key point; 

fusion and filtration of features 

 

1. Introduction 

Cracks are critical flaws that affect the behavior and durability of structures, which 

can have a negative effect on structural safety. Due to the inevitability and general of 

cracks on the surface of concrete structures, the search for efficient and low-cost crack 

detection of concrete has been important in structural damage identification. There are 

two main directions for the research on crack detection methods: the one is through sen-

sors to test a static and dynamic response of the structure, based on which, the position 

and depth of a crack are identified [1–3]; the other is through image processing techniques 

to provide the position and other information about a crack [4,5]. 

Image-based methods are simple and effective, so they have gained extensive atten-

tion. Computer image processing and vision technology, as well as the upgrading of com-

puting hardware and image-based crack detection methods, especially those based on 

deep convolutional neural networks, have undergone unprecedented development. 

Classical image crack detection methods, such as segmentation by a threshold [6], 

the edge detection algorithm [7,8], and the morphological filtering method [9], not only 

identify cracks effectively but also assess parameters such as crack length and width. 

However, their main work is focused on image processing. Crack detection remains a 

manual process with low efficiency. 

To improve the efficiency of detection, researchers have introduced machine learning 

to deal with crack features and have established a classifier to realize automatic crack de-

tection [10–12]. Crack detection methods of traditional machine learning algorithms com-

bined with image processing techniques have been applied in this area. 

Machine learning has broadened the idea of applying computer vision methods for 

defect detection and condition assessment in civil engineering [13] and has brought about 
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new research directions for all types of detection, including crack detection. Many re-

searchers, using these latest machine learning algorithms, have continued to propose 

novel image crack recognition models [14–17]. 

Relying on manual extraction of the characteristics of cracks to realize the crack de-

tection of an image cannot meet the needs of a project due to the complex information 

contained in the actual crack images. In image- and video-based ML approaches for struc-

tural health monitoring, differences in illumination, rotation, and the angle of the camera 

can significantly affect the final results [18,19]. To meet the requirements for crack detec-

tion in practical engineering, automatic learning algorithms based on crack features, es-

pecially deep convolutional neural network algorithms, have become a research hotspot. 

These methods eliminate the first image processing step of most traditional methods, and, 

based on original crack images, can directly extract crack features and detect cracks 

through automatic learning models. 

Hinton [20] first proposed the concept of deep learning, which has gained extensive 

attention in the machine learning area. Models based on deep learning began to emerge 

[21–23]. Using the same dataset, Dorafshan [24] compared the concrete crack detection 

results of classic edge detection with a deep convolutional neural network (DCNN). The 

results showed that DCNN had advantages in terms of accuracy, detection speed, and 

resolution. 

Based on the image segmentation algorithm, many detection methods have been pro-

posed [25–28]. Those methods with high accuracy obtain a good detection effect, espe-

cially for crack width. However, the above methods are all based on image segmentation 

algorithms, which require a huge amount of work of pixel-level marking on pictures yet 

still do not reach the expected accuracy in some cases. A large number of diverse crack 

training samples are also usually required to achieve better detection results [29]. 

In recent years, object detection methods based on points have been emerging. Zhou 

[30] modeled an object as a single point. Hei [31] raised corner detection, while Duan [32] 

established a method through center pooling and cascade corner pooling, three of which 

have inspired the research on crack detection method based on key points. Although the 

method Lee [33] established is still based on pixels, the detection result is more targeted 

at predicting crack areas rather than pixels. This method has been an inspiration for fur-

ther research on crack detection based on crack key points that is effective and suitable for 

engineering. 

Crack detection methods based on deep learning depend on the extensity of the train-

ing set and the validity of their algorithm. In terms of obtaining crack image data, the 

current information era ensures easy access to a huge number of surface crack images, so 

the crack detection methods based on deep learning are reasonably trustworthy. There 

are two main directions for crack detection algorithms. One regards crack detection as an 

object segmentation task by image segmentation algorithms to classify and predict pixels 

and finally output binary images [34]. This method can precisely predict the location and 

width of cracks but requires detailed and accurate annotation of crack images. However, 

crack detection in practical engineering works does not require pixel-level positioning. 

