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Abstract: To address the control of uncertain multi-agent systems (MAS) with completely unknown
system nonlinearities and unknown control coefficients, a global consensus method is proposed by
constructing novel filters and barrier function-based distributed controllers. The main contributions
are as follows. Firstly, a novel two-order filter is designed for each agent to produce informational
estimates from the leader, such that a connectivity matrix is not used in the controller’s design,
solving the difficultly caused by the time-varying control coefficients in a MAS with a directed
graph. Secondly, combined with the novel filters, barrier functions are used to construct the dis-
tributed controller to deal with the completely unknown system nonlinearities, resulting in the global
consensus of the MAS. Finally, it is rigorously proved that the consensus of the MAS is achieved
while guaranteeing the prescribed tracking-error performance. Two examples are given to verify the
effectiveness of the proposed method, in which the simulation results demonstrate the claims.

Keywords: distributed control; MAS; flight control

1. Introduction

The control of uncertain nonlinear systems has been researched for several decades,
such that so many remarkable results have been obtained on this topic [1–9]. However,
most of them are for SISO or MIMO systems, and their methods or techniques cannot be
directly applying to multi-agent systems, as the information of each agent or subsystems is
only available for part of others. According to the topology of information transformation
graph, the graph can be divided into undirected and directed graphs. Generally, the
consensus control of a MAS with the directed graph is more difficult than the undirected
case, since the methods for the directed case are always applicable for the undirected case,
but not vice versa.

Recently, some significant progress has been made in the control of a MAS [10–12].
For a linear MAS with undirect graphs, fully distributed adaptive consensus controller is
present in [10]. Adaptive asymptotically consensus for an uncertain MAS is achieved in [11],
and adaptive asymptotically consensus is achieved in [12] for an uncertain MAS, and so on.
However, their methods are only applicable for a MAS with an undirected graph and are in
vain for a MAS with a directed graph. For a MAS with a directed graph and constant control
coefficients, adaptive consensus for a MAS with system nonlinearities satisfying match
conditions is researched in [13] to solve the problem of actuator faults; a fully distributed
adaptive consensus control is studied for a MAS with unknown control directions in [14]
by using a Nussbaum gain technique; actuator faults in a MAS are considered in [15] with
integral chain dynamics; and prescribed performance consensus control for uncertain MAS
is investigated in [16]. Though much progress has been made [17–20], it should be noted
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that there are still some nonnegligible problems to be solved. Firstly, the existing methods
require the control coefficients to be constants, or even known, for a MAS with a directed
graph. The main difficulty is that the Laplace matrix for a directed graph is asymmetric and
thus the selections of control parameters must always resort to adaptive methods, which
falls into trouble when the control coefficients are time-varying and unknown. Secondly, to
the best of our knowledge, there is no global consensus control method for a MAS with
a directed graph and the systems functions thereof completely unknown, except for [21],
wherein the unknown system nonlinearities required to satisfy the Lipschitz conditions
and control coefficients are one. Universal approximators such as neural networks (NN) or
fuzzy logic systems (FLS) have been attempted to solve the consensus control problem of a
MAS with completely unknown system nonlinearities [22–24], however, it is well known
that these methods are semi-global in the sense that their stabilities depend on the initial
conditions of systems and the careful selection of controller parameters. Therefore, NN or
FLS-based approaches cannot guarantee the global consensus of the MAS, though they are
very favorable to solve the problem of MAS with unknown nonlinearities.

As for the global control of systems with completely unknown nonlinearities, a
pioneering work is [25], wherein a low-complexity controller is presented that cannot
only achieve global convergence of all the system signals, but which can also guarantee the
prescribed performance of tracking error and state errors. In view of the low complexity and
strong robustness of this method, much research has been carried on this method for solving
different nonlinear control problems [26–30]. By introducing a novel barrier function, a
fault-tolerant controller is designed for a class of unknown nonlinear systems in [26]. With
consideration to the constraints of system states, a barrier function-based adaptive control
method is proposed in [27]. Addressing systems with unknown control direction and
system dynamics, a Nussbaum function-based low-complexity control scheme is designed
in [28]. As regards asymptotic tracking control for systems with unknown nonlinearities,
an universal global low-complexity controller is proposed in [31]. Nevertheless, it is
worth mentioning that the global control of a MAS with unknown nonlinearities is still an
unsolved problem, since these methods are based on the condition that the desired output
for systems are known, but this knowledge cannot be obtained for some agents of a MAS.
Moreover, considering the control coefficients of each agent are time-varying functions,
these traditional methods will fall into trouble when solving for the consensus control of a
MAS with unknown dynamics.

Motived by the above discussion, we investigate the fully distributed control of a
MAS with a directed graph, time-varying control coefficients and completely unknown
system nonlinearities. The main contributions of this paper are summarized as follows.

(1) To address the time-varying control coefficients of a MAS, a two-order filter is firstly
designed for each agent to produce estimates of the signals from the leader, so that
an asymmetric Laplace matrix for a directed graph will not be used to design the
controller for each agent of the MAS, by which the difficulty of control design is
solved.

