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Abstract: Advanced oxidation technology of persulfate is a new method to degrade wastewater. As
the economy progresses and technology develops, increasingly more pollutants produced by the
paper industry, printing and dyeing, and the chemical industry are discharged into water, causing
irreversible damage to water. Methods and research directions of activation persulfate for wastewater
degradation by a variety of iron-based catalysts are reviewed. This review describes the merits and
demerits of advanced oxidation techniques for activated persulfate by iron-based catalysts. In order
to promote the development of related research work, the problems existing in the current application
are analyzed.

Keywords: iron-based catalysts; activation persulfate; degrading wastewater

1. Introduction

With people’s yearning for a better life, increasingly more new materials are used in
the petrochemical, medical, and pharmaceutical industries. As a result, huge amounts
of organic pollutants are produced [1–3]. Advanced oxidation processes (AOPs) can
generate a variety of free radical ions, which can gradually decompose large organic
matter into small organic matter until mineralization occurs. At present, advanced oxi-
dation methods include Fenton oxidation [4–6], ozone oxidation [7,8], photolysis [9–11],
photocatalysis [12,13], and ferrate (VI) catalytic oxidation [14–16], etc. It is worth mention-
ing that advanced oxidation technology (sulfate radical-based AOPs, SR-AOPs) based on
persulfate (PS) that can produce sulfate radical ion (SO4

−) is also attracting increasing
attention [17,18].

In recent years, sulfonamides antibiotics (SAs) have been widely detected in urban and
agricultural wastewater and its receiving water in many regions of the world [19], and it is
estimated that about 12 t of sulfamethoxazole (SMX) is discharged into the South China Sea
via the Mekong River every year [20]. When it enters the water body, it affects the survival
and growth of the microbial community and microfauna, and even induces antibiotic
resistance, which will eventually destroy the virtuous cycle of the entire ecosystem [21].
SR-AOPs have shown a great result in this regard [22,23]. This technology not only has a
good effect in the treatment of antibiotic wastewater, but also shows excellent performance
in the treatment of oilfield wastewater [24].

Common persulfates include peroxymonosulfate (peroxymonosulfate, PMS) and
peroxodisulfate (peroxodisulfate, PDS). Owing to the high redox potential (2.5–3.1 V) [25]
of the sulfate radical ion, it can effectively oxidize organic pollutants into H2O and CO2 as
a powerful oxidant. It can also be applied over a wide range of pH, from 3 to 8 [22,26,27].
Although PS is a strong oxidant, without the action of catalyst the number of collisions with
organic pollutants is reduced, which greatly reduces the effect of the chemical agent [28].
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Iron is a transition metal, less toxic than copper and manganese. At present, there
are many reports about the application of various [29] iron-based catalysts such as
CuFe2O4 [30–32] in the activation of persulfate [33–35]. In this paper, the role of vari-
ous iron-based catalysts in the activation of persulfate is reviewed. Then, we introduce
the advanced oxidation technology of persulfate, as well as the current problems and
development prospects, so as to promote the sustainable development of this technology.

2. Activation Persulfate by Various Iron-Based Catalysts
2.1. MeFe2O4 (Me = Cu, Co, Zn, etc.)

In terms of activation mechanism, transition metal compounds react with PS to
produce a large amount of ·SO4

−; the reaction equation follows:

Mn+ + S2O8
2− →M(n+1)+ +·SO4

− + SO4
2− (1)

As can be seen from the above reaction, metal ions are in a free state dispersed in
the solution during the reaction process. Although the wastewater can be degraded by
the activation persulfate mechanism, it belongs to homogeneous catalysis; metal ions
will be dissolved in the aqueous solution, which causes difficult separation from solution.
Therefore, the production cost is greatly increased due to its difficult recycling nature,
and it is easy to cause secondary pollution to the environment. Therefore, MeFe2O4 with
a low metal leaching rate has become a new research direction. Through PS/PMS [36]
heterogeneous catalytic technology, these problems can be effectively solved [22,37,38].

At present, there are several common methods for preparing iron-based catalysts:
hydrothermal, solvothermal, sol–gel preparation, and coprecipitation methods.

In the hydrothermal method, the solute is dispersed into the solution, stirred, and
heated in the reactor, and finally washed and dried to obtain the required product [39].

Similar to the hydrothermal method, the solvothermal method changes water into
an organic solvent. By dissolving one or more precursors in a nonaqueous solvent, the
reaction occurs in liquid phase or supercritical conditions [40].

The sol–gel method is to dissolve the metal alkoxides in organic solvents, form homo-
geneous solutions, add other components, react at a certain temperature to form gels, and
finally make products by drying [41].

