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Abstract: Recently, predicting multivariate time-series (MTS) has attracted much attention to obtain
richer semantics with similar or better performances. In this paper, we propose a tri-partition alphabet-
based state (tri-state) prediction method for symbolic MTSs. First, for each variable, the set of all
symbols, i.e., alphabets, is divided into strong, medium, and weak using two user-specified thresholds.
With the tri-partitioned alphabet, the tri-state takes the form of a matrix. One order contains the
whole variables. The other is a feature vector that includes the most likely occurring strong, medium,
and weak symbols. Second, a tri-partition strategy based on the deviation degree is proposed.
We introduce the piecewise and symbolic aggregate approximation techniques to polymerize and
discretize the original MTS. This way, the symbol is stronger and has a bigger deviation. Moreover,
most popular numerical or symbolic similarity or distance metrics can be combined. Third, we
propose an along–across similarity model to obtain the k-nearest matrix neighbors. This model
considers the associations among the time stamps and variables simultaneously. Fourth, we design
two post-filling strategies to obtain a completed tri-state. The experimental results from the four-
domain datasets show that (1) the tri-state has greater recall but lower precision; (2) the two post-
filling strategies can slightly improve the recall; and (3) the along–across similarity model composed
by the Triangle and Jaccard metrics are first recommended for new datasets.

Keywords: multivariate time-series; k matrix nearest neighbor; tri-partition alphabet; state prediction

1. Introduction

Time-series analysis [1] has long been a subject that has attracted researchers from a di-
verse range of fields, including pattern discovery [2–5], clustering [6–8], classification [9,10],
prediction [11], causality [12], and anomaly detection [13]. Time-series prediction is one
of the most sought-after yet, arguably, the most challenging tasks [11]. It has played
an important role in a wide range of fields, including the industrial [14], financial [15],
health [16], traffic [17,18], and environmental [19] fields for several decades. For multi-
variate time-series (MTSs), existing methods inherently assume interdependencies among
variables. In other words, each variable not only depends on its historical values but also on
other variables. To efficiently and effectively exploit latent interdependencies among vari-
ables, many techniques such as deep learning-based ones [14,19–22], the matrix or tensor
decomposition-based ones [23,24], the k-nearest neighbor (kNN)-based ones [15,17,18,21],
and others [16,25–27] have been proposed. However, obtaining richer semantics with
similar or better performances is meaningful but rare.
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The trisecting–acting–outcome (TAO) model [28] of thinking in threes [29] to under-
stand and process a whole via three distinct and related parts [30] has inspired many novel
and significant theories and applications. Recently, theories such as three-way formal
concept analysis [31] and three-way cognition computing [32,33] have focused on concept
learning via multi-granularity from the viewpoint of cognition. The three-way fuzzy sets
method [34], three-way decisions space [35], sequential three-way decisions [36], and gen-
eralized three-way decision models [37–39] have been proposed. Moreover, applications
include the three-way recommender system [40], three-way active learning [41], three-way
clustering [42], tri-partition neighborhood covering reduction [43], three-way spam filter-
ing [44], three-way face recognition [45], and the tri-alphabet-based sequence pattern [46].
However, the extension of TAO to MTS prediction needs to be studied in depth.

In this paper, a tri-partition alphabet-based state (tri-state) prediction method for
symbolic multivariate time-series (MTS) was proposed. First, with the symbolic aggregate
approximation (SAX) [47] technique, g symbols are generated with the piecewise aggregate
approximation (PAA) [13] version of MTS and the hypothesis of a probability distribution
function. Moreover, the most common standard normal distribution, i.e., N (0, 1), is used
here. Hence, the g− 1 breakpoints can be obtained by averagely partitioning the under
area of N (0, 1) into g parts. As these breakpoints also provide the deviation degree far
from the expectation, the two thresholds α and β (α ≥ β > 0) can be specified from them.
Hence, if the absolute value of a breakpoint is not less than α, the symbol is called a strong
element. If the absolute value of a breakpoint is less than β, the symbol is called a weak
element. Otherwise, the symbol is called a medium element. This way, for each variable of
the given MTS, its alphabet, i.e., the set of symbols, is partitioned into the strong, medium,
and weak regions.

Second, on the basis of the tri-partitioned alphabet, the predicted tri-state hence takes
the form of a matrix with the size 3× n (n is the number of variables). For each variable, we
simultaneously predict the three most likely symbols occurring from the strong, medium,
and weak regions. The state defined by the existing work only contains one case while the
tri-state includes up to 3n cases. Note that our method does not take the top three most
likely occurring symbols as the prediction result because the deviation degree can provide
some new orthogonal information. This way, the outliers are more noticeable for users.

Third, an along–across similarity model to generate the k-nearest matrix neighbors
(kNMN) is presented. The along similarity considers the associations of the time stamps.
The across similarity focuses on the relation between the variables. Additionally, with the
PAA- and SAX-MTSs, the most popular numerical or symbolic metrics can be combined
regardless of whether they are similarities or distances. Given a sliding window w, the PAA-
and SAX-MTSs can be transformed into m−w + 1 temporal subsequences, called instances.
m is the number of time stamps, and all instances are matrices with the shape m × n.
Moreover, the latest state following each instance is denoted as the decision information,
called the label. With the optimal k labels from m− w, the tri-state can be finally predicted
using the traditional voting strategy.

Fourth, two post-filling strategies called the individual and related ones, are designed
to fill the possibly missing symbols of each variable. The reason for which the tri-state may
be uncompleted is that no strong, medium or weak symbols occur after all matrix instances.
For brevity, given a tri-state, we assume that the strong symbol of its i-th variable (ai) is
missing. The individual filling strategy (IFS) directly scans the history data of ai to obtain
the most frequently occurring strong symbol. The related filling strategy (RFS) considers
the associations between ai and the other n− 1 variables. One of the other variables, which
is the most linear related to ai, is its condition.

The main contributions of this paper are presented as follows:

• Tri-state. It provides three kinds of symbols for each variable simultaneously. The pro-
posed deviation degree-based alphabet tri-partition strategy makes the outliers more
noticeable for experts. Moreover, the IFS and RFS are designed to obtain a completed
tri-state.
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• Along–across similarity model. The similarities between time stamps and variables are
considered simultaneously. This model provides a framework for the integration of
the popular similarity or distance metrics.

• Combination of the popular numerical or symbolic metrics. The PAA- and SAX-MTSs are
simultaneously used in the above similarity model. The PAA-MTS is available for the
numerical metrics, while the SAX-MTS fits the symbolic ones.