(2) To address the completely unknown system nonlinearities in MAS, barrier functions
are used to propose a fully distributed controller by combining novel filters; barrier
functions are well-suited to dealing with the effects of unknown system nonlinearities,
such that global results are achieved, for the first time, in a MAS with completely
unknown system nonlinearities in this paper.

(3) To guarantee the prescribed tracking performance by the proposed controller, such
that the consensus of the controlled MAS is rigorously proved and all the closed
signals are globally bounded.
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2. Problem Statement and Preliminaries

Consider a class of uncertain MAS as follows
.
xi,m = gi,m(xi,m)xi,m+1 + fi,m(xi,m) + di,m(t, xi,m), m = 1, 2 . . . , n− 1
.
xi,n = gi,n(xi,n)ui + fi,n(xi,n) + di,n(t, xi,n)
yi = xi,1, f or i = 1, 2 , . . . , N

(1)

where xi,m = [xi,1, xi,2 , . . . , xi,m]
T ∈ Rm, y ∈ R, u ∈ R, are the states, the control

input and the output of the i th subsystem, respectively. The system nonlinearities
fi,m(·), gi,m(·) : Rm × R+ → R are unknown continuous functions with respect to xi,m.

di,m(t, xi,m), m = 1, 2 . . . , n represent the system uncertainties and external disturbances.
The desired trajectory for the outputs of the subsystems yd is bounded and only known

by part of the N subsystems, with
.
yd being bounded and unknown to all subsystems.

Suppose that the information transmission condition among the group of N subsys-
tems can be represented by a directed graph G , (V, E), where V = {1 , . . . , N} denotes
the set of indexes corresponding to each subsystem. The edge (i, j) ∈ E indicates that
subsystem j could obtain information from subsystem i, but not necessarily vice versa.
In this case, subsystem j is called a neighbor of subsystem i, and vice versa. Denoting
the set of neighbors for subsystem i as Ni , {j ∈ V : (j, i) ∈ E}. Self-edging (i, i) is not
allowed, thus (i, i) /∈ E and i /∈ Ni. The connectivity matrix A = [aij] ∈ RN×N of G is
defined as aij = 1 if (j, i) ∈ E and aij = 0 if (j, i) /∈ E. An in-degree matrix ∆ is introduced,
such that ∆ = diag(∆i) ∈ RN×N with ∆i = ∑j∈Ni

aij being the i th row sum of A. Then,
the Laplacian matrix of L is defined as L = ∆− A. Defining B = diag{µ1, µ2 , . . . , µN},
where µi = 1 means the yd is accessible directly by subsystem i, and otherwise, we have
µi = 0. Throughout this paper, the following notations are used. ‖ · ‖ is the Euclidean
norm of a vector. Letting a ∈ Rn and b ∈ Rn be two vectors, then define the vector operator
.∗ as a. ∗ b = [a(1)b(1) , . . . , a(n)b(n)]T . Letting Q be a matrix, λmin(Q) then denotes the
minimum eigenvalue of Q.

Assumption 1. The directed graph G contains a spanning tree, and the desired trajectory yd is
accessible to at least one subsystem, i.e., ∑N

i=1 µi > 0.

Assumption 2. There exist unknown local Lipschitz functions bi,m(xi,m) such that, for
i = 1, 2 , . . . , N

|di,m(t, xi,m)| ≤ bi,m(xi,m), m = 1, 2 , . . . , n (2)

Assumption 3. The unknown control coefficients gi,m(xi,m) is strictly positive or negative. With-
out a loss of generality, it is assumed to be strictly positive, namely, for i = 1, 2 , . . . , N

gi,m(xi,m) > 0, m = 1, 2 , . . . , n (3)

Lemma 1. (Ref. [17]) Based on Assumption 1, the matrix (L + B) is nonsingular. Defining

θ = [θ1 , . . . , θN ]
T = (L + B)−1[1 , . . . , 1]T

P = diag{P1 , . . . , PN} = diag
{

1
θ1

, . . . , 1
θN

}
Q = P(L + B) + (L + B)T P

(4)

then θi > 0 for i = 1, 2 , . . . , N and Q is definitely positive.

Remark 1. In contrast to the methods in [13–16] for a MAS with a directed graph, the control
coefficients, gi,m(xi,m), are time-varying and unknown continuous functions in this paper, which
makes the control design much more difficult, since the matrix P in (4) is always unknown and
required to be estimated adaptively while the unknown control coefficients gi,1(xi,m) make P
inestimable. To cope with this problem, a novel two-order filter will be given for each agent (shown
later).
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Remark 2. The system nonlinearities, fi,m(xi,m) and gi,m(xi,m), are completely unknown functions
so that there is little knowledge with which to construct the controller. To deal with this problem,
neural networks and fuzzy logic systems have been used to approximate the unknown functions
caused by the system nonlinearities fi,m(xi,m) and gi,m(xi,m) in [22–24], however, only semi-global
results can be obtained by use of these approximators. To construct a distributed controller for a
MAS with these unknown system nonlinearities with global consensus is a challenging problem,
which is solved by the skillfull cooperation of novel two-order filters and barrier functions in the
following.