Another strategy is to simplify the problem. This method partitions the crack image and 

detects crack individually on each patch before stitching them together to locate the cracks 

[22]. This method simplifies the annotation and can use object sorting algorithms with 

high convergence. Nonetheless, this method causes two problems: the lack of integrity of 

cracks when partitioning and the loss of the global feature of the crack image, reducing 

the generalizability and noise immunity of the model. 

Compared with the usual visual computer tasks, crack detection poses three notable 

challenges. Firstly, cracks are typical linear objects. Secondly, the commonly existing en-

vironmental noise causes confusion, so the crack detection results are sensitive to global 

features. This crack detection problem is relatively severe, influencing the detection re-

sults and invalidating the traditional image processing algorithms. Third, the task is sub-

stantially a binary classification problem with only two options, having a crack or not. 
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Therefore, only these specificities are considered when designing and modifying a con-

ventional deep convolutional neural network model. The accuracy and suitability of the 

crack detection method are therefore called into question. Some studies have also shown 

that the crack feature information of different scales greatly influences the crack identifi-

cation effect. 

For this purpose, we established a crack detection model that considers the cracks’ 

linear characteristics and maximizes the use of their global characteristics. Based on the 

cracks’ linear characteristics, this method can identify cracks as long as the key points on 

the cracks are identified. Considering the network advantages of traditional computer vi-

sion tasks, this research work uses the separation and fusion of the global and local fea-

tures of cracks to construct a KP-CraNet model for crack detection. Finally, evaluation 

criteria are set to evaluate the effectiveness and suitability of the model. The numerical 

experiment has proven that our crack detection model, KP-CraNet, showed a relatively 

strong detection ability with great potential for further improvement. 

2. Crack Characterization 

2.1. Crack Key Point 

Cracks are gaps with a certain width presented as melanic pixel point sets in a crack 

image in physical space. We try to realize the second-level evaluation task proposed in 

[35]—that is, to find the expression of the geometric position of crack damage. Most of the 

current image-based crack detection methods predict cracks based on pixel points and use 

the binary image to present cracks, such as the surface crack [36] shown in Figure 1a, and 

its detection result binary image is Figure 1b. The crack binary image detection takes full 

advantage of the image pixel information and precisely expresses the location, length, 

width, and other information about a crack. However, most crack detection works do not 

require pixel-level information about a crack in reality. Additionally, for deep learning 

based on image pixels, the supervised training of the model requires a large number of 

highly accurate cracks that are manually marked on the image to create a pixel-based 

crack dataset. The amount of work required to mark every pixel of the image is enormous. 

The representation of cracks based on crack key points, as shown in Figure 1c, requires 

the ligature of the adjacent key points to represent the crack location information. Crack 

key points do not have to be in the crack but can be just near it with a distance required 

by the engineering detection accuracy. Therefore, there can be more than one crack key 

point set. For example, the crack is shown in Figure 2a can define two types of key points 

set in Figure 2b,c. The non-uniqueness of crack key points set may lead to some problems, 

which will be discussed later in the article. 

   
(a) Surface crack original im-

age  

(b) Binary image pixel marked  (c) Crack key point marked 

Figure 1. Two characterizations of cracks. 
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(a) Surface crack original im-

age  
(b) Sparse crack key points (c) Dense crack key points 

Figure 2. Different crack key points can represent the same crack. 

For a given image, the crack key point set can be defined through Equation (1) based 

on the crack features: 

 1 2 3
{ , , ,..., }

N
P p p p p= , (1) 

where N is the number of key points; any element in the set is a subset as given by Equa-

tion (2): 

  front back, , ( , )
i i i i i

p s s px py=  (2) 

The subscript i  is the sequence number of a crack key point;  is the sequence 

number of its preceding key point, and is the latter; and ( , )
i i

px py is the pixel coor-

dinate of the crack key point. The sequence numbers of the preceding and latter key points 

demonstrate the connection type of crack key points, the ligature of which provides the 

location information of the crack. 

2.2. Reference Anchor Point Method 

The non-uniqueness of crack key points means three problems need to be solved. 

Firstly, the crack detection model clarifies the relevance of detected key points to predict 

cracks correctly, regardless of their non-uniqueness. Secondly, whether sparse or dense, 

the key points are distributed in the crack area; thirdly, we have to control the number of 

detected crack key points, because it prejudices the model training when there are too 

many or too few. 