Coprecipitation is an important method to prepare composite oxide ultrafine powder
containing a large variety of metal elements [42].

The electron transfer between transition metal oxides is much higher [43] than that
between single transition metal oxides. Generally, AB2O4 [44,45] structure is referred to
as spinel structure. CuFe2O4 is a typical spinel ferrite with a magnetic structure, which
has high chemical stability and low metal leaching rate. Taking CuFe2O4 as an example,
compared with single transition metal oxides, Fe and Cu elements can play a role in the
reaction; respectively, they can also activate PS to produce ·OH and ·SO4

−.
G. Xian et al. [46] comprehensively compared the catalytic degradation effects of

CoFe2O4, CuFe2O4, MnFe2O4, and ZnFe2O4. In detail, CuFe2O4 presented the best and
fastest catalytic performance in organics removal. Almost 87.6% azo dye acid orange
7 (AO7) was removed in PS solution coupled with CuFe2O4 [46]. Additionally, it was
known that CuFe2O4 had the best catalytic effect. Moreover, through the quenching
experiment, it was not ·OH but ·SO4

− that played a major role in the reaction.
Table 1 shows the degradation effects of some different MeFe2O4-activated PS/PMS

on different kinds of wastewater. It can be seen from the table that the iron-based catalyst
with spinel structure mainly acts on ·SO4

− in the mechanism of activation persulfate; the
effect of ·OH is slightly worse [47]. Of course, there are also some nonfree radical pathways,
which degrade pollutants in water by generating singlet oxygen 1O2 [48–50].
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Table 1. Effect of Different MeFe2O4-activated PMS on degradation of different wastewater [39–42,47,51–53].

Catalyst Pollution Main
Mechanism

Pollutant
Concentration

Catalyst
Concentration Oxidant Oxidation

Concentration T/min Degradation
Rate/%

Number of
Cycles

Synthesis
Techniques Ref.

PbFe2O4 Thionine 1O2 10 µM 0.4 g/L PMS 400 µM 20 100 Not
mentioned

Solution
combustion [51]

CoFe2O4–loaded quartz sand Sulfachloropyridazine
sodium

·SO4
−

·OH 2 g/L 10 g PMS 75 mg/L 150 90 Not
mentioned

Citrate
combustion [52]

CoFe2O4-SAC Norfloxacin (NOF) ·SO4
−

·OH 10 mg/L 0.1 g/L PMS 0.15 g/L 120 TOC reduction
81

5
(>80%) Hydrothermal [47]

The biochar loaded with
CoFe2O4 nanoparticles

Bisphenol A
(BPA)

·SO4
−

·OH 10 mg/L 0.05 g/L PMS 0.5 g/L 8 93 Not
mentioned Hydrothermal [39]

C3N4@MnFe2O4-graphene Metronidazole ·SO4
−

·OH 20 mg/L 1.0 g/L PS 0.01 M 90 94.5 5
(>80%) Solvothermal [40]

Zn0.8Cu0.2Fe2O4 Atrazine ·SO4
− 4.4 µM 200 mg/L PS 0.5 mM 30 95 Not

mentioned Sol–gel [41]

CuFe2O4/O3

2,4-
Dichlorophenoxyacetic

acid
(2,4-D)

Not
mentioned 20 mg/L 0.20 g/L PMS

O3

PMS 2.0 mM;
O3 16.0 mg/L; 40 88.9 5

(>80%) Coprecipitation [42]

CoFe2O4
Atrazine

(ATZ) ·SO4
− 10 mg/L 0.4 g/L PMS 0.8 mM 30 >99 5

(>60%) Hydrothermal [53]
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2.2. MeFe2O4 Combined with the Carrier

As mentioned above, the carrier recombination method can increase the specific
surface area and increase the contact of chemical sites [54], thus greatly improving the rate
of chemical reaction. At present, SiO2 [54,55], black phosphorus [56,57], and rGO [58,59]
(reduced graphene oxide) are commonly used as carriers. After compositing with the
carrier, it is closely combined with the carrier by van der Waals force [58] or electrostatic
interaction [60], making it difficult to fall off the surface of the carrier.

Pure graphene is a benzene-ring-like two-dimensional nanomaterial consisting of
sp2 hybrid orbitals. However, its high production cost limits its large-scale application.
Afterward, by improving Hummer’s method, a large number of oxygen-containing func-
tional groups were linked at the edge of the plane by a strong oxidant, hence the name
GO (graphene oxide) (Figure 1); rGO (Figure 2) was obtained by sodium borohydride and
other means of reduction, which has low synthesis cost and is suitable for use as a good
carrier of catalysis.