The experimental results undertaken on four real-world datasets show that (1) in terms
of precision, the states are 30% to 50% higher than the three kinds of tri-states, while for
the recall, the three kinds of tri-state are 10% higher than the state; (2) the IFS and RFS can
slightly improve the recall by approximately 1%; and (3) the along–across similarity model
composed of the Triangle and Jaccard metrics are first recommended for new datasets.
Note that the IFS and RFS are necessary if the tri-state is incomplete. In other words, when
the obtained tri-state is fulfilled, no difference is found among the three kinds of tri-states.

The rest of this paper is organized as follows. Section 2 reviews the existing work
on time-series prediction. Section 3 presents the fundamental definitions of the tri-state.
Section 4 proposes the algorithm for tri-state prediction. Section 5 discusses the perfor-
mance of the prediction algorithm on four real-world datasets. Section 6 lists the conclu-
sions and future work of this paper.

2. Time-Series Prediction

Various techniques have been proposed for predicting time-series. These meth-
ods can be categorized into the deep learning-based ones [14,19–22], matrix or tensor
decomposition-based ones [23,24], k-nearest neighbor (kNN)-based ones [15,17,18,21],
etc. [16,25–27].

For the deep learning-based ones aiming to solve the volatility problem of wind power,
a forecasting model based on a convolution neural network and LightGBM was constructed
by Ju [14]. Ma et al. proposed a deep learning-based method, namely transferred bi-
directional long short-term memory model for air-quality prediction [19]. Weytjens et al.
predicted accounts’ receivable cash flows by employing methods applicable to companies
with many customers and many transactions [22].

In terms of the matrix or tensor decomposition-based ones, Shi et al. proposed a
strategy that combines low-rank Tucker decomposition into a unified framework [48].
Ma et al. proposed a deep spatial-temporal tensor factorization framework, which provides
a general design for high-dimensional time-series forecasting [49]. To model the inherent
rhythms and seasonality of time-series as global patterns, Chen et al. [50] proposed a
low-rank autoregressive tensor completion framework to model multivariate time-series’
data. To generalize the effect of distance and reachability, Wu et al. [51] developed an
Inductive graph neural network kriging model to recover data for unsampled sensors on a
network graph structure.

For the kNN-based ones, Zhang et al. [15] proposed a new two-stage methodology
that combines the ensemble empirical mode decomposition with a multidimensional
kNN model in order to simultaneously forecast the closing price and high price of stocks.
Xu et al. [17] proposed an algorithm based on the kernel kNN to predict road traffic states
in time-series. Yin et al. [18] proposed the multivariate predicting method and discussed
the prediction performance of MTS by comparing it with the univariate time-series and
kNN nonparametric regression model. Martinez et al. [21] devised an automatic tool, i.e., a
tool that works without human intervention; furthermore, the methodology should be
effective and efficient. The tool can be applied to accurately forecast many time series.

Other techniques were also used for MTS prediction. To handle multivariate long
nonstationary time-series, Shen et al. [16] proposed a fast prediction model based on a
combination of an elastic net and a higher-order fuzzy cognitive map. Chen et al. [25]
proposed a weighted least squares support vector machine-based approach for univariate
and multivariate time-series forecasting. To predict future outbreaks of methicillin-resistant
Staphylococcus aureus, Jimenez et al. [26] proposed the use of artificial intelligence—
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specifically time-series forecasting techniques. The orthogonal decision tree may fail to
capture the geometrical structure of data samples, so Qiu et al. [27] attempted to study
oblique random forests in the context of time-series forecasting.

3. Models and Problem Statement

In this section, we first introduce the definitions of the original multivariate time-
series (MTS) and its piecewise aggregate approximation (PAA) and symbolic aggregate
approximation (SAX) versions. Second, we propose an along–across similarity model and
the problem of state prediction. Third, we define the strategy of alphabet tri-partition and
the problem of tri-partition alphabet-based state prediction. The notations are introduced
in Table 1.

Table 1. Notations.

Notations Descriptions

S
′′
= (T

′′
, A, V

′′
= ∪a∈AV

′′
a , f

′′
) The original numerical MTS.

S
′
= (T, A, V

′
= ∪a∈AV

′
a , f

′
) The PAA version of numerical S

′′
.

S = (T, A, V = ∪a∈AVa, f ) The SAX version of numerical S
′′
.

m The number of all time stamps, |T|.
n The number of all variables, |A|.
g The number of partitions; ∀a ∈ A, |Va| = g.
D The set of breakpoints for S, |D| = g− 1.
δ δ ∈ D.
Γ The strong region.
Λ The medium region.
Ω The weak region.
Σ = (Γ, Λ, Ω) Tri-partition alphabet.
β ≥ 0 The threshold for the weak region.
α ≥ β The threshold for the strong region.
fi,∗ A symbolic state occurring at time ti.
f′ i,∗ A numerical state occurring at time ti.
pm+1,∗ A prediction of state occurring at time tm+1.
w The length of sliding window.
O A matrix instance; |O| = w× n.
∆ The similarity of two matrix instances.
k The number of nearest matrix neighbors.
N The set of k-nearest matrix neighbors.
Pm+1,∗ The form of the tri-state with area 3× n.

3.1. Data Model

The PAA and SAX versions of MTS are defined on the basis of the original numeri-
cal MTS.

Definition 1. An original numerical MTS is the quadruple:

S
′′
= (T

′′
, A, V

′′
= ∪a∈AV

′′
a , f

′′
), (1)

where T
′′
= {t1, t2, . . . , tM} is the finite set of time points, A = {a1, a2, . . . , an} is the finite

set of variables, V
′′
a ⊂ {real number} is the value ranges of variable a, and f

′′
: T

′′ × A → V
′′

is the mapping function. For brevity, f
′′
(ti, aj) can be denoted by f

′′
i,j. We further assume that

ti+1 − ti = ti − ti−1 (2 ≤ i ≤ n− 1).
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Definition 2. The PAA-MTS S
′
= (T, A, V

′
= ∪a∈AV

′
a , f

′
) has similar forms to Definition 1.

However, two differences are present, namely (i) T = {t1, t2, . . . , tm}, m < M, and (ii) ∀i ∈
[i, m], j ∈ [i, M]:

f
′
i,a =

m
M

i M
m

∑
j=(i−1) M

m +1

f
′′
j,a. (2)

Example 1. Figure 1 shows an example of the transition of NO2 from the original numerical MTS
(S
′′
) to the PAA version of MTS (S

′
). Here, m = 10 and M = 100. This way, the dimension is

reduced from 100 to 10.

Figure 1. The original numerical MTS and PAA-MTS.

Definition 3. The SAX-MTS S = (T, A, V = ∪a∈AVa, f ) also has a similar form to Definition 2.
The only difference is that the numerical value is transformed into a symbolic one. To produce symbols
with equiprobability, a set of breakpoints D = {δ1, δ2, . . . , δg−1} dividing the area of under the
probability distribution function (PDF) of a ∈ A is required. Therefore, let Va = {γ1, γ2, . . . , γg}
containing g symbols; then, we have:

fi,a = γj, if f
′
i,a ∈ (δj−1, δj), (3)

where j ∈ [1, g], and δ0, and δg are defined as −∞ and +∞, respectively.