2.2.1. Set-Distance Scattering 

When detecting cracks, the actual pixel distance of crack key points is hard to set to 

a universal standard. For cracks with high sinuosity, their key points should be dense, 

while for cracks with low sinuosity, such as linear types, several key points should be 

enough. 

To avoid the crack detection results being influenced by the sparse key points, it is 

important to scatter the key points evenly to keep the distances between adjacent key 

points the same. If the distance between any two adjacent key points is smaller than a 

certain threshold, no operation is needed; if it is longer, new key points need to be found 

on their ligature at the same distance as the others to be part of the original crack key point 

set, forming a new one, to make sure the distance between any two adjacent key points is 

smaller than a threshold. This process is shown in Figure 3. 
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(a) Original image  (b) Initial crack key points 

  
(c) Set-distance scattering  (d) Final crack key points 

Figure 3. The process and result of set-distance scattering. 

For adjacent key points, when their ligature is shorter than a pre-set threshold, no 

operation needs to be done; when it is longer than the pre-set threshold, then the ligature 

of the two points needs to be scattered to insert points at equal distance, as shown as 

Equation (3): 

s

dis( , )
 = 

i j
p p

M


 
 
 

 , (3) 

where dis( , )
i j

p p  is the pixel distance between adjacent crack key points
i

p and
j

p , 

while symbol [ ]means rounding up to an integer. 

We detected the 1M- inserted points to determine whether they were crack key 

points, and traverse preceding and subsequent key point pairs to form a new crack key 

point set, as in Equation (4): 

 ( ) ( ) ( ) label label

label

1 1 2 2
  , , , ,..., ,

N N
P x y x y x y= , (4) 

where 
labelN is the number of crack key points after set-number scattering in the current 

image, while
labelP is the crack key point set in a single image of the model we proposed. 

2.2.2. Set Reference Anchor Point 

Although the sparsity of crack key points can be controlled through set-distance scat-

tering, which reduces the error caused by the density of crack key points to an extent, the 

number of crack key points is still a problem in real-life detection. If the number of crack 

key points is too low, it may result in an inability to identify all cracks accurately; if the 

number is too large, it is very computationally intensive. Therefore, this research proposes 

a reference anchor point method for crack identification. 

The reference anchor point method is derived from the anchor mechanism of the pre-

diction box in the faster R-CNN model [37]; in this research, the anchors were considered 

the prediction points for crack detection. We laid out the anchor points on the image in 

advance and detected whether each anchor point was near a crack key point to keep only 
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the nearest anchor points as the final detection results. This method can effectively solve 

the latter two problems mentioned above. 

We set the reference anchor point as in Equation (5): 

  anchor anchor

anchor

1 1 1 1
  ( , ), ( , ),..., ( , )

N N
P x y x y x y= , (5) 

where 
anchorN is the number of the anchor point of a single image, and 

anchorN is related to 

the anchor point layout. The distance between the adjacent two anchor points S  is the 

only parameter for determining the anchor point location, i.e., the anchor point stride. The 

reference anchor point method is used to set anchor points in an image based on a certain 

pixel distance in advance, as the red dots show in Figure 4. Thus, crack detection has 

turned into a matter of calculating the probability value of reference anchor points as crack 

key points, and when the probability value is higher than a certain threshold, the anchor 

point will be regarded as a detected crack key point. 

 

Figure 4. Reference anchor layout. 

The number of anchor points varies according to the actual situation, enabling the 

reference anchor point method to accurately detect cracks based on anchor points in dif-

ferent densities. For example, the crack area is first determined using anchor points with 

large step lengths, and then the local crack area obtained is refined to make a more accu-

rate prediction of the cracks using dense anchor points, thus establishing a multiscale 

crack identification method. 

The interval between the anchor step and the crack key determines the crack identi-

fication accuracy. If the anchor step is in pixel units, this crack-critical point method is 

almost equivalent to the pixel-based image crack identification method (conventional im-

age segmentation method). They differ only in terms of the labeling error in crack labeling 

and whether the pixel width of the crack is considered. On the other hand, if the entire 

cracked image has only one crack key, the method is equivalent to the image classification 

task, which divides the whole image into areas with or without cracks. Thus, the image 

segmentation and image classification methods are special cases of the crack key point 

method. 