Figure 1. Plane structure (left) and solid structure (right) of GO (bond line type).

Figure 2. Plane structure (left) and solid structure (right) of rGO (bond line type).

Taking CuFe2O4, a representative of MeFe2O4, as an example, by comparing the effect
of pure CuFe2O4 with that of CuFe2O4 combined with the carrier, it can be seen that
the latter has a stronger catalytic effect under acidic and photoinduced conditions [61].
CuFe2O4 in CuFe2O4–rGO is closely combined with the oxygen-containing groups on rGO
through electrostatic interaction, as shown in Figure 3. Images from a scanning electron
microscope are shown in Figure 4.

Table 2 shows the degradation effects of some CuFe2O4 and rGO composite materials
on different kinds of wastewater. It can be seen from the table that the composite catalyst
can still produce good effects even without the presence of PS. Not only the Cu, Fe, and
other elements in the catalyst can produce pure chemical catalytic effect, but the carrier
rGO can produce electron transition under the light condition, promoting the transfer of
electrons, and plays a part of the photocatalytic effect [62,63]. Table 2 contains some other
carriers, which can also greatly influence degradation of different kinds of wastewater.



Appl. Sci. 2021, 11, 11314 5 of 23

Table 2. Effects of partial MeFe2O4 and carrier composite materials on degradation of different kinds of wastewater [61,64–70].

Catalyst Pollution Main
Mechanism

Pollutant
Concentration

Catalyst
Concentration Oxidant Oxidation

Concentration T/min Degradation
Rate /%

Number of
Cycles

Synthesis
Techniques Ref.

CuFe2O4-
20%rGO Methylparaben SO4

−·
·OH 10 mg/L 0.2 mg/L PS 5 mM 120 96 Not

mentioned Sol-gel [64]

CuFe2O4-
1% (w/w)

rGO
Phenol ·OH 20 ppm 5 mL 30%

H2O2
6 mg/L 240 100 Not

mentioned Coprecipitation [61]

CuFe2O4/g-C3N4 Propranolol SO4
−· 0.02 mM 1 g/L PS 1 mM 120 82.2 Not

mentioned Sol-gel [65]

CoFe2O4/CCNF Dimethyl phthalate SO4
−· 0.05 mM 0.5 g/L PMS 1.5 mM 60 >90 5

(>90%) Sol-gel [66]

TiO2@CuFe2O4/UV 2,4-D SO4
−· 20 mg/L 0.1 g/L PMS 0.3 mM 60 97.2 5

(>90%) Sol-gel [67]

ZnS-ZnFe2O4 Rhodamine B SO4
−· 20 mg/L 20 mg PS 5 mg 90 97.67 3

(>95%) Hydrothermal [68]

Fe2O3@CoFe2O4 NOF SO4
−·

·OH 15 µM 0.3 g/L PMS 0.4 mM 25 89.8 4
(90%) Hydrothermal [69]

Nitrogen and sulfur codoped
CNTs-COOH loaded

CuFe2O4

2-
Phenylbenzimidazole-

5-sulfonic
acid

SO4
−· 5 mg/L 50 mg/L PMS 1:100 (molar

ratio) 40 98 5
(>95%) Coprecipitation [70]

@: the composite of two materials.
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Figure 3. Chemical structural formula of CuFe2O4-rGO [60].

Figure 4. TEM images of (a,b) rGO/CuFe2O4 nanostructures under different magnifications [60].

2.3. Activation Persulfate by Fe0

In recent years, activation persulfate based on Fe0 (zero-valent iron, ZVI) have been
widely used in chemical production and environmental remediation [71,72]. As mentioned
above, the activation persulfate/Fe (II) mechanism can cause secondary pollution to water,
so ZVI/PS [73,74] is used instead to reduce a series of problems caused by the reduction of
Fe2+ content due to the change of pH and other factors in water [71].

ZVI/PS system has strong reducibility (Fe0,E0 = −0.44 V) [75]. Compared with
CuFe2O4, its reaction process is more complex, as shown in Figure 5. Fe0 is first converted
to Fe2+ in the presence of acid and oxidant, then further oxidized to Fe3+ by Fe2+, and
finally to Fe(IV) [76,77]. The reaction mechanism follows [78]: According to the reaction
equation, the reaction is easily affected by pH, and the reaction will gradually slow with
the increase of pH. Weng et al. [79] point out that the Fe0/PS system exhibits two-stage
kinetics. The kinetic first stage is mostly attributed to a heterogeneous reaction occurring
on the surface of the Fe0 aggregate. As the reaction proceeds, decolorization shifts from
the slow kinetic first stage to the fast kinetic second stage when sufficient Fe2+ ions are
maintained in the system [80].