Example 2. Table 2 shows a lookup table of breakpoints for the N (0, 1) distribution. In practice, g
can be set as an integer that is not less than 2. Notably, g = 2 means that D = {0}.
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Table 2. The breakpoints for the N (0, 1) distribution [52].

D
g

3 4 5 6 7 8 9 10

δ1 −0.43 −0.67 −0.84 −0.97 −1.07 −1.15 −1.22 −1.28
δ2 0.43 0 −0.25 −0.43 −0.57 −0.67 −0.76 −0.84
δ3 0.67 0.25 0 −0.18 −0.32 −0.43 −0.52
δ4 0.84 0.43 0.18 0 −0.14 −0.25
δ5 0.97 0.57 0.32 0.14 0
δ6 1.07 0.67 0.43 0.25
δ7 1.15 0.76 0.52
δ8 1.22 0.84
δ9 1.28

Example 3. Figure 2 shows an example of the transition from PAA-MTS to SAX-MTS. Here, we
let D = {−1.07,−0.57,−0.18, 0.18, 0.57, 1.07}, g = 6, and its alphabet Σ = {a, b, c, d, e, f, g}.

Figure 2. The PAA-MTS and SAX-MTS for NO2.

Example 4. Table 3 shows an example of SAX-MTS with three variables (i.e., A = {SO2 (a1),
NO2 (a2), and PM2.5 (a3)}), and 10 time stamps (i.e., T = {t1, t2, . . . , t10}). For variable SO2,
symbols a and f are missing. For variable NO2, symbols b and e are missing. For variable PM2.5,
symbols e, d, and e are missing. This phenomenon is temporary until the data are big enough.

Table 3. An example of SAX-MTS and PAA-MTS.

T
A

SO2 (a1) NO2 (a2) PM2.5 (a3)

20(t1) b (−0.989) a (−1.422) b (−0.857)
21(t2) b (−0.966) a (−1.460) b (−0.770)
22(t3) b (−0.615) c (−0.318) b (−0.752)
23(t4) d (−0.106) d (0.095) b (−0.681)
24(t5) g (1.173) f (1.007) f (0.922)
25(t6) g (1.496) f (0.842) g (1.490)
26(t7) e (0.272) f (0.609) f (0.959)
27(t8) c (−0.203) d (0.016) c (−0.465)
28(t9) c (−0.508) c (−0.453) b (−0.691)
29(t10) e (0.447) g (1.083) f (0.846)
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3.2. State

First, a formal description of the state is introduced as follows. Additionally, the type
of prediction result that the SAX-MTS state is was described.

Definition 4. Given a SAX-MTS S = (T, A, V = ∪a∈AVa, f ): ∀i ∈ [1, m],

fi,∗ = ( fi,1, fi,2, . . . , fi,n) (4)

is called a state of SAX-MTS at time ti. Moreover, the state of PAA-MTS (i.e, f
′
i,∗ = ( f

′
i,1, f

′
i,2, . . . ,

f
′
i,n)) is formally similar to this one.

Example 5. With Table 3, f10,∗ = {e, g, f} is called a state of SAX-MTS at time t10. Accordingly,
f
′
10,∗ = {0.447, 1.038, 0.846} is called a state of PAA-MTS at time t10.

Second, the state fi,∗ is denoted as a known label. This way, the corresponding instance
of fi,∗ is defined as follows.

Definition 5. Given an SAX-MTS S = (T, A, V, f ) and a sliding window w < m, an instance
with the matrix form is:

Ow,n
i =

 fi−w+1,1 . . . fi−w+1,n
...

. . .
...

fi,1 . . . fi,n

 = (fi
∗,1, . . . , fi

∗,n) =

fi
i−w+1,∗

...
fi

i,∗

, (5)

where w ∈ (0, m), i ∈ [w, m], and ∀j ∈ [1, n], |fi
∗,j| = w, ∀j ∈ [i − w + 1, i], |fi

j,∗| = w. For
brevity, Ow,n

i can be denoted by Oi when n and w are specified:

Example 6. With Table 3, let w = 2 and i = 9; then:

O9 =

(
c d c
c c b

)
.

f10,∗ = {e, g, f} is the label of O9.

This way, the set of all instances can be denoted by

SP = {Ow, Ow+1, . . . , Om}, (6)

where |SP| = |T| − w = m− w + 1.

Example 7. With Table 3, let w = 2; then, SP = {O2, O3, . . . O10}. Hence, |SP| = 10− 2+ 1 = 7.

Third, ∀i ∈ [w, m− 1], the set of instance–label pair {(Oi, fi+1,∗)} can be constructed
for the k-nearest matrix neighbors (kNMN).

Definition 6. Given an instance Om ∈ SP, any N ⊆ SP \ {Om} is called the set of kNMN of
Om if |N| = k and:

min
O′∈N

∆(Om, O
′
) ≥ max

O′′∈SP\N
∆(Om, O

′′
), (7)

where ∆ is the along–across similarity of the given matrix pair.

Note that the neighborhood N for Om may not be unique, where some other matrices
have the same similarity with Om.
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Fourth, the along–across similarity model ∆ is proposed to obtain the neighborhood
N by merging the popular similarity and distance metrics.

Definition 7. Given PAA-MTS S
′
= (T, A, V

′
, f
′
), SAX-MTS S = (T, A, V, f ), and sliding

window size w, the similarity between the two matrix-based instances Oi and Oj is:

∆(Oi, Oj) = Ri,j × Ci,j, (8)

where the row vector similarity is:

Ri,j =
∑w

l=1 s(hi
i−w+l,∗, hj

j−w+l,∗)

w
, (9)

and the column vector similarity is:

Ci,j =
∑n

l=1 s(hi
∗,l , hj

∗,l)

n
, (10)

where:

h =

{
f
′
, if the metric is available for the PAA-MTS;

f, if the metric is available for the SAX-MTS.
(11)

Note that the row or column vector h in Equation (11) is indeed one of f
′

and f,
corresponding to PAA- and SAX-MTSs, respectively. Moreover, the data type of vec-
tor h in Equations (9) and (10) are coincident. In other words, the pairs of vectors in
Equations (9) and (10) are either PAA-MTS or SAX-MTS. Namely, the case that hi

∗,l is

PAA-MTS while hj
∗,l is SAX-MTS is not permitted.