2.3. The Determination of Positive and Negative Sample Point 

During the model training for crack detection, the crack key points need to be marked 

in the training set images as marking points. The training process involves the model 

learning to detect whether a reference anchor point is a crack key point (also called a 

marked point). Not all crack key points coincide with reference anchor points, so reference 

anchor points can be classified into three types: positive sample points, negative sample 

points, and general anchor points. A positive sample point is defined as the closest anchor 

point to the crack key points. For each crack key point
label (   1,2,3, )
j

p j = , its positive 

sample point is shown in Equation (6). 
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 ( )anchor   min dis ( )
ji ij

i
p s= , (6) 

where dis( )
ij

s is the distance between the anchor point anchor

i
p and the crack key point

label

j
p . 

However, to maintain the convergence of the model training, all anchor points whose 

distance to a crack key point is shorter than a certain threshold, 
P

 , will be set as a posi-

tive sample point. So, the positive sample point is set as in Equation (7): 

 T anchor anchor label

P
dis ,   1,2, ;   1,2,

i ij
E p i N j N=  = =  (7) 

So, the reference anchor points in an image belong to a positive sample point set, a 

negative sample point set, and a general anchor point set. Figure 5 shows the crack key 

points (green), positive sample point set (red), and negative sample point set (blue) when

N P
 = . 

  
(a) Original crack image (b) Crack key points and anchor points 

Figure 5. Positive and negative sample points. 

3. Crack detection model KP-CraNet 

To consider the influence on crack detection exerted by the linear and global features 

of cracks, a crack detection model based on crack key point, KP-CraNet, has been built. 

The model contains three hierarchical submodels. The bottom submodel is a feature ex-

traction model based on crack key points of deep convolutional neural networks, which 

is also called a key point feature extraction network or basic network. The second sub-

model uses feature pyramid fusion and a reinforce network [38] (FPN feature fusion and 

reinforce network) to fuse and reinforce the features of extracted key points. The third 

submodel is a feature filtration network, which filters the features of crack key points, the 

results of which will lead to an area of a crack key point as an approximate location of a 

crack. 

3.1. The Network Frame of KP-CraNet 

Figure 6 shows the network frame of KP-CraNet. The bottom submodel for crack key 

point feature extraction adopted the ResNet [39] network framework, choosing the last 

three feature layers with different sizes, R1, R2, and R3, as the feature fusion input and 

reinforce networks. In this network, the FPN reinforcement network is used for global and 

local feature fusion. The output results are dominated by the current layer features, and 

the upper layer feature layer is incorporated into the current layer using inverse convolu-

tion, outputting a total of five layers. The first three layers have the same size as R1, R2, 

and R3, while the last two layers are based on the R3 layer, again convolved and 

downsampled to obtain a smaller layer to better express the global features. Finally, the 

five feature layers are subjected to feature filtering. The features of feature layers 1, 3, and 

5, which are in decreasing size order, are inputted into the feature screening submodel, 
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and the probability of predicting the anchor point as a crack key point is used to screen 

the positive sample points sequentially to detect cracked and noncracked areas for the 

final detection of cracks. 

 

Figure 6. Model network structure. 

3.2. Crack Key Point Feature Extraction Network 

The key point feature extraction network uses deep convolutional neural networks, 

usually adopting ResNet or VGG or other models commonly used in the computer vision 

field. Crack detection experiments show few differences between the ResNet and VGG 

models, even when increasing the network depth. Therefore, ResNet18, which requires 

lower depth, was chosen to decrease the training difficulty and improve the prediction 

efficiency. 

The input to the lowest layer is the image, and the information contained in each 

pixel of it is the smallest unit of the feature, called the smallest local feature. The topmost 

layer feature is the crack identification result, and all intermediate result layers from the 

bottommost to the topmost are called feature layers. For any current layer, whether it is 

convolution or pooling, the feature points within the range of 3 × 3 convolution kernels or 

2 × 2 pooling kernels of the current layer are weighed and summed, and the activation 

function is used to obtain new information about the feature points. Thus, each feature 

point of the next layer contains multiple feature point information of the corresponding 

position of the current layer. The feature information is continuously downscaled and in-

tegrated, gradually transitioning from local feature information to global feature infor-

mation. 