Fe0 + 2H+ → Fe2+ + H2 (2)

2Fe0 + O2 + 2H2O→ 2Fe2+ + 4OH− (3)

Fe0 + S2O8
2− → Fe2+ + 2SO4

2− (4)

Fe0 + HSO5
− → Fe2+ + SO4

2− + OH− (5)
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Fe2+ + S2O8
2− → Fe3+ + SO4

2− + ·SO4
− (6)

Fe2+ + HSO5
− → Fe3+ + SO4

2− + ·SO4
− (7)

Fe0 + S2O8
2− → Fe2+ + 2·SO4

− + SO4
2− (8)

Fe0+2 HSO5
− → Fe2+ + 2OH− + 2·SO4

− (9)

Fe2+ + S2O8
2− + H2O→ FeIVO2+ + 2SO4

2− + 2H+ (10)

Fe2+ + HSO5
− → FeIVO2+ + SO4

2− + H+ (11)

Figure 5. Schematic of the formation of ·SO4
− and Fe(IV) in nZVI/persulfate systems containing methyl phenyl

sulfoxide [81].

Figure 6 shows the proposed degradation pathway of 2,4-D [82]. By examining
Figure 6, it can further confirm that macromolecular organic matter is decomposed into
small molecular organic matter, which is gradually mineralized.

Figure 6. The proposed degradation pathway of 2,4-D [82].

Table 3 shows the degradation effects of various types of polluted water bodies
activated by PS/PMS based on elemental iron. Usually, an appropriate amount of H2O2 [83]
will be added to the water when PS is activated by Fe0, so as to reduce the cost of oxidant.
Through the analysis of the table, it can be seen that the effect of ZVI when used alone [84]
is worse than when it is combined with the carrier or when other conditions exist.
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Table 3. Degradation effect of different kinds of wastewater based on PS/PMS activated by different kinds of iron [85–92].

Catalyst Pollution Main
Mechanism

Pollutant
Concentration

Catalyst
Concentration Oxidant Oxidation

Concentration T/min Degradation
Rate /%

Number of
Cycles

Synthesis
Techniques Ref.

nZVI Sulfamethazine ·OH
·SO4

− 50 mg/L 2 mM PS
H2O2

1 mM
0.5 mM 30 96 Not

mentioned Sol-gel [88]

CN-Fe Sulfamethazine
·SO4

−

·OH
1O2

50 µM 0.5 g/L PMS 1 mM 15 82 Not
mentioned Carbothermal [87]

Carbon-coated nZVI 4-chlorophenol ·SO4
−

·OH 150 µM 0.25 g/L PMS 1 mM 120 96 Not
mentioned

Commercially
available [86]

US-nZVI Chloramphenicol ·SO4
−

·OH 5 mg/L 0.5 g/L PMS 1 mM 90 98.1 Not
mentioned

Liquid phase
reduction [85]

Fe0@Fe3O4 Dibutyl phthalate ·OH
·SO4

− 18 µM 0.5 g L−1 PS 1.8 mM 180 94.7 6
(>68%) Calcination [89]

Fe0@Fe3O4 Atrazine ·OH
·SO4

− 500 µg/L 25 mg/L PMS 1 mM 2 100 Not
mentioned Reduction [90]

Fe@C Bisphenol S ·OH
·SO4

− 5 mg/L 0.5 g/L PMS 1.0 mM 60 92.8 Not
mentioned

Resin
carbonization [91]

Fe@C/PB 2,4-DichloroPhenol ·OH
·SO4

− 20 mg/L 0.6 g/L PMS 2.0 g/L 50 99.4 Not
mentioned Calcination [92]

@: the composite of two materials.
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2.4. Fe3O4

Fe3O4 magnetite, also known as magnetic iron oxide, is a black crystal with a rotating
spinel structure (Figure 7). In magnetite, Fe2+ and Fe3+ are disordered on the ferrite
octahedron, so electrons can transfer rapidly between Fe2+ and Fe3+; thus, reversible redox
reactions can occur at the same position on the octahedron.

Figure 7. Crystal structure of Fe3O4.