3. Design of Distributed Controller and Filters

In this section, a distributed asymptotic tracking controller for a multi-agent system
(1) will be designed. To facilitate the control design in distributed manner, design a filter
(qi,1, qi,2) for each agent i, with i = 1 , . . . , N.

3.1. Filters Design

Denote

zi,j =
N

∑
k=1

ai,k(qi,j − qk,j) + µi(qi,j − y(j−1)
d ), j = 1, 2 (5)

Then, design the filters as { .
qi,1 = qi,2.
qi,2 = vi

(6)

with

vi = −c1zi − c0qi,2 − c0sgn(zi)
2

∑
j=1

F̂i,j (7)

.
F̂i,j =

N

∑
k=1

ai,k(F̂k,j − F̂i,j) + µi(Fj − y(j−1)
d ), j = 1, 2 (8)

where zi = c0zi,1 + zi,2, y(0)d = yd and y(1)d =
.
yd, and c0, c1 are design parameters chosen as

c0 ≥ 1 and c1 > c0 + 1. We then have the following lemma.

Lemma 2. Consider a closed-loop system consisting of Nfilters (6) satisfying Assumption 1 with
local controller (7). The asymptotic consensus tracking of all the filter’s outputs to yd(t) is achieved,
i.e., lim

t→+∞
|qi,1 − yd(t)| = 0. Moreover, qi,1 and qi,2 are bounded.

Proof (of Lemma 2). Consider the following Lyapunov function

Vz =
1
2

zT Pz +
1

2γ

2

∑
j=1

F̃T
j PF̃j (9)

where z = [z1,z2 , . . . , zN ]
T , F̃j = F̂j − Fj, F̂j = [F̂1,j, F̂2,j , . . . , F̂N,j]

T , Fj = [F1,j, F2,j , . . . , FN,j]
T ,

and γ > 0 is a constant satisfying γ <
2λ2

min(Q)

ϕ2 with ϕ = ‖P(L + B)‖. Denote

zj = [z1,j, z2,j , . . . , zN,j]
T and qj = [q1,j, q2,j , . . . , qN,j]

T . Then, we have

.
z = (L + B)(c0q2 − c0y(1)d + v− y(2)d ) (10)

Using (9) and (10), the time derivative of Vz is
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.
Vz = zT P(L + B)(−c1z− c0

2
∑

j=1
sgn(z). ∗ Fj

+c0
2
∑

j=1
ε(z). ∗ Fj − c0y(1)d − y(2)d )

− 1
γ

2
∑

j=1
F̃T

j P(L + B)F̃j

≤ −c1zTQz− 1
γ

2
∑

j=1
F̃T

j QF̃j − c0
2
∑

j=1
zT P∆sgn(z). ∗ Fj

+c0
2
∑

j=1
zT PAsgn(z). ∗ Fj − c0

2
∑

j=1
zT PBsgn(z). ∗ Fj

−
2
∑

j=1
zT P(L + B)(c0y(1)d + y(2)d ) + c0

2
∑

j=1
‖z‖‖P(L + B)‖‖F̃j‖

(11)

where sgn(z) = [sgn(z1) , . . . , sgn(zN)]
T .

By noting

c0

2

∑
j=1

zT P∆sgn(z). ∗ Fj = c0

2

∑
j=1

Fj

N

∑
i=1

piaik|zi| (12)

c0

2

∑
j=1

zT PAsgn(z). ∗ Fj ≤ c0

2

∑
j=1

Fj

N

∑
i=1

piaik|zi| (13)

c0

2

∑
j=1

zT PBsgn(z). ∗ Fj = c0

2

∑
j=1

Fj

N

∑
i=1

µi pi|zi| (14)

∣∣∣∣∣ 2

∑
j=1

zT P(L + B)(c0y(1)d + y(2)d )

∣∣∣∣∣ ≤ c0

2

∑
j=1

Fj

N

∑
i=1

µi pi|zi| (15)

2

∑
j=1
‖z‖‖P(L + B)‖‖F̃j‖ ≤ λmin(Q)‖z‖2 +

2

∑
j=1

ϕ2

2λmin(Q)
‖F̃j‖ (16)

we have .
Vz ≤ −c2‖z‖2 − γ∗‖F̃j‖ (17)

where c2 = λmin(Q)(c1− c0), γ∗ = λmin(Q)

(
1
γ −

ϕ2

2λ2
min(Q)

)
. It is easily verified that c2 > 0

and γ∗ > 0, therefore, it follows from (17) that lim
t→+∞

‖z‖ = 0 and hence lim
t→+∞

|qi,1 − yd(t)| = 0.

From the boundedness of Vz and ‖z‖, the boundedness of qi,1 and qi,2 are easily obtained.
This completes the proof.