Table 4 presents the availability of similarities and distances for Equation (11). Two
things need to be further explained. One is the availability of the metrics. Given any two
indices r and c (r, c ∈ IDs), PAA(r) = True or PAA(c) = True indicates that the r-th or the
c-th metric fits the numerical data. Similarly, SAX(r) = True or SAX(c) = False means that
the r-th or the c-th metric fits the symbolic data. For example, PAA(0) = True indicates that
the Euclidean distance fits PAA-MTS but not SAX-MTS.

Table 4. The availability of similarities and distances.

IDs Name Type
Availability

PAA SAX

0 Euclidean distance True False
1 Manhattan distance True False
2 LCSubstring [53] distance False True
3 Levenshtein [54] distance False True
4 Cosine similarity True False
5 Pearson similarity True False
6 Tanimoto [55] similarity True False
7 Triangle [56] similarity True False
8 Jaccard similarity False True
9 Jaro similarity False True

The other is the transformation from the distance to similarity. As similarity and
distance metrics are simultaneously used here, the distance needs be transformed into the
similarity. Therefore, given two vectors hi and hj, the transformation from distance to
similarity is:



Appl. Sci. 2021, 11, 11294 9 of 23

s(hi, hj) =
1

d(hi, hj) + 1
, (12)

where d denotes the distance between hi and hj. This way, 100 combinations of distances
and similarities exist. Their performances are discussed in Section 5.

Example 8. With Tables 3 and 4, let r = 8 (Jaccard similarity, PAA(8) = True), c = 1 (Manhattan
distance, SAX(1) = True), and w = 2, and the along–across similarity between O6 and O7 (i.e.,
∆(O6, O7)) is illustrated as follows. First, the SAX-MTS and PAA-MTS of O6 is:

O6 =

(
g f f
g f g

)
, and

(
1.173 1.007 0.922
1.496 0.842 1.490

)
, respectively.

Those of O7 is:

O7 =

(
g f g
e f f

)
, and

(
1.496 0.842 1.490
0.272 0.609 0.959

)
, respectively.

Second, the row vector similarity R6,7 =
2
3+

1
3

2 = 0.5. More specifically, the Jaccard sim-
ilarity between row vectors (g, f, f) and (g, f, g) is 2

3 . Third, the column similarity C6,7 =
1

1.547+1+
1

0.398+1+
1

1.099+1
3 = 0.393+0.715+0.476

3 = 0.528. More specifically, the Manhattan distance
between column vectors (1.173, 1.496) and (1, 496, 0.272) is 0.323 + 1.224 = 1.547. Finally,
∆(O6, O7) = 0.5× 0.528 = 0.264.

Fifth, given a future time stamp (e.g., t11), the state (e.g., f11) at this time is unknown.
Formally, the state occurring at time tm+1 is denoted as pm+1 = (pm+1,1, pm+1,2, . . . , pm+1,n).
To obtain the components of pm+1,∗ with the kNN-like method, the instances, neighbors,
and labels were defined by the above. Therefore, the label of Om, i.e., pm+1,∗ can be
predicted with the following voting strategy.

Definition 8. Given a SAX-MTS S = (T, A, V, f ), Om and N, ∀j ∈ [1, n], each component of
pm+1,∗ = (pm+1,1, pm+1,2, . . . , pm+1,n) is:

pj = arg max
vaj∈Vaj

vote(vaj), (13)

and:

vote(vaj) =
∑i∈{i|Oi∈N} I(vaj = fi+1,j)

|N| , (14)

where I(·) = 1, if the condition (·) is True; otherwise, I(·) = 0.

Example 9. With Tables 3 and 4, let r = 8, c = 2, and w = 2, the process of computing
p11,∗ = (p11,1, p11,2, p11,3) is illustrated as follows.

First, the N of O10 is found. Using the process shown in Example 8, the along–across
similarities of {O10} × {O2, O3, . . . , O9} are listed in Table 5. Let the size of N, i.e., k = 4; then,
N = {O5, O4, O7, O6}.

Table 5. The similarity matrix of O10.

O2 O3 O4 O5 O6 O7 O8 O9

O10 0.051 0.059 0.243 0.334 0.105 0.109 0 0.063

Second, with the three nearest neighbors, the states/labels after them can be obtained. Namely,
f6,∗ = (g, f, g), f5,∗ = (g, f, f), f8,∗ = (c, d, c), and f7,∗ = (e, f, f).
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Fourth, the results of voting can hence be obtained as p11,1 = g, p11,2 = f, p11,3 = f. Namely,
p11,∗ = (g, f, f). More specially, in terms of a1, vote(g) = 2 > vote(c) = 1 = vote(e).

Sixth, the prediction performance is better with less difference between the pm+1,∗
and fm+1,∗ in general. The measures of prediction performance such as the precision and
recall are introduced here. ∀i ∈ [1, n], and the precision and recall of the state fm+1,∗ have
the same form, namely:

Pm+1 =
Σ1≤i≤n I(pm+1,i == fm+1,i)

n
(15)

Finally, with the above definitions, the problem of state prediction is proposed as follows.

Problem 1. kNMN-based state prediction for MTS:
Input: S

′
= (T, A, V

′
, f
′
), S = (T, A, V, f ), w and k;

Output: pm+1,∗ = (pm+1,1, pm+1,2, . . . , pm+1,n).

Although two types of datasets, i.e., the PAA- and SAX-MTSs, are both used here,
the space complexity remains the same. The time complexity is closely related to the size
of the matrix instance and similarity metrics for vectors.

Example 10. With Table 4, let r = 8 and c = 2; given PAA-MTS S
′
, SAX-MTS S, and the sliding

window w, the time complexities of the row and column vectors’ similarity between two matrix
instances are both Θ(wn). Moreover, the size of SP is n−w + 1; hence, the time complexity of our
method is Θ(wn(m− w + 1)) = Θ(mn).

3.3. Tri-State

To enrich the semantics of predictions, we extend each component of pm to a column
vector with length 3. For each vector, different components have various semantics. This
way, the form of prediction is changed from a 1× n vector into a 3× n matrix.

First, we introduce the definition of the tri-partition alphabet as follows.

Definition 9. Given an SAX-MTS S = (T, A, V, f ), ∀a ∈ A,

Σa = (Γa, Λa, Ωa) (16)

is called a tri-partition alphabet of a if

• Γa ∪Λa ∪Ωa = Σa = Va; and
• Γa ∩Λa = Γa ∩Ωa = Ωa ∩Λa = ∅.

Additionally, we call Γa, Λa, and Ωa the strong, medium, and weak regions of attribute a ∈ A,
respectively.

Example 11. With Table 3, the range of values for variable NO2 (a2) is {a, b, c, d, e, f, g}. Let
Γa2 = {a, g}, Λa2 = {b, f}, and Ωa2 = {c, d, e}, Σa2 is called a tri-partition alphabet of NO2.