Figure 7a,b shows the convolution and pooling layers. The rear, lighter part is the 

current layer feature map. The front, darker part is the next layer. The images demonstrate 

how framed feature points in the current layer descend to the next layer, which means the 

next layer contains information on points in the current layer, so the local feature infor-

mation is gradually integrated with the layers, adding up. As the feature layer increases, 

the area of information contained in feature points becomes larger. The red dots in Figure 

8 are feature points, and the yellow-green background is the feature area. In a higher-level 

feature map, the feature points reflect global features. 
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(a) Convolution operation (b) Pooling operation 

Figure 7. The extraction process of convolution and pooling layers. 

  

(a) Feature points and area of current layer (b) Feature points and area of next layer 

Figure 8. Feature points and feature area. 

3.3. FPN Feature Fusion and Reinforce Network 

Three maps of features from the feature extraction network contain both global and 

local feature information. Although the specific location of cracks should be precisely po-

sitioned by a local feature map, we also need global features as a reference to avoid the 

errors caused by tree branch shadows and stains that look similar to cracks in pictures. 

Although, in the feature extraction of single-track networks, higher feature layers contain 

some of the features of lower layers, the same layers may contain the feature information 

of different layers in different images because of the varying crack rate. Therefore, it is 

important to consider both global and local features. Feature information in different lay-

ers should be further fused and reinforced to obtain integrated feature information that 

contains features through all layers. FPN feature fusion and reinforce network is an effec-

tive method of feature fusion and reinforces various sizes that are extensively applied in 

the object detection field. After the convolution and fusion of the three feature maps ex-

tracted by the network, three new feature layers are generated, with convolution and 

pooling operations repeated twice to form a higher global feature layer, so the FPN feature 

fusion and reinforce network would generate five feature layers in total. Apart from con-

taining more information, it can also process images of different sizes, learn the feature 

rules automatically, and finally, generate three reinforced feature maps and two with 

global feature information. We selected the first, third, and fifth layers in sequence as the 

final extracted feature layer with detailed local features, transition features, and global 

features. 
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3.4. Feature Filtration Network 

The outputs of FPN feature fusion and reinforce network need another convolution 

operation for feature processing and finally output an anchor point prediction result the 

same size as the corresponding original feature layers. Different layers contain different 

numbers of local or global features, so the prediction results of each layer can be regarded 

as the prediction results for different features’ extent, i.e., whether the corresponding area 

contains a crack. 

Predictions that consider global features will have higher prediction accuracy, while 

predictions considering local features will have higher localization accuracy. Thus, start-

ing with global features, the feature points that do not have cracks are gradually filtered 

out based on the results of the current layer prediction. Finally, the identification results 

are obtained, and the prediction accuracy and crack location accuracy are guaranteed. The 

process of crack detection shown in Figure 9 exemplifies how a feature filtration network 

works. 

  
(a) Original image  (b) Feature point area of the bottom layer 

  
(c) Feature point area after filtration  (d) Feature point area of the next layer 

Figure 9. Feature filtration network. 

Firstly, we input the prediction results of the bottom feature layer that contains the 

most comprehensive global information, as shown in Figure 9b, into the feature filtration 

network. Due to the relatively large distance between feature points, each feature point 

contains comprehensive global feature information. The prediction result of the current 

layer helps to distinguish between the crack area and noncrack area, as shown in Figure 

9b. We removed the feature points in noncrack areas and kept those in the crack area, as 

shown in Figure 9c. 

Based on this filtering result, the feature points corresponding to the next feature 

layer were retained. As shown in Figure 9d, the features and anchor points of this layer 

were screened, and after the screening, only the anchor points of the current layer in the 

crack-containing area were retained again; this process was repeated continuously. Ac-

cording to the network structure, three times in sequence were filtered, and the points 

finally retained were the anchor points of the positive sample of the lowest local features 
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at the maximum resolution set and the minimum step size. These were the key points of 

the identified cracks. 