Remark 3. As is seen, a two-order filter is designed to produce a signal qi,1 for each agent. Actually,
qi,1 is the estimate of yd, as seen in Lemma 2, and the agents no longer require estimating the matrix
P. Cooperating these two-order filters makes the use of traditional adaptive control techniques for
MAS be easy, and thus the unknown time-varying control coefficients for a MAS with a directed
graph can be dealt with.

3.2. Design of the Distributed Controller

In this section, cooperating with the filter (6), the distributed adaptive controller is
designed. The following error variables and change of coordinates are introduced

ei,1 =
1

ki(t)

(
xi,1 − qi,1 − σ(t)(x0

i,1 − q0
i,1)
)

(18)

ei,m =
1

ki(t)

(
xi,m − αi,m−1 − σ(t)x0

i,m

)
, m = 2 , . . . , n (19)



Appl. Sci. 2021, 11, 11304 6 of 16

with

σ(t) =

{
1
t2
s
(t− ts)

2, t < ts

0, t ≥ ts
(20)

where x0
i,j = xi,j(0), j = 1 , . . . , n, and q0

i,1 = qi,1(0), and ts can be any positive constant. Let
ts = 1 in this paper.

Then, the intermediate control signals αi,m and the distributed controller ui are deter-
mined as follows

αi,m = −λi,m
ei,m

1− e2
i,m

, m = 1 , . . . , n− 1 (21)

ui = −λi,n
ei,n

1− e2
i,n

(22)

where λi,m, 1 ≤ i ≤ N, 1 ≤ m ≤ n are the positive design parameters. It is easy to
verify that ei,m(0) = 0 for all 1 ≤ i ≤ N, 1 ≤ m ≤ n and ei,1(t) = xi,1(t) − qi,1(t) for
t ≥ ts, 1 ≤ i ≤ N. ki(t) are the constrained functions chosen by the designer and used as
prescriptive performance functions, satisfying 0 < k ≤ ki(t) ≤ k,

∣∣∣ .
ki(t)

∣∣∣ ≤ k′ with k, k and

k′ being positive constants.

Remark 4. Function σ(t) is constructed to attenuate the influence of the initial conditions, since it
makes ei,m(0) = 0 and therefore stable results can be achieved under all initial conditions using σ(t)
for transformation (20). It should also be noted that σ(t) of (20) is continuously differentiable and
.
σ(t) does not exist in the further design of the controller, which means that the designed intermediate
control signals and actual controller are smooth.

4. Stability Analysis

In this section, we will give the main results with the designed fully distributed
controller and present the stability analysis. The main results of this article are as follows.

Theorem 1. Consider the closed-loop system consisting of N uncertain agents as (1) satisfying
Assumptions 1–3, the intermediate control signals (21) and the distributed controller (22). Then,
we have the following properties:

(1) All the signals in the closed-loop system are globally bounded
(2) Prespecified tracking performance can be guaranteed, namely,|ei,1| < 1, for i = 1, 2 , . . . , N.
(3) The output of each agent ultimately satisfies|yi − yd| ≤ ki(t).

Proof (of Theorem 1). From (18), (19) and (21), we have

xi,1 = kiei,1 + qi,1 + σ(t)(x0
i,1 − q0

i,1) (23)

xi,m = kiei,m + αi,m−1(ei,m−1) + σ(t)x0
i,m, m = 2 , . . . , n (24)

It can be observed from (23) that xi,1 is continuous function of ei,1, qi,1 and σ(t), where
qi,1 and σ(t) are bounded time-varying functions. Thus, xi,1 can be rewritten as the form
of continuous function of ei,1 and t. Similar analysis can be made for xi,m. Therefore, we
obtain

.
ei,1 = 1

ki
( fi,1(xi,1) + gi,1(xi,1)xi,2 − qi,2 −

.
σ(t)(x0

i,1 − q0
i,1)−

.
kiei,1 + di,1(t, xi,1)

= hi,1(t, ei,1, ei,2, υ̂i)
(25)

.
ei,m = 1

ki
( fi,m(xi,m) + gi,m(xi,m)xi,m+1 −

∂αi,m−1
∂ei,m−1

hi,m−1(t, ei,1 , . . . , ei,m)

− .
σ(t)x0

i,m −
.
kiei,m + di,m(t, xi,m))

= hi,m(t, ei,1 , . . . , ei,m+1)

(26)
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where ei,n+1 = 0, and hi,m(·), m = 1, 2 , . . . , n are some continuous functions. Defining
ei = [ei,1 , . . . , ei,n]

T and in view of (25) and (26), we obtain

.
ei = hi(t, ei) =


hi,1(t, ei,1)
hi,2(t, ei,1, ei,2)
...
hi,n(t, ei,1 , . . . , ei,n)

 (27)

Let us define the open set:

Ωe = (−1, 1)× · · · × (−1, 1)︸ ︷︷ ︸
n−times

(28)