Definition 10. Given a SAX-MTS S = (T, A, V = ∪a∈AVa, f ): Σ = ∪a∈AΣa and Om, a tri-
state at time stamp tm+1 is:

Pm+1,∗ =


p

Γa1
m+1,1, . . . , pΓan

m+1,n

p
Λa1
m+1,1, . . . , pΛan

m+1,n

p
Ωa1
m+1,1, . . . , pΩan

m+1,n

 (17)

where ∀i ∈ [1, n], p
Γai
m+1,i ∈ Γi, p

Λai
m+1,i ∈ Λi, and p

Ωai
m+1,i ∈ Ωi.
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Compared with the state in Definition 4, we replace pm+1,i with pm+1,i = (p
Γai
m+1,i,

p
Λai
m+1,i, p

Ωai
m+1,i)

T, ∀i ∈ [1, n]. Moreover, this predicted vector can be interpreted as the most
probable symbol from the strong, medium, and weak regions, respectively. Note that the
three-way state is useless for historical data.

Therefore, we present the voting strategy for the three-way state prediction as follows.
Given ∀i ∈ [1, n]: 

p
Γai
m+1,i = arg maxvai∈Γai

vote(vai );

p
Λai
m+1,i = arg maxvai∈Λai

vote(vai );

p
Ωai
m+1,i = arg maxvai∈Ωai

vote(vai ).

(18)

Practically, regions Γa, Λa, and Ωa can be obtained using various partition strategies
and have meaningful explanations. Here, we partition the range of symbolic values for
each attribute using the following strategy. Based on Equations (2) and (3), we can evaluate
the level deviating from the mean for each symbol. For each attribute ai(i ∈ [1, n]), given
a set of thresholds pair {(αi, βi)} with cardinality n, where αi, βi ∈ D = {δ1, δ2, . . . , δg−1},
αi ≥ βi > 0. ∀j ∈ [1, g− 1], the tri-partition strategy is formally described as

γi,j ∈ Γai , if |δj| ≥ αi;
γi,j ∈ Λai , if αi > |δj| ≥ βi;
γi,j ∈ Ωai , if |δj| < βi.

(19)

The combination of PAA-MTS S
′
= (T, A, V

′
, f
′
) and SAX-MTS S = (T, A, V, f ) is

first used here. The breakpoint δg is +∞, and δg > α always holds. Hence, γg always
belongs to Γai .

However, up to 2n thresholds need to be specified. Therefore, we assume that ∀i, j ∈
[1, n], i 6= j, αi = αj, and βi = β j for brevity. Consequently, we have Σai = Σaj , and Σ =

{Σa = (Γa, Λa, Ωa)|a ∈ A} which can be denoted by Σ = (Γ, Λ, Ω). More choices are
available for α and β with a greater g. Moreover, if g = 4, then D = {−0.67, 0, 0.67}. When
the threshold α is set to 0.67, β can be set to 0.67 or 0.

However, the predicted tri-state is incomplete if no strong, medium, or weak symbols
are found following the whole matrix neighbors. Namely, what the current method can
guarantee is that each variable has at least one predicted symbol. Formally, given a tri-state
Pm+1,∗ at tm+1, ∀i ∈ [1, n], we have:

(pΓ
i , pΛ

i , pΩ
i )T 6= (φ, φ, φ)T.

Example 12. With Table 3, let α = 1.07 and β = 0.57, Σa1 = Σa2 = Σa3 = (Γ, Λ, Ω), where Γ =
{a, g}, Λ = {b, f} and Ω = {c, d, e}. Based on the four labels of Example 9, i.e., f6,∗ = (g, f, g), f5,∗ =

(g, f, f), f8,∗ = (c, d, c), and f7,∗ = (e, f, f), the predicted tri-state at t11 is P11,∗ =

 g, φ, g
φ, f , f

c/e, d, c

.

Note that φ means the symbol of the current position is temporally unknown. More specifically,
the strong symbol of a2 and the medium symbol of a1 are unknown. Here, “c / e” indicates that the
final predicted symbol was randomly selected from them. For brevity, the symbol c was selected.

Moreover, the precision for the incomplete tri-state is calculated as follows:

P ′m+1 =
Σ1≤i≤n I(pΓ

m+1,i == fm+1,i or pΛ
m+1,i == fm+1,i or pΩ

m+1,i == fm+1,i)

Σi∈[1,n]Σj∈[1,3] I(Pm+1,∗ 6= φ)
(20)

In order to remedy this defect, i.e., to obtain a completed tri-state, we propose two
simplified and effective filling strategies called the individual and related ones, respectively.
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For each attribute, if one or two symbols are missing, the individual filling strategy (IFS)
predicts them with the most frequent ones in its own history data. Then, ∀i ∈ [1, n], the IFS
can be formally described as follows:

pΓ
i = argγ∈Γ max IFS-Count(γ), if pΓ

i = φ;

pΛ
i = argγ∈Λ max IFS-Count(γ), if pΛ

i = φ;

pΩ
i = argγ∈Ω max IFS-Count(γ), if pΩ

i = φ,

(21)

where:

IFS-Count(γ) =
Σm

j=1Index( f j,i = γ)

m
.

Example 13. According to Example 12 and Table 3, for variable a1, pΛ
1 = b. This is because

IFS-Count(b) = 3
10 > IFS-Count(f) = 0. For variable a2, pΓ

2 = a. This is because IFS-Count(a) = 2
10

> IFS-Count(g) = 1
10 . Hence, the tri-state filled by the IFS is P11,∗ =

g, a, g
b, f , f
c, d, c

.

The related filling strategy (RFS) predicts the missing symbols by considering
the association relationships between any pair of variables. Given two variables ai
and aj (i, j ∈ [1, n], i 6= j), aj is the most linear related variable of ai. Namely, aj =

argaj∈A\{ai}max Pearson(ai, aj). Hence, their predicted vectors are (pΓ
i , pΛ

i , pΩ
i )T and

(pΓ
j , pΛ

j , pΩ
j )

T. Then, the RFS can be formally described as follows:


pΓ

i = argγ∈Γ max RFS-Count(γ), if pΓ
i = φ;

pΛ
i = argγ∈Λ max RFS-Count(γ), if pΛ

i = φ;

pΩ
i = argγ∈Ω max RFS-Count(γ), if pΩ

i = φ,

(22)

where:

RFS-Count(γ) =
Σ

γ
′∈{pΓ

i ,pΛ
i ,pΩ

i }
Σm

l=1Index( fl,i = γ and fl,j = γ
′

and fl,j 6= φ)

Σ
γ
′∈{pΓ

i ,pΛ
i ,pΩ

i }
Index(γ′ 6= φ)×m

.