However, since Fe3O4 is easy to accumulate in solution and contact sites are reduced
after agglomeration, single Fe3O4 is rarely used. Using the composite carrier method [93]
can not only solve these problems, but also speeds the reaction rate, making it more
cost effective when applied in industrial production. He et al. [94] pointed out that the
Fe3O4/GO/Ag composite microspheres are formed using magnetic Fe3O4 as cores, fol-
lowed by coating an internal layer of GO and an outer layer of Ag nanoparticles, as Figure 8
shows. The synthesized Fe3O4/GO/Ag composite catalyst under the action of NaBH4,
methylene blue, and ciprofloxacin can be completely degraded within 12 min. Figure 8
shows SEM images of Fe3O4/GO/Ag composite catalyst. In Figure 9, we can clearly
observe that Ag has been completely attached to the Fe3O4/GO surface, which can increase
the specific surface area and improve the chemical reaction rate.

Table 4 shows the research progress of Fe3O4 and its composite materials on the
degradation of different pollutants reported at present. According to the data in the table,
when Fe3O4 is compounded with the carrier, the catalytic performance is greatly improved.

Figure 8. Illustration of the fabrication of Fe3O4/GO/Ag composite microspheres [94].
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Table 4. Effects of Fe3O4 and its composite-material-activated PS/PMS on degradation of different kinds of wastewater [95–101].

Catalyst Pollution Main
Mechanism

Pollutant
Concentration

Catalyst
Concentration Oxidant Oxidation

Concentration T/min Degradation
Rate /%

Number of
Cycles

Synthesis
Techniques Ref.

Fe3O4 BPA ·SO4
−

·OH 20 mg/L 2.0 g/L PMS 5 mM 30 27.53 Not
mentioned

Commercially
available [95]

CuO-Fe3O4-BC BPA ·SO4
−

·OH 20 mg/L 2.0 g/L PMS 5 mM 30 100 4
(>85%) Coprecipitation [96]

rGO-Fe3O4 NOF
1O2
·OH
·SO4

−
20 mg/L 0.5 g/L PS 1 g/L 30 89.69 Not

mentioned Coprecipitation [96]

Fe3O4 Sulfamonomethoxine ·SO4
− 0.06 mM 2.4 mM PS 1.2 mM 15 100 Not

mentioned Coprecipitation [97]

Fe3O4@Zn/Co-ZIFs Carbamazepine ·SO4
− 5 mg/L 25 mg/L PMS 0.4 mM 30 100 Not

mentioned Solvothermal [98]

Fe3O4/microwave
irradiation (3 kW/L) p-Nitrophenol ·SO4

− 20 mg/L 2.5 g/L PS 15:1
(molar ratio) 28 94.2 Not

mentioned
Not

mentioned [99]

Fe3O4/MC p-Hydroxybenzoic
acid ·SO4

− 1.0 g/L 0.2 g/L PS 1.0 g/L 30 100 Not
mentioned Sol-gel [100]

Fe3O4/graphene aerogels Malachite green Not
mentioned 20 mg/L 0.2 g/L PS 1.0 mM 12 91.7 Not

mentioned Sol-gel [101]

@: the composite of two materials.
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Figure 9. Typical FESEM images of (a) Fe3O4, (b) Fe3O4/GO, (c) Fe3O4/GO/Ag, and (d) Fe3O4/Ag
microspheres. Inserts are magnified FESEM images of Fe3O4/GO/Ag and Fe3O4/Ag micro-
spheres [94].

3. Comparison of the Performance of Different Iron-Based Catalysts

Different catalysts and contaminants are described above. We select representative
pollutants, 2,4-D, NOF, and BPA, as examples to illustrate the performance of various kinds
of catalysts.

As one type of auxin analogue, 2,4-D is the most applied herbicides in the world. If
overused, it pollutes the water body and harms crops [102]. Figure 10 shows that when
the concentration of 2,4-D was 20 mg/L, all three iron-based catalysts showed excellent
degradation rate and fast degradation time. The best material is Fe@C/PB, which can
degrade 99.4% of the 2,4-D in 50 min [92].

Figure 10. Degradation of 2,4-D by three iron-based catalysts: (a) CuFe2O4/O3 [42],
(b) TiO2@CuFe2O4/UV [69], and (c) Fe@C/PB [92].

Antibiotics are currently extensively used in human medicine, animal farming, agricul-
ture, and aquaculture, and their residue has become a global environmental problem [103].
NOF is the third generation of quinolone antibiotic. It has certain antibacterial action [104].
Figure 12 shows that when the concentration of NOF was 15 µM, Fe2O3@CoFe2O4 was
0.3 g/L. In 25 min, the degradation rate could reach 89.8% [69]. Compared with the degra-
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dation rate of other pollutants, it has a greater improvement. Piezoelectric catalysis can be
used to further enhance performance.

BPA is a very common chemical product. It is widely found in plastics used in our
daily life. It can lead to endocrine disorders, and cancer is also considered to be associated
with BPA [105]. Figure 11 shows that when the concentration of BPA was 10 mg/L, the
degradation rate of (a) the biochar loaded with CoFe2O4 nanoparticles can reach 93% [39]
in 8 min.