It is important to note that the above method is completely different from directly 

deciding whether an area contains cracks. The method depends totally on convolution or 

pooling operations, whose weight is obtained via the model’s automatic learning. 

3.5. Feature Filtration Network 

In model training, the input for each layer level is the anchor point prediction result 

of the previous layer of features and the eigenvalue of the current layer of features. The 

output is the anchor point prediction result of the current layer, which is used to deter-

mine whether each anchor point is a positive sample point of the current layer. Due to the 

different sizes of the input images at different layers, or the different sizes of the feature 

layers, the tolerance of the critical point determination for identifying cracks is also differ-

ent. So, the thresholds
P

 , 
N

 , and loss function are determined by the size of feature 

maps. 

For reticulated reference anchor points at equal intervals, if their anchor point stride 

is S pixels, then the maximum distance between a crack key point and its nearest anchor 

point is 2 2S pixels. As shown in Figure 10, the yellow and green points are fracture 

key points, and the furthest possible location from the nearest anchor point to that fracture 

key point is the four red points around it. 
P

0.8S =  and 
N

1.5S = can be extracted to 

define positive and negative sample anchor points in every layer. When the possibility 

that the reference anchor point is a positive sample point is higher than the set threshold, 

the reference anchor points are regarded as positive sample points of the current layer. 

 

Figure 10. Set the distant threshold of positive and negative sample points. 

A loss function is introduced in each layer to speed up the algorithm convergence 

and improve the judgment accuracy during training. For this classification problem, a bi-

nary cross-entropy loss function can generally be used. However, for image crack detec-

tion problems, because a crack occupies only a small part of the whole image, there are 

many more negative sample points than positive ones, which will lead to error. Therefore, 

a loss function in RetinaNet [40] is applied to balance the positive and negative sample 

points, using the Focal Loss function as in Equation (8): 

 
loss

(1 ) log , when 1

(1 ) log(1 ), when 0

y y y
f

y y y









− − =
= 

− − − =
 (8) 

In order to balance positive and negative samples, regulatory factors α and β were 

introduced into the formula.
y

is the predicted value, i.e., the possibility that reference 

anchor points are crack key points of the feature layer.
y

 is the actual value of the same 

reference anchor points: the positive sample point is 1, while the negative one is 0. 
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4. Model Training and Evaluation 

4.1. Data Collection 

The dataset used in this research was derived from the surface crack images of vari-

ous wall surfaces on a university campus in Shanghai. First, we used a camera to take 

multiple 6720 × 4480 pixel images, divided them into 6 × 6 blocks, and used bilinear inter-

polation to unify each block image to a size of 1024 × 768. From these images, 1349 images 

containing cracks were selected; 90% of them were used as the training set and 10% as the 

test set (https://github.com/csga11/craData). 

4.2. Training Parameters 

The crack detection model in this paper was based on the Pytorch 1.0 deep learning 

framework. The GPU used for training and testing was NVIDIA GTX1080. The initial pa-

rameter weights of the feature extraction network all used the weights of the Pytorch of-

ficial ResNet network pretraining model. During training, the batch size was 16, the num-

ber of iterations was 100, and the learning rate was 0.0001. In order to improve the training 

effect and robustness of the model, conventional online dataset expansion methods, such 

as random inversion, filtering, and brightness enhancement, were used during the model 

training. 

4.3. Assessment Criteria 

The model assessment criteria need to be determined to evaluate whether a crack 

detection model is effective. For each anchor point, the distance threshold method was 

applied to determine whether a sample point was positive or negative. As the possibility 

of positive sample points was calculated as the output, a possibility threshold
b

 had to be 

set for determining the sample points, i.e., the positive and negative sample point set were 

as in Equation (9): 

 P anchor

bi i
E p y =   ,  N anchor

bi i
E p y =  , (9) 

where
i

y is the predicted possibility value of the anchor point i. 

The commonly used accuracy rate in the object detection area was also adopted to 

represent the correct prediction rate among all the image detection results as in Equation 

(10): 

 
 

T P

P

,
i i i

num p p E p E
P

num E

 
=  (10) 

In Equation (11), { }num represents the number of elements in the set. 