Example 14. Based on Example 12 and Table 3, the Pearson correlations among the three variables are
listed as follows. Pearson(a1, a2) = 0.892, Pearson(a1, a3) = 0.919, and Pearson(a2, a3) = 0.839.
Hence, for the variable a1, the most related one is a3. Then, when (a3, g) happens, the happening
symbols set of a1 is {g}. When (a3, f) happens, the happening symbols set of a1 is {g, e, e}. When
(a3, c) happens, the happening symbols set of a1 is {c}. No medium symbol for pΛ

1 by the RFS is
available. Therefore, the result is b, which is predicted using the IFS.

Then, for the variable a2, the most related one is a1. Then, when (a1, g) happens, the happening
symbols’ set of a2 is {f, f}. When (a1, b) happens, the happening symbols set of a2 is {a, a, c}. When
(a1, c) happens, the happening symbols set of a2 is {d, c}. Therefore, the result of pΓ

i is a.

Accordingly, the tri-state filled by the RFS is P11,∗ =

g, a, g
b, f , f
c, d, c

. This result of the RFS is

consistent with that of the IFS.

Moreover, the precision for the completed tri-state (IFS- and RFS-ones) is calculated
as follows:

P ′′m+1 =
Σ1≤i≤n I(pΓ

m+1,i == fm+1,i or pΛ
m+1,i == fm+1,i or pΩ

m+1,i == fm+1,i)

3n
(23)

With the above Equations (15), (20) and (23):
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• 0 ≤ P ′′m+1 ≤
1
3 ;

• P ′m+1 ≤ Pm+1; and P ′′m+1 ≤ Pm+1.

Finally, with all of the above definitions, we can define the problem of three-way state
prediction as follows:

Problem 2. Tri-state prediction for MTS.
Input: S

′
= (T, A, V

′
, f
′
), S = (T, A, V, f ), w, k, α, and β;

Output: Pm+1,∗ = (pm+1,n, pm+1,n, . . . , pm+1,n) =

pΓ
m+1,1, . . . , pΓ

m+1,n
pΛ

m+1,1, . . . , pΛ
m+1,n

pΩ
m+1,1, . . . , pΩ

m+1,n

.

Compared with Problem 1, Problem 2 has two more parameters α and β. The first
process that generates Σ is required, but it has a polynomial time complexity Θ(mn). The
output is a matrix P with size 3× n. Hence, we can obtain three of the most likely occurring
symbols from the strong, medium, and weak regions, respectively. Note that Problem 1
obtains one predicted state at once, while Problem 2 can obtain up to 3n possible states.
Excitedly, the time and space complexity of the two problems remain the same.

4. Algorithms

In this section, the framework of the three-way state prediction algorithm with k
nearest matrix neighbors (kNMN-3WSP) is shown in Figure 3. Three stages, namely kNMN
construction, alphabet tri-partition, and three-way state prediction, are proposed. Note
that datasets such as PAA S

′
and SAX S are the inputs of all stages. In stages II and III, S

′

and S were omitted for brevity.

Stage II

Alphabets tri-partition

Stage I

�NMN construction

Stage III 

Three-way state prediction

Input: �,  

Output: Σ = Γ, Λ, Ω

Input:� , �, !, ", #, $

Output: N

Input: N, Σ

Output: � ×!

Figure 3. The process of the kNMN-3WSP algorithm.

4.1. Stage I

Algorithm 1 proposes the details of Stage I. First, (r, c) is a pair of indexes which
identifies the distances and similarities from Table 4. In other words, we have r, c ∈
{0, 1, . . . , 9}. Moreover, if r = 0, the similarity between two row vectors is measured using
the Euclidean distance. If c = 7, the similarity between two column vectors are measured
using the Triangle one. Second, the cardinalities of Om and all elements in SP are w× n,
|N| = k and m = |T|. Third, the availability of PAA and SAX is the key to integrating S

′

and S. They are mutually exclusive.
Algorithm 2 presents the details of Line 4. With the last two columns of Table 4, if the

similarity metric supports PAA-MTS, PAA(r) or PAA(c) is True (T). For example, PAA(0) =
PAA(1) = True, and PAA(2) = PAA(3) = False (F). Finally, the time complexity of this stage
is Θ(mn2).
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Algorithm 1 kNMN construction.

Input: S
′
= (T, A, V

′
, f
′
), S = (T, A, V, f ), w, k and (r, c);

Output: N;
Method: Construction.

1: Generate Om and SP with w;
2: Initialize N = ∅;
3: for (i ∈ [w, m− 1]) do
4: Compute ∆(Om, Oi) with (r, c);
5: N = N ∪ ({Oi, ∆(Om, Oi))};
6: end for
7: Arrange the elements in set N in descending order of similarity ∆;
8: Retain only the first k elements of N;
9: return N;

Algorithm 2 Similarity computation.
Input: Om, Oi and (r, c);
Output: ∆(Om, Oi);
Method: Similarity.

1: row = 0.0;
2: for (l ∈ [1, w]) do
3: if (PAA(r)) then
4: row += s(f′mm−w+l,∗, f′ ii−w+l,∗);
5: else
6: row += s(fm

m−w+l,∗, fi
i−w+l,∗);

7: end if
8: end for
9: row /= w;

10: col = 0.0;
11: for (l ∈ [1, n]) do
12: if (PAA(c)) then
13: col += s(f′ i∗,l , f′ j∗,l);
14: else
15: col += s(fi

∗,l , fj
∗,l);

16: end if
17: end for
18: col /= n;
19: return row × col;

4.2. Stage II

Algorithm 3 describes the details of Stage II. First, the variable g was specified to
generate the SAX version of MTS. In other words, g ≥ 2 is the number of symbols for each
attribute. Second, if α = β, Λ is an ∅. When g = 2, no other choices are available except for
α = β. Finally, the time complexity of this stage is only Θ(ng).



Appl. Sci. 2021, 11, 11294 15 of 23

Algorithm 3 Alphabet tri-partition.

Input: S
′
= (T, A, V

′
, f
′
), S = (T, A, V, f ), α and β;

Output: Σ = (Γ, Λ, Ω);
Method: Tri-partition.

1: Initialize Γ = Λ = Ω = ∅;
2: for (i ∈ [1, g− 1]) do
3: if (|δi| ≥ α) then
4: Γ = Γ ∪ {γi};
5: else if (|δi| < β) then
6: Ω = Ω ∪ {γi};
7: else
8: Λ = Λ ∪ {γi};
9: end if

10: end for
11: Γ = Γ ∪ {γg};
12: return Σ = (Γ, Λ, Ω);

4.3. Stage III

Algorithm 4 discusses the details of Stage III. First, f j+1,i is the label of attribute ai.
The predicted symbol is the one with the maximal frequency. Second, the purpose of using
the index to count is to improve the efficiency of this algorithm. In Line 6, Count(·) is a
mapping function for the count matrix in which the size is g× 2. The l-th position stores
the frequency of γl (l ∈ [1, g]). Generally, the matrix is denoted by M = ((Count(1), 1),
(Count(2), 2), . . . , (Count(g), g)). For example, with Table 3, let the indices of H, M, and L
be 0, 1, and 2, respectively, (g = 3). Matrix ((3, 0), (2, 1), (4, 2)) means the frequencies of H,
M, and L are 3, 2, and 4, respectively. Moreover, M1,∗ = (3, 0), M1,1 = 3, and M1,2 = 0.