Figure 11. Degradation of BPA by three iron-based catalysts: (a) biochar loaded with CoFe2O4

nanoparticles [39], (b) Fe3O4 [87], and (c) CuO–Fe3O4–BC [88].

Figure 12. Degradation of NOF by three iron-based catalysts: (a) CoFe2O4–SAC [47],
(b) Fe2O3@CoFe2O4 [69], and (c) rGO–Fe3O4 [88].
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4. Coupling Activation of Iron-Based Catalysts under Auxiliary Action
4.1. Photocatalytic Activation

Transition metal compounds with lower states can effectively activate PMS, and the
reaction mechanism follows:

Mn+ + HSO5
− →M(n+1)+ + ·SO4

− + ·OH (12)

Mn+ + HSO5
− →M(n+1)+ + SO4

2− + ·OH (13)

Currently, photocatalytic activation of PS can be done either through direct exposure
to ultraviolet light, or through the reaction of light with the photocatalyst to excite the
photoinduced electrons on its surface [106]. According to many studies, the efficiency
of Fenton-like degradation of pollutants by iron-based catalyst can be improved under
the condition of light [107,108]. As an efficient catalyst to activate persulfate, Fe2+ also
shows good performance under dark conditions, but there are still problems such as
the reduction of utilization rate caused by the mutual transformation of Fe2+ and Fe3+.
Benkelberg et al. [109] found in their study that under ultraviolet light, the transformation
of Fe3+ into Fe2+ in the solution was accelerated, and the Fe(OH)2 generated by the reaction
would greatly absorb ultraviolet light and produce Fe2+ and ·OH. The reaction mechanism
follows:

Fe(OH)2
hυ→ Fe2+ + ·OH (14)

However, as described above, homogeneous catalysis based on Fe2+ is prone to many
problems. Therefore, heterogeneous catalysis based on an iron catalyst is relatively more
convenient to recycle and is environmentally friendly. Regardless of the form the iron-
based catalyst enters the solution, it will be converted to Fe2+ to activate PS and degrade
the pollutants in the water. It is Fe2+ that plays a vital role in activating persulfate. Part of
the ions converted to Fe3+ will also be converted to Fe2+ through illumination and other
ways to speed the reaction process.

Table 5 shows the degradation effects of different iron-based catalysts on different
pollutants under UV lamp irradiation. The data in the Table show that the degradation
effect is the best under UV lamp irradiation (UV–Vis) within the visible range.

Table 5. Effects of different iron-based catalysts on degradation of different pollutants under ultraviolet lamp irradiation [107,110–115].

Catalyst Pollution
Pollutant

Concentra-
tion

Catalyst Con-
centration Oxidant

Oxidation
Concentra-

tion
T/min Degradation

Rate /%
Number of

Cycles
Synthesis

Techniques Ref.

UV/Fe2+ Lindane 3.43 mM 50 mM PMS 250 mM 180 92.2 Not
mentioned

Commercially
available [110]

CuO-
UV/Fe2O3

2,4-D 50 mg/L 0.5 g/L PMS 3 mM 60 90.2 Not
mentioned Hydrothermal [111]

UV–Vis
/Fe(II) Carbamazepine 0.05 mM 0.1 mM PMS 0.2 mM 30 100 Not

mentioned
Commercially

available [112]

UV/Fe2+ Lindane 3.43 mM 0.25 mM PMS 0.25 mM 720 78.4 Not
mentioned

Commercially
available [110]

UV/Fe2+ Atrazine 18.56 µM 17.91 µM PS 1856 µM Not
mentioned 62.94 Not

mentioned
Commercially

available [107]

UV-
Vis/Fe(II)

Diclofenac,
Sulfamethox-

azole

Compound =
50 µM 1 mM PMS 2 mM 60 >70 Not

mentioned
Commercially

available [113]

Vis/ZnFe2O4 Orange II 20 mg L−1 0.1 g L−1 PMS 0.5 g L−1 80 100 Not
mentioned

Commercially
available [114]

Vis/ZnFe2O4 Orange II 100 mg L−1 0.5 g L−1 PS 1.0 g L−1 300 50.5 5
(95%) Sol-gel [115]