It is easily observed that ei(0) ∈ Ωe, i = 1, 2 , . . . , N. Additionally, hi,m(·),
m = 1, 2 , . . . , n are continuous with respect to all its variables, owing to the fact that
yd,

.
yd, σ(t), qi,1, ki(t), fi,m, gi,m, αi,m are all continuous differentiable functions. Therefore, it

follows from [32] that the conditions on hi,m(·) ensure the existence and uniqueness of a
maximal solution ηi(t) on the time interval [0, tmax), namely, ei(t) ∈ Ωe for t ∈ [0, tmax),
which implies

ei,m ∈ (−1, 1), f or ∀t ∈ [0, tmax) (29)

for i = 1 , . . . , N, and m = 1 , . . . , n.
In the following, we will prove that tmax = +∞ by seeking a contradiction. Suppose

that tmax < +∞; then the related analysis is performed as follows, and all of what follows
is based on t ∈ [0, tmax).

Step 1: Consider the following positive definite functions

Vi,1 =
1
2

log
1

1− e2
i,1

(30)

Let ξi,1 = 1
1−e2

i,1
. It follows from (21), (24), (25) and (30) that the time derivative of Vi,1

is .
Vi,1 =

ξi,1
ki
( fi,1(xi,1) + gi,1(xi,1)(αi,1 + kiei,2 + σ(t)x0

i,2)+

−qi,2 −
.
σ(t)(x0

i,1 − q0
i,1)−

.
kiei,1 + di,1(t, xi,1))

≤ 1
ki

gi,1(xi,1)αi,1ξi,1 + Fi,1(t)|ξi,1|
≤ −λi,1Ei,1ξ2

i,1 + Fi,1|ξi,1|

(31)

where Fi,1 = 1
ki
(| fi,1(xi,1)|+ |gi,1(xi,1)|

∣∣∣kiei,2 + σ(t)x0
i,2

∣∣∣+ |qi,2|+
∣∣∣ .
σ(t)(x0

i,1 − q0
i,1)
∣∣∣+ ∣∣∣ .

kiei,1

∣∣∣+
bi,1(xi,1)) and Ei,1 =

gi,1(xi,1)
ki

. Note that xi,1, ei,1 and ei,2 are bounded on Ωe because (23)

and (29), respectively. Utilizing the fact that ki(t),
.
ki(t), σ(t), qi,1, qi,2 are bounded and em-

ploying the extreme value theorem, owing to the continuity of fi,1(·), gi,1(·) and bi,1(·), we
arrive at

Ei,1 ≥ c1,1 > 0 (32)

c3,1 ≥ Fi,1 ≥ c2,1 ≥ 0 (33)

where c1,1, c2,1, and c3,1 are some unknown positive constants.
Then, substituting (32) and (33) into (31) yields

.
Vi,1 ≤ −λi,1c1,1ξ2

i,1 + c3,1|ξi,1| (34)

From (34), it follows that
.

Vi,1 is negative when |ξi,1| ≤ c3,1/λi,1c1,1 and subsequently
that

|ξi,1| ≤ ξ∗i,1 =
c3,1

λi,1c1,1
(35)
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which implies

|ei,1(t)| ≤ c4,1 = 1− 1
ξ∗2i,1

< 1 (36)

As a result, the control signal αi,1 is bounded. Moreover, invoking (24), we also can
conclude the boundedness of xi,2. Therefore, the time derivative of αi,1 is

.
αi,1 = −λi,1

.
ξ i,1 (37)

where ∣∣∣ .
ξ i,1

∣∣∣ ≤ (1+e2
i,1)

ki(1−e2
i,1)

2 (| fi,1(xi,1)|+
∣∣∣gi,1(xi,1)(kiei,2 + ρ(t)x0

i,2 + αi,1)
∣∣∣

+|qi,2|+
∣∣∣ .
σ(t)(x0

i,1 − q0
i,1)
∣∣∣+ ∣∣∣ .

kiei,1

∣∣∣+ bi,1(xi,1))
(38)

Noting (36) and using the same analysis as (33), it also easy to conclude the bounded-
ness of

.
ξ i,1, and hence

.
αi,1.

Step j (2 ≤ j ≤ n): Consider the following positive definite functions

Vi,j =
1
2

log
1

1− e2
i,j

(39)

Let ξi,j =
1

1−e2
i,j

. In a similar fashion to that in the former step, by noting Assumption

1, it follows from (21), (24), (26) and (39) that the time derivative of Vi,j is

.
Vi,j =

ξi,j
ki
( fi,j(xi,j) + gi,j(xi,j)(αi,j + kiei,j+1 + σ(t)x0

i,j+1)

− .
αi,j−1 −

.
σ(t)x0

i,j −
.
kiei,j + di,j(t, xi,j))

≤ 1
ki

gi,j(xi,j)αi,jξi,j + Fi,j
∣∣ξi,j

∣∣
≤ −λi,jEi,jξ

2
i,j + Fi,j

∣∣ξi,j
∣∣

(40)

where Fi,j =
1
ki
(
∣∣ fi,1(xi,j)