In Line 9, the count matrices are listed in the count descending order. Generally,
M′ = (M1,∗, M2,∗, . . . , Mg,∗) are subject to (1) ∀i ∈ [1, g], Mi,∗ ∈ M, and (2) ∀j ∈ [1, g], j 6= i,
Mi,1 ≥ Mj,1. For example, the matrix ((3, 0), (2, 1), (4, 2)) is transformed into ((4, 2), (3, 0),
(2, 1)). In Lines 10–21, the algorithm searches for three symbols with the biggest count
from the strong, medium, and weak regions each. There is no need to continue searching
if all three symbols of the current variable are known. The time complexity of this stage
is Θ(mn).

Finally, the RFS considers more information than the IFS, but their time and space com-
plexities are the same, namely Θ(nm). This way, we can obtain four kinds of states called
the state, tri-state, IFS-based tri-state (IFS-tri-state), and RFS-based tri-state (RFS-tri-state).
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Algorithm 4 Three-way state prediction.

Input: S
′
= (T, A, V

′
, f
′
), S = (T, A, V, f ), N and Σ = (Γ, Λ, Ω);

Output: P3×n =

 pΓ
1 , . . . , pΓ

n

pΛ
1 , . . . , pΛ

n

pΩ
1 , . . . , pΩ

n

;

Method: Prediction.

1: Initialize P3×n by filling with φ;
2: for (i ∈ [1, n]) do
3: M = ((Count(1), 1), (Count(2), 2), . . . , (Count(g), g)), Count(l) = 0 (l ∈ [1, g]);
4: for (each neighbor O ∈ N) do
5: Get its last time stamp, denoted by tj;
6: Obtain the index of f j+1,i in Vai , denoted by l;
7: Count(l) + +;
8: end for
9: Obtain M′ by listing M in the descending order of Count(·);

10: for (j ∈ [1, g]) do
11: Let l = M′j,2;
12: if (γl ∈ Γ and pΓ

i 6= φ) then
13: pΓ

i = γl ;
14: else if (γl ∈ Λ) and pΛ

i 6= φ then
15: pΛ

i = γl ;
16: else if (γl ∈ Ω) and pΩ

i 6= φ then
17: pΩ

i = γl ;
18: else
19: break;
20: end if
21: end for
22: end for
23: return P3×n;

5. Experiments

We attempted the discussion of the following issues using experiments:

• The prediction performance of our along–across similarity model;
• The stability of the similarity metrics combination.

5.1. Dataset and Experiment Settings

Experiments are undertaken on four datasets from four different domains, i.e., the
environmental, financial, industrial, and health domains. The most important information
from these datasets is listed in Table 6.

Table 6. The outlines of the datasets.

Dataset Name |T| |A| Fields

I WanLiu 35,064 12 Environment
II Stocks 4300 12 Finance
III IPES 33,001 11 Healthy
IV CACS 88,840 37 Industry
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With Table 4, 10× 10 = 100 combinations need to be discussed. The test set consists of
the last 20% of the above three MTSs. However, the training set is dynamic at different time
points within the testing set. Generally, for each time point i ∈ [d20%me, m], the training
set contains the whole records within the time range [1, i− 1]. In other words, 80% is the
smallest training set ratio when the time point i is d20%me.

5.2. Prediction Performance

Figures 4 and 5 show the meaning of precision, recall, and F1-measure for four kinds
of states on the four datasets’ test sets. Commonly, the form (r, c), r, c ∈ [0, 9], indicates
the indices of row and column metrics, respectively. For example, (3, 8) means that the
row metric is Levenshtein and that the column metric is Jaccard. Second, with increasing k,
the precisions of the state, tri-state, IFS-based tri-state, and RFS-based state are decreased.
Third, the precision of state is better than that of the others. Moreover, the precision of
tri-state is slightly better than that of the IFS- and RFS-based ones. The precisions of the
IFS- and RFS-based tri-states are almost consistent. This is because three kinds of tri-states
provide two additional symbols for each variable. However, tri-state may be incomplete
while the IFS- and RFS-based ones are complete. Therefore, the precision of the tri-state is
between the state and the IFS- and RFS-based tri-states. This can be observed in Figure 4b,c.

(a) (b)

(c) (d)

Figure 4. The precisions of four state prediction strategies. (a) Dataset I. (b) Dataset II. (c) Dataset III.
(d) Dataset IV.

In Figure 5, the recalls of the three kinds of tri-states are better than that of the
state. Moreover, the recalls of the IFS- and RFS-based tri-states are the highest. Similarly,
the recall of the tri-state is also between that of the state and the IFS- and RFS-based tri-
states. Interestingly, the recall of the IFS- and RFS-based tri-states on the Stocks (Dataset II)
can reach 95% and 93%, respectively.
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(a) (b)

(c) (d)

Figure 5. The recalls of four state prediction strategies. (a) Dataset I. (b) Dataset II. (c) Dataset III.
(d) Dataset IV.

Compared with the state, the three kinds of tri-states have better recall but worse
precision. Although the improvement of IFS- and RFS-based tri-states is not significant
compared to the tri-state, more information can be provided. In most cases, k = 1 is the
first choice for precision and recall.

5.3. Stability

Tables 7 and 8 list the top 10 metric combinations for precision and recall with four
kinds of states on the four datasets’ test sets. We can observe that some metric combina-
tions are repeated. Hence, these combinations are considered more stable, with higher
frequency/probability occurring in different datasets. For stronger discrimination, we
additionally introduce a weighting strategy ranking for each metric combination.

Given a metric combination x ∈ [0, 9]:

ρ(x) =
ξ(x)
2π(x)

(24)

is the stability metric of x. Among them, ξ(x) is the occurrence on four datasets. Moreover:

π(x) =
Σi∈{I, II, III, IV}η(x, i)

ξ(x)
(25)

is the average ranking of x. If x does not occur in dataset i, η(x, i) = 0. Otherwise, η(x, i) is
the ranking of x.
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Table 7. The top 10 metric combinations for precision.