Meanwhile, the introduction of another conventional indicator-recall rate, the pro-

portion of all actual crack points that are correctly identified, describes whether all the key 

points of the crack are correctly identified. For any key point of a crack, as long as there is 

an anchor point identified as a positive sample point in the circle whose radius is step S, 

the key point of the crack is considered to be correctly detected. Therefore, the recall rate 

was defined as in Equation (11): 
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It can be seen that, in order to ensure accuracy, forecasts should be as few and precise 

as possible. However, in order to ensure the recall rate, the prediction should be as com-

plete as possible, so the two indicators are contradictory to a certain extent. According to 

actual engineering needs, these two parameters can usually be adjusted. Here, the 
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weighted balance F1 score of the two is adopted as the final identification evaluation in-

dex. The recall rate is defined as in Equation (12): 

 
2

F1-score
PR

P R
=

+
 (12) 

This research proposes the concept of a distance distribution map to reveal the dis-

tance distribution of the identification point from the nearest crack key point. The abscissa 

is the distance between the anchor point and the key point of the nearest crack, and the 

ordinate is the number of anchor points at the above distance. The results of all the images 

in the test set were plotted in one graph. The quality of crack detection was evaluated by 

analyzing the number of anchor points within a certain distance. 

4.4. Analysis of Detection 

The correctness of the model design needs to be tested first to demonstrate the effec-

tiveness and applicability of the method. We tested three models without a feature filtra-

tion subnetwork, then output three layers, P5, P4, and P3. P5 represents the highest layer 

for global features. After testing the two characteristic screening subnetwork models, P5 

is the screening output of P4, and P5 and P4 are the screening output of P3. We set the 

threshold rate using the experimental results of the above five models, as shown in Table 

1. 

Table 1. The assessment result of each output layer when the threshold rate set as 0.5. 

Output layer 
Distance thresh-

old 

Accuracy 

rate 

Recall 

rate 
F1 score 

P5 128 0.869 0.992 0.895 

P4 64 0.814 0.894 0.853 

P3 32 0.786 0.882 0.831 

P5 + P4 64 0.819 0.909 0.862 

P5 + P4 + P3 32 0.881 0.833 0.856 

When the output layer is a single feature layer, and the sizes of feature layers increase 

(from P5 to P3), the correctness of prediction gradually drops. The F1 score decreased 

from 0.895 to 0.831, which showed that the global feature exerted a notable influence on 

crack detection. So, the global feature should be adequately considered. 

However, after adding the feature screening subnetwork, comparing the results of 

P4 with P5 + P4 and P3 with P5 + P4 + P3 shows that the model has better detection results 

after adding the feature screening subnetwork. The F1 score increased from 0.853 to 0.862 

and from 0.831 to 0.856. 

Figure 11 presents a distance distribution map of the detection results of the single-

track output layer model. The intensive blue strips are a histogram of the distance between 

anchor points and the nearest crack key point. This shows that, as the distance between 

anchor points and the nearest crack key point increases, the number of anchor points re-

duces. For the orange anchor point segmenting vertical lines in the image, its vertical co-

ordinates are the threshold of positive/negative sample determination for the current fea-

ture layer: positive to the left, negative to the right. The curves in different colors are an-

chor point segmenting lines under different possibility thresholds, and any line divides 

all the anchor points (blue strips) within the distance into two parts: the upper parts rep-

resent the positive prediction points, and the lower represent the negative prediction 

points. Any point in the curve represents the number of positive points in the correspond-

ing distance, which can be called a positive detection curve. 
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(a) P5 output layer  (b) P4 output layer 

 
(c) P3 output layer 

Figure 11. The histogram of the shortest distance between anchor points and marked points of single-track output layer. 

Any one of the identifying positive case curves and vertical dividing lines divides the 

blue area into four regions. In the upper left region, the points that are actually positive 

case anchors are identified as negative case anchors; in the lower left region, the points 

that are actually positive case anchors are identified as positive case anchors; in the upper 

right region, the points that are actually negative case anchors are identified as negative 

case anchors; and in the lower right region, the points that are actually negative case an-

chors are identified as positive case anchors. The percentage of points in the lower left and 

upper right areas should be as high as possible. 