∣∣+ ∣∣gi,1(xi,j)
∣∣∣∣∣kiei,j+1 + σ(t)x0

i,j+1

∣∣∣+ ∣∣ .
αi,j−1

∣∣+ ∣∣∣ .
σ(t)x0

i,j

∣∣∣+ ∣∣∣ .
kiei,j

∣∣∣+
bi,j(xi,j)) and Ei,j =

πg
i,j
(xi,j)

2ki
. Noting that xi,m, m = 1, 2 , . . . , j are bounded on Ωe because

the boundedness of αi,m−1, ei,j and ei,j+1 are bounded on Ωe in view of (29). Utilizing the

fact that ki(t),
.
ki(t) are bounded and employing the extreme value theorem owing to the

continuity of fi,j(·), gi,j(·) and bi,j(·), we arrive at

Ei,j ≥ c1,j > 0 (41)

c3,j ≥ Fi,j ≥ c2,j ≥ 0 (42)

with c1,j, c2,j and c3,j being some unknown positive constants.
Then, substituting (41) and (42) into (40) yields

.
Vi,j ≤ −λi,jc1,jξ

2
i,j + c3,j

∣∣ξi,j
∣∣ (43)

From (43), it follows that
.

Vi,j is negative when
∣∣ξi,j

∣∣ ≤ c3,j/λi,jc1,j and subsequently
that ∣∣ξi,j

∣∣ ≤ ξ∗i,j =
c3,j

λi,jc1,j
(44)

which implies ∣∣ei,j(t)
∣∣ ≤ c4,j = 1− 1

ξ∗2i,j
< 1 (45)
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As a result, the control signal αi,j is bounded. Moreover, we also can conclude the
boundedness of xi,j+1 by noting (24). Finally, the time derivative of αi,j is

.
αi,j = −λi,j

.
ξ i,j (46)

where ∣∣∣ .
ξ i,j

∣∣∣ ≤ (1+e2
i,j)

ki(1−e2
i,j)

2 (
∣∣ fi,j(xi,j)

∣∣+ ∣∣∣gi,j(xi,j)(kiei,j+1 + σ(t)x0
i,j+1 + αi,j)

∣∣∣
+
∣∣∣ .
σ(t)x0

i,j

∣∣∣+ ∣∣∣ .
kiei,j

∣∣∣+ bi,j(xi,j))
(47)

Noting (45) and using the same analysis as (42), it also easy to conclude the bounded-
ness of

.
ξ i,j and hence

.
αi,j.

Step n: Consider the following Lyapunov functions

Vi,n =
1
2

log
1

1− e2
i,n

(48)

Let ξi,n = 1
1−e2

i,n
. Similar as the former steps, we can have

.
Vi,n ≤ −λi,nc1,nξ2

i,n + c3,n|ξi,n| (49)

where c1,n and c3,n are some unknown positive constants. It follows from (49) that
.

Vi,n is
negative when |ξi,n| ≤ c3,n/λi,nc1,n and subsequently that

|ξi,n| ≤ ξ∗i,n =
c3,n

λi,nc1,n
(50)

which implies

|ei,n(t)| ≤ c4,n = 1− 1
ξ∗2i,n

< 1 (51)

As a result, the control signal αi,j is bounded. Moreover, we also can conclude the
boundedness of ui. Notice that (36), (45) and (51) imply that ei(t) ∈ Ω′e, for
∀t ∈ [0, tmax), i = 1, 2 , . . . , N, where the set Ω′e is nonempty and compact, defined as

Ω′e = [−c4,1, c4,1]× [−c4,2, c4,2] · · · × [−c4,n, c4,n]

Owing to (36), (45) and (51) it is straightforward to verify that Ω′e ⊂ Ωe. Therefore,
assuming tmax < +∞ dictates the existence of a time instant t′ ∈ [0, tmax), such that
ei(t′) /∈ Ω′e, which is a clear contradiction. Therefore, tmax = +∞. Hence, all closed-loop
signals remain bounded and moreover ei(t) ∈ Ω′e ⊂ Ωe, f or ∀t ≥ 0. Furthermore, from
(36) we conclude that

|ei,1(t)| ≤ c4,1 < 1 (52)

Then, for all t ≥ 0. In view of Lemma 2 and (52), we have

lim
t→+∞

|yi − yd| = lim
t→+∞

|qi,1 − yd + yi − qi,1|
≤ lim

t→+∞
|qi,1 − yd|+ lim

t→+∞
|yi − qi,1|

≤ lim
t→+∞

|kiei,1(t)|
≤ ki

(53)

This completes the proof.
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5. Simulation Study

Two examples will be given to demonstrate the effectiveness of the proposed dis-
tributed adaptive controller in this section, as follows.
Example 1. Consider the following multi-agent systems