4.2. Piezoelectric Catalytic Activation

Piezoelectrics are a noncentrosymmetric crystal structure that separates positive and
negative charges under the action of external forces, resulting in a corresponding piezopo-
tential [116–118]. Piezocatalysis refers to the conversion of mechanical energy into chemical
energy. When using an iron-based catalyst piezoelectric material or coupled with other pho-
tocatalysts, an electric field near the piezoelectric material assists in charge separation [119].
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Vibration is a very common motion that produces mechanical energy. Compared with
commonly used oxidation methods such as Fenton reaction and photoelectric catalysis,
piezoelectric catalytic activation is more resource-saving. Even a very small vibration
can drive a deformation of nano/micrometer materials to generate a potential [120]. The
degradation mechanism of piezoelectric catalysis follows [121]:

(Piezo-materials) + vibration→ (Piezo-materials)(h++ e−) (15)

O2 + e− → ·O2− (16)

h+ + OH− → ·OH (17)

h+/ e−/·OH/·O2− + pollutants→ degradation products (18)

Ultrasound (US) is the most common wave that can generate mechanical energy. PS is
converted into ·SO4

− under the action of ultrasound; the reaction equation follows [122]:

S2O8
2− + US→ 2·SO4

− (19)

H2O + US→ H· + ·OH (20)

·SO4
− + H2O + ·OH→ H+ + SO4

2− (21)

The study of Xu et al. [123] indicated that in the ultrasonic environment, activation
persulfate based on foamed zero-valent iron (Fe0

f) could remove the oxide film on the
surface of Fe0

f in the reaction process. Thus, more Fe0
f is exposed to the solution to increase

the contact area and speeds the reaction. In the persulfate/chlorite Fe0
f system, a large

number of ·SO4
−, ·OH and other free radical ions can be generated through ultrasonic

action. The possible reaction mechanism is shown in Figure 13 [123].

Figure 13. The possible reaction mechanism of US/Fe0
f–PS [123].

As an activation method of piezoelectric catalysis, an ultrasonic wave is partially
used as an example in the Table 6 to degrade different kinds of wastewater through the
activation persulfate mechanism.
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Table 6. Under the action of ultrasound, iron-based catalysts degrade different kinds of wastewater by activation persulfate [37,88,123–128].

Catalyst Condition of US Pollution Pollutant
Concentration

Catalyst
Concentration Oxidant Oxidation

Concentration T/min Degradation
Rate /%

Number of
Cycles

Synthesis
Techniques Ref.

US/PS/ Fe0
f 30 W L−1 28 kHz TmpFG 50 µM 0.214 mM PS 1.45 mM 40 100 Not

mentioned
Commercially

available [123]

US/ Fe0 140 W L−1 SD 20 mg/L 1.3 mM PS 1.3 mM 30 97.4 Not
mentioned Hydrothermal [124]

US/ Fe0 60 W L−1 SMT 0.05 mM 0.1 mM PS 1 mM 30 100 Not
mentioned Magnetization [125]

US/Fe2+

(pH = 3.5)
40 kHz Azorubine 20 mg L−1 4 mM PS 4 mM 60 66.5 Not

mentioned
Commercially

available [126]

US/Fe3O4 20 kHz Azo dye 0.06 mM 0.4 g/L PMS 3 mM 30 90 Not
mentioned Hydrothermal [127]

US/nZVI 360 W L−1

40 kHz
Chloramphenicol 5 mg/L 0.5 g/L PS 1 mM 90 98.1 Not

mentioned Hydrothermal [88]

US/Fe3O4@MOF-2 200 W L−1 Diazinon 30 mg/L 0.7 g/L PS 10 mM 120 98 Not
mentioned

Commercially
available [128]

Fe0/US 40 kHz Carbamazepine 1.0 mg L−1 0.4 g L−1 PDS 0.4 g L−1 60 98.4 Not
mentioned

Commercially
available [37]

TmpFG: a triphenylmethane derivative; SD: sulfadiazine; SMT: sulfamethazine. @: the composite of two materials.
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4.3. Summary

The coupling activation of two iron-based catalysts under auxiliary action was intro-
duced above. Both methods can accelerate the activation effect of iron-based catalysts on
activation persulfate to a certain extent.

At present, the problem of photocatalysis is how to strengthen the application range of
the photocatalyst. The treatment of industrial wastewater is generally conducted outdoors
under complicated conditions. Some single photocatalysts, such as few-layered graphite-
modified graphitic carbon nitride composite (GrCN), can be used in the degradation
process together with PMS and photothermal catalysis [129]. The maximum reaction rate is
0.044 min−1. The light source used for the data given in Table 5 is ultraviolet light, although
sunlight contains only 5–7% of the ultraviolet spectrum. Therefore, how to improve the
practicability of materials in the visible light range has become a new research direction.