Therefore, for the P5 output layer shown in Figure 11a, the positive prediction curves 

under each possibility threshold almost coincide; the threshold selection has little influ-

ence on the result, which means that the global feature exerts a relatively significant influ-

ence on model detection and the detection of the crack key point is accurate. The predic-

tion rate of anchor points marked as positive is close to 1, while the prediction rate of 

anchor points marked as negative is close to 0, which is an ideal prediction result. Figure 

11b,c demonstrate that, with the decrease in stride, the detection result of the positive/neg-

ative sample point becomes more sensitive to the possibility threshold, and more detec-

tion errors appear, because images with high resolution emphasize the local features, 

leading to the misjudgment of anchor points in areas such as cracks. This illustrates that 

global features are more helpful for effective crack detection, yet the relatively long stride 

complicated the accurate location of cracks. The introduction of a filtration subnetwork 

requires a correction of the distance distribution map, because the number of anchor 

points is influenced by the feature filtration subnetwork and the size of its output. Chang-

ing the vertical ordinate from the number of anchor points to the anchor point frequency 

would reduce the influence of the model anchor point to an extent. 

Figure 12 presents the distance distribution map of a single-track output layer and 

introduces the feature filtration layer under a different possibility threshold. It shows that 

the curves become steep near the possibility threshold after introducing the feature filtra-

tion network, especially the output of P3; more points are detected near the crack key 

points, and fewer are detected away from the crack key points. The figure illustrates that 
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the feature filtration network has a significant effect, verifying the suitability of the net-

works we presented. 

  
(a) P4 output size  (b) P3 output size 

Figure 12. Frequency histogram of distance between single output layer and filtration layer anchor 

point. 

Finally, we chose P5 and P3 as feature filtration layers, while P1 was an output layer. 

The final results of different crack detection were as shown in Figure 13. This figure proves 

that the application of our detection model can lead to satisfactory crack detection results. 

Moreover, the detection experiments discovered that the model had good generalizability, 

enabling the model to detect manual marking errors. Figure 14a was used to identify 

cracks. Figure 14a contains much interference, such as cracks, shadows, and numerical 

values. The model detection result is shown in Figure 14b. The comparison of the two 

figures shows that the model can detect cracks in a complex environment and meets the 

basic requirements of crack identification in a practical engineering environment. The 

suitability of the model design proposed in this research has been verified again. It is 

worth mentioning that the method proposed in this paper utilizes points but not crack 

characteristics in the marking stage. Therefore, width recognition of cracks is not accurate 

enough. We should consider modifying and optimizing this method in future research. 
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(a) Original image  (b) Detected image 

Figure 13. Detection results of different cracks. 

  
(a) Original wall (b) Detection result 

Figure 14. Detection of cracks on wall with interference factors. 

5. Conclusions 

Based on the characteristics of cracks, this paper defines the concept of crack key 

points, combined with the anchor mechanism in computer vision technology, and pro-

poses a new crack identification method—the reference anchor point method. This re-

search established a new model of image crack detection based on deep learning. Through 

the analysis of the detection network model and the crack detection experimental results, 

the following conclusions were obtained: 

• This research proposed a crack characterization method, combined with the features 

of image cracks based on key points of cracks. Its detection accuracy is controllable, 

which can lead to pixel-level recognition effects and can greatly improve detection 

efficiency based on meeting the accuracy requirements of engineering. When the 

computer is configured with NVIDIA GeForce GTX 1080, the recognition time of a 

single photo is 30 ms. 

• The advantages of characterizing image cracks based on the key points of cracks are 

explained. By designing algorithms such as fixed-distance decentralization and a ref-

erence anchor point method, the judgment conditions of positive and negative 
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examples are clarified so that the crack image mark data based on the key points of 

the crack are suitable for model training. 

• The image crack detection model KP-CraNet is established. From the perspective of 

global and local features, the principle of model detection is discussed, and the net-

work structure of the model is introduced. The results show that crack key points 

greatly improve the crack detection effect. 

A new model evaluation method is proposed. The distance distribution map is used 

to evaluate the model detection effect based on the key points of the fracture. This research 

evaluated the model’s detection effect through a distance distribution map and the accu-

racy rate, recall rate, and F1 score. It is shown that the identification model has strong 

crack identification and robustness. 
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