.
xi,1 = gi,1(xi,1)xi,2 + fi,1(t, xi,1),.
xi,2 = gi,2(xi,2)ui + fi,2(t, xi,2)
yi = xi,1, f or i = 1, 2, 3, 4

with the system functions chosen as follows: f1,1 = x2
1,1, g1,1 = 1 + x2

1,1, f1,2 = x1,1x1,2, g1,2 = 1,
f2,1 = x3

2,1 + 0.2 sin t, g2,1 = 1 + 0.1 cos x2,1, f2,2 = x2,1x2,2, g2,2 = 1, f3,1 = x3,1 sin x3,1,
g3,1 = 1, f3,2 = x3,1x3,2 + 0.1 sin t, g3,2 = 1, f4,1 = x4,1 + 0.8 + 0.2 sin t, g4,1 = 1,
f4,2 = x4,1x4,2 + 0.2 cos t, g4,2 = 1. The communication topology for these subsystems are
depicted in Figure 1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 18 
 

,1 4,1( ) 1ie t c≤ <  (52)

Then, for all 0t ≥ . In view of Lemma 2 and (52), we have 

,1 ,1

,1 ,1

,1

lim lim

lim lim

lim ( )

i d i d i it t

i d i it t

i it

i

y y q y y q

q y y q

k e t

k

→+∞ →+∞

→+∞ →+∞

→+∞

− = − + −

≤ − + −

≤

≤

 (53)

This completes the proof. □ 

5. Simulation Study 
Two examples will be given to demonstrate the effectiveness of the proposed 

distributed adaptive controller in this section, as follows. 

Example 1: Consider the following multi-agent systems 

,1 ,1 ,1 ,2 ,1 ,1

,2 ,2 ,2 ,2 ,2

,1

( ) ( , ),
( ) ( , )

, 1,2,3,4

i i i i i i

i i i i i i

i i

x g x x f t x
x g x u f t x
y x for i

 = +


= +
 = =


  

with the system functions chosen as follows: 
2

1,1 1,1f x= , 
2

1,1 1,11g x= + , 1,2 1,1 1,2f x x= , 1,2 1g = , 
3

2,1 2,1 0.2sinf x t= + , 2,1 2,11 0.1cosg x= + , 2,2 2,1 2,2f x x= , 2,2 1g = , 3,1 3,1 3,1sinf x x= , 3,1 1g = , 
3,2 3,1 3,2 0.1sinf x x t= + , 3,2 1g = , 4,1 4,1 0.8 0.2sinf x t= + + , 4,1 1g = , 4,2 4,1 4,2 0.2cosf x x t= + , 
4,2 1g = . The communication topology for these subsystems are depicted in Figure 1. 

dy

 
Figure 1. Communication topology for four subsystems. 

The desired trajectory for the outputs of each subsystem is sindy t= . The initial 
conditions for each subsystems are set as: 1,1(0) 0.5x = , 2,1(0) 0.5x =− , 3,1(0) 0x = , 

4,1(0) 0.1x =  and 1,2 2,2 3,2 4,2(0) (0) (0) (0) 0x x x x= = = = . Then, the intermediate control 
signals are designed and the distributed controllers are designed as follows 

,1
,1 ,1 2

,1

, 1, 2,3, 4
1

i
i i

i

e
i

e
α λ= − =

−
  

,2
,2 2

,2

, 1, 2,3, 4
1

i
i i

i

e
u i

e
λ= − =

−
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Figure 1. Communication topology for four subsystems.

The desired trajectory for the outputs of each subsystem is yd = sin t. The initial
conditions for each subsystems are set as: x1,1(0) = 0.5, x2,1(0) = −0.5, x3,1(0) = 0,
x4,1(0) = 0.1 and x1,2(0) = x2,2(0) = x3,2(0) = x4,2(0) = 0. Then, the intermediate control
signals are designed and the distributed controllers are designed as follows

αi,1 = −λi,1
ei,1

1− e2
i,1

, i = 1, 2, 3, 4

ui = −λi,2
ei,2

1− e2
i,2

, i = 1, 2, 3, 4

where their control parameters and functions are selected as: λ1,1 = 5, λ2,1 = 5, λ3,1 = 5,
λ4,1 = 4, λ1,2 = 10, λ2,2 = 20, λ3,2 = 10 and λ4,2 = 10, ki(t) = 3e−0.5t + 0.01 for i = 1, 2, 3, 4.
For the filters, the parameters are chosen as: c0 = 2 and c1 = 6. Then, the simulation results
are reported as Figures 2–4.
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It can be observed from Figures 2–4 that under the designed distributed controllers,
the outputs of the subsystems track the desired trajectory very quick, and the tracking
performance is satisfactory.

Example 2. Consider the consensus for four high-maneuver fighters, with communication topolo-
gies as in Figure 5 and their flight control systems as follows [33].