Furthermore, if GrCN is used alone to degrade wastewater, not to mention the effect,
recycling becomes a large problem. Therefore, it is a better method to compound it with a
magnetic carrier. By combining magnetic iron oxide nanoparticles with the carrier, not only
can the excellent catalytic effect of iron oxide be brought into play, but it can also facilitate
the recovery of GrCN as a carrier, so that the two substances complement each other [130].

Piezoelectric catalysis, as a newly developed technology in recent years, still has a
great space for development. Through ultrasonic and other methods that can generate
vibration, oxidants and catalysts can be evenly dispersed into sewage to increase the
contact point of chemical reaction, and more electrons can be generated by promoting
piezoelectric materials to increase the concentration of free radicals and accelerate the
progress of chemical reaction.

Table 7 shows the advantages and disadvantages of representative five iron–base
catalysts mentioned above.

Table 7. Advantages and disadvantages of representative five iron–base catalysts mentioned above.

Catalyst Advantages Disadvantages Ref.

CoFe2O4

CoFe2O4 exhibited an
excellent performance for
ATZ removal (over 99%).

It has a good effect in activating PMS,
but in activating PS and H2O2; its
recycling rate is not good due to the
leaching of metal ions and loss of
active sites.

[53]

CuFe2O4-
20%rGO

Increase of specific surface
area and chemical reaction
activation sites.

The most suitable pH is 6.5; the
application is limited. [64]

Fe0@Fe3O4

It has high reactivity for
atrazine degradation (near
100% removal in 2 min) and
is highly stable in air.

The synthetic route is complex. It has a
low stoichiometric efficiency (10.3%)
because most PMS are ineffectively
consumed during activation.

[90]

UV/Fe2+

Under the action of UV light,
it shows an improved
regeneration of Fe2+, causing
a fast generation of highly
reactive ·SO4

− and ·OH.

Its applicable pH range is low (under 4).
Too much catalyst will also reduce the
reaction rate, so the use of catalyst needs
to be strictly controlled.

[110]

US/ Fe0

The reaction rate was
improved by coupling
activation. Compared with
pure catalyst, the
degradation rate is
also improved.

It is easily affected by the action of other
anions in the solution (Cl−, NO3

−).
Moreover, the effect of PMS alone is not
good, and additional H2O2 is needed to
better degrade pollutants.

[125]

@: the composite of two materials.
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5. Conclusions and Prospect

Activation persulfate technology based on iron-based catalysts has attracted wide
attention in recent years. As for iron-based catalysts themselves because the central atom
is Fe, their electron configuration is not in a full or partially full state, so their chemical
properties are relatively active, and they are susceptible to not only pH but also various ions
in water. SR-AOPs-PMS/PDS technology is new, and several metal ions mentioned above
can activate persulfate. In terms of the current problems, several ideas and possibilities for
improvement are proposed:

Adopt the multimetal composite method in the advanced oxidation technology of
bimetal coordination. Taking iron as the core, screen and compare other metal ions of
transition elements, and compound new iron-based catalyst.

Based on the data above, it is not difficult to see that the AOPs technology of nonfree
radicals also has ideal effects. Compared with the generation of ·SO4

−, the degradation
effect of 1O2 produced by nonfree radicals is better to find a new nonfree radical reaction
pathway to degrade wastewater.

After the reaction stops, the solubility of some iron-based catalysts or metal leaching
may produce iron slag and other wastes. If the subsequent treatment is improper, it is easy
to cause secondary pollution to the water body; at the same time, there is metal valency
reaction in the reaction process, which reduces the collision of effective molecules and has
more side reactions. How to improve the effective ion concentration for the reaction has
become an urgent problem to be solved.

The persulfate used in the reaction is strongly oxidizing. If stored improperly or used
in excess, it will produce a large toxic effect on organisms.

Most of the iron-based catalyst reaction conditions are acidic and create a strong
acid environment. It is not applicable in a neutral environment. If used for degraded
wastewater, the pH of water needs to be adjusted, and if there is acid intolerance or acid
decomposition substances in the water, then it is easy to produce adverse consequences.
Furthermore, the pH of water should be adjusted after the reaction is terminated, which
greatly increases the cost.

Coupled catalysis based on iron-based catalysts with auxiliary action has played a
good role in activation persulfate, and it is worthy of further study to improve the degra-
dation effect by applying additional conditions. We can try to improve the performance
of the materials with poor degradation effect among the 12 different iron-based catalysts
mentioned above by photocatalysis, piezoelectric catalysis, and other methods.

Piezoelectric catalysis, as a research hotspot in recent years, is in its infancy at present.
More kinds of catalysts can be produced by attempting to combine other transition metals
and oxides with iron-based materials.
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