.
Xi,1 = f1(Xi,1, Xi,3) + G1(Xi,1)Xi,2.
Xi,2 = f2(Xi) + G2ui.
Xi,3 = f3(Xi)

(54)

with

f1(Xi,1, Xi,3) =

 qi tan θi sin φi + ri tan θi cos φi
piβi + z0∆αi + (g0/Vi)(cos θi cos φi − cos θ0)
yββi + pi(sin α0 + ∆αi) + (g0/Vi) cos θi sin φi



G1(Xi,1) =

 1 0 0
0 1 0
0 0 − cos α0
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f2(Xi) =

 lββi + lp pi + lqqi + lrri + (lβαβi + lrαri)∆αi − i1qiri
mα∆αi + mqqi + i2 piri −m .

α(g0/Vi)(cos θi cos φi − cos θ0)
nββi + nrri + np pi + npα pi∆αi − i3 piqi + nqqi


G2 = [L, M, N]T

L = [lδel , lδer , lδal , lδar , 0, 0, lδr ]
T

M = [mδel , mδer , mδal , mδar , mδle f , mδte f , mδr ]
T

N = [nδel , nδer , nδal , nδar , 0, 0, nδr ]
T

f3(Xi) = qi cos φi − ri sin φi

where Xi =
(

XT
i,1, XT

i,2

)T
=(φi, αi, βi, pi, qi, ri, θi)

T are the roll angle, attack angle, sideslip angle, roll
angular velocity, pitching angular velocity, yaw angular velocity and pitch angle of fighter i, respectively.
yi = Xi,1 = [φi, αi, βi]

T Xi,2 = [pi, qi, ri]
T Xi,3 = θi. ui = [δiel , δier, δial , δiar, δile f , δite f , δir]

T are
the left and right elevators, left and right ailerons, front and rear flaps, and rudder, respectively.
Detailed explanations for the parameters and variables of this model can be found in [26]. Suppose
that they are all flying at an altitude of 40,000 feet, at a speed of 0.6 Mach. The desired output for
these fighters is yd = [yd,1, yd,2, yd,3]

T = [20, 30, 0]T. The signal yd is only available for fighter 1.
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According to Theorem 1, we design the distributed flight controller as follows

ξi,1 = G−1
1 (Xi,1)diag

{
−λi,1

ei,φ

1−e2
i,φ

,−λi,1
ei,α

1−e2
i,α

,−λi,1
ei,β

1−e2
i,β

}
ui = G+

2 diag
{
−λi,2

ei,p

1−e2
i,p

,−λi,2
ei,q

1−e2
i,q

,−λi,2
ei,r

1−e2
i,r

}
with

ei,φ = φi − qd,1, ei,α = αi − qd,2, ei,β = βi − qd,3

[ei,p, ei,q, ei,r]
T = [pi, qi, ri]

T − ξi,1

where qd,1, qd,2 and qd,3 are the signals produced by filter (6) with yd,i, i = 1, 2, 3 being the
filter inputs, respectively. λi,1 = 1 and λi,2 = 2 for i = 1, 2, 3, 4, and G+

2 represents the
pseudo-inverse for G2.

For the purposes of comparison, we use the control method of [17] under the same
conditions. Following [17], the controller for the distributed flight controller is designed as
follows

ξi,1 = G−1
1 (Xi,1)diag

{
−λi,1ei,φ,−λi,1ei,α,−λi,1ei,β

}
ui = G+

2 diag
{
−λi,2ei,p,−λi,2ei,q,−λi,2ei,r

}
where the variables and controller parameters are the same as in our proposed methods.
The simulation results are then reported in Figures 6–10. In Figure 6, the dotted curves
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denote the outputs of fighters under the control of the method in [17], while the solid
curves denote the outputs of fighters under the control of method in this paper. It can be
seen from Figure 6 that our control performance is better than [17] since the outputs of ours
track the desired value more accurately. Figures 7–10 show the actions of actuators of four
fighters under our method. Figure 11 show the controller performance of our method and
that from [17]. In Figure 11, the blue curves denote the control efforts E1 of the fighters with
our method, while the red curves denote the control efforts E2 of Fighters in the method
from [17], where E1 and E2 are defined as

Ek =
√

δ2
iel + δ2

ier + δ2
ial + δ2

iar + δ2
ile f + δ2

ite f + δ2
ir

k = 1, 2 and i = 1, 2, 3, 4
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It can be seen from Figure 11 that, initially, the control efforts of our method are greater
than those in [17], and finally, there is little difference in effort between these methods,
which means that the control performance of our method is better under similar control
efforts.

It can be seen from these results that the consensus between the four fighters is
achieved and the tracking performance is very good, while fairly good control performance
is achieved.
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6. Conclusions

A novel distributed consensus method was presented for a MAS with completely
unknown system nonlinearities and time-varying control coefficients under a directed
graph. A two-order filter for each agent was constructed, providing the desired signals
and thus avoiding estimating the unknown matrix, which is related on a Laplace matrix.
Combined with these filters, a global consensus method was proposed for a MAS with
completely unknown system nonlinearities under a directed graph for the first time. The
proposed consensus method was applied to two examples. It was shown that four high-
maneuver fighters achieved angular consensus and had very good control performances
using the proposed method. The two simulation results demonstrated the effectiveness of
the proposed method.
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