Dataset Type of State Metric Combinations (r, c)

I State (5, 1), (7, 1), (4, 1), (7, 8), (3, 7), (9, 1), (1, 8), (5, 8), (1, 7), (0, 8)
Tri-state (9, 1), (9, 8), (3, 8), (5, 1), (7, 8), (3, 0), (7, 1), (4, 1), (4, 7), (3, 1)
IFS-tri-state (3, 8), (9, 1), (9, 8), (5, 1), (3, 0), (7, 8), (8, 8), (7, 1), (4, 1), (4, 7)
RFS-tri-state (3, 8), (9, 1), (9, 8), (5, 1), (3, 0), (7, 8), (8, 8), (7, 1), (4, 1), (4, 7)

II State (1, 8), (1, 7), (5, 0), (0, 7), (0, 4), (0, 0), (7, 7), (0, 9), (1, 4), (1, 0)
Tri-state (7, 7), (9, 0), (8, 8), (1, 7), (8, 1), (1, 1), (1, 3), (1, 9), (1, 8), (9, 8)
IFS-tri-state (7, 7), (3, 0), (3, 1), (3, 7), (1, 4), (1, 0), (1, 8), (1, 9), (1, 3), (1, 1)
RFS-tri-state (0, 0), (3, 1), (0, 7), (5, 0), (4, 1), (5, 7), (1, 0), (1, 7), (9, 1), (1, 3)

III State (7, 8), (0, 8), (7, 4), (1, 4), (1, 8), (4, 8), (7, 7), (1, 7), (7, 9), (8, 8)
Tri-state (9, 8), (3, 3), (1, 7), (8, 8), (1, 4), (7, 8), (0, 4), (0, 8), (4, 8), (8, 0)
IFS-tri-state (3, 3), (7, 8), (4, 8), (9, 8), (1, 8), (0, 8), (8, 8), (9, 7), (1, 4), (0, 4)
RFS-tri-state (1, 8), (9, 8), (8, 1), (0, 7), (0, 1), (1, 4), (0, 8), (1, 0), (0, 4), (1, 1)

IV State (0, 1), (0, 7), (0, 0), (1, 0), (5, 7), (3, 7), (5, 0), (1, 1), (7, 1), (7, 0)
Tri-state (7, 7), (5, 7), (4, 0), (5, 0), (0, 0), (5, 1), (0, 7), (4, 7), (4, 1), (7, 0)
IFS-tri-state (7, 7), (5, 7), (4, 0), (5, 0), (0, 0), (5, 1), (0, 7), (4, 7), (4, 1), (7, 0)
RFS-tri-state (5, 7), (4, 4), (0, 7), (7, 1), (7, 8), (7, 0), (5, 1), (5, 0), (5, 4), (4, 0)

Table 8. The top 10 metric combinations for recall.

Dataset Type of State Metric Combinations (r, c)

I State (5, 1), (7, 1), (4, 1), (7, 8), (3, 7), (9, 1), (1, 8), (5, 8), (1, 7), (0, 8)
Tri-state (3, 8), (9, 8), (8, 8), (4, 8), (5, 1), (5, 8), (9, 1), (3, 7), (3, 0), (5, 7)
IFS-tri-state (3, 8), (9, 8), (8, 8), (9, 1), (5, 1), (0, 8), (5, 8), (4, 8), (3, 7), (3, 0)
RFS-tri-state (3, 8), (9, 8), (8, 8), (9, 1), (5, 8), (4, 8), (0, 8), (5, 1), (3, 7), (5, 7)

II State (1, 8), (1, 7), (5, 0), (0, 7), (0, 4), (0, 0), (7, 7), (0, 9), (1, 4), (1, 0)
Tri-state (7, 7), (0, 1), (3, 1), (3, 7), (1, 4), (1, 0), (1, 8), (1, 3), (1, 1), (1, 7)
IFS-tri-state (0, 0), (3, 1), (0, 1), (1, 0), (1, 8), (4, 0), (7, 0), (5, 0), (0, 8), (7, 7)
RFS-tri-state (9, 1), (3, 1), (4, 1), (5, 1), (9, 7), (0, 8), (0, 9), (7, 7), (1, 7), (1, 0)

III State (7, 8), (0, 8), (7, 4), (1, 4), (1, 8), (4, 8), (7, 7), (1, 7), (7, 9), (8, 8)
Tri-state (9, 8), (3, 3), (1, 8), (0, 8), (4, 3), (8, 8), (7, 3), (0, 3), (1, 4), (1, 3)
IFS-tri-state (3, 3), (9, 8), (0, 8), (1, 4), (1, 8), (1, 3), (8, 8), (0, 4), (4, 3), (7, 3)
RFS-tri-state (9, 8), (1, 8), (0, 8), (1, 4), (0, 7), (1, 7), (8, 8), (0, 4), (4, 1), (1, 1)

IV State (0, 1), (0, 7), (0, 0), (1, 0), (5, 7), (3, 7), (5, 0), (1, 1), (7, 1), (7, 0)
Tri-state (7, 7), (4, 7), (0, 0), (0, 7), (7, 1), (7, 0), (0, 4), (5, 0), (5, 7), (5, 1)
IFS-tri-state (7, 7), (4, 7), (0, 0), (0, 7), (7, 1), (7, 0), (0, 4), (5, 0), (5, 7), (5, 1)
RFS-tri-state (5, 4), (7, 7), (4, 7), (0, 0), (5, 0), (0, 7), (7, 1), (7, 0), (4, 1), (7, 4)

Figure 6 shows the most stable metric combinations for precision. In terms of the state,
combination (1, 8) is the first choice. In terms of the tri-state, combination (1, 8) is the first
choice. In terms of the IFS-based tri-state, combination (3, 8) is the first choice. In terms of
the RFS-based tri-state, combination (3, 8) is the first choice.

Figure 7 shows the most stable metric combinations for recall. In terms of the state,
combination (1, 8) is the first choice. In terms of the tri-state, combination (1, 8) is the first
choice. In terms of the IFS-based tri-state, combination (0, 8) is the first choice. In terms of
the RFS-based tri-state, combination (9, 8) is the first choice.

With the above observations, the eighth metric, i.e., the Jaccard similarity, is the most
frequently used, followed by the second one, i.e., the Manhattan distance.
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Figure 6. The most stable metric combinations for precision. (a) State. (b) Tri-state. (c) IFS-tri-state.
(d) RFS-tri-state.

(a) (b)

(c) (d)

Figure 7. The most stable metric combinations for recall. (a) State. (b) Tri-state. (c) IFS-tri-state.
(d) RFS-tri-state.
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6. Conclusions

In this paper, a new tri-state and its prediction problem were defined on multivariate
time-series (MTS). The most likely occurring strong, medium, and weak symbols can be
obtained with the tri-state. Second, a deviation degree-based tri-partition strategy and
the algorithm were designed. For all symbols of each variable, the symbol was stronger
and deviated further from the average value. Third, the along–across similarity model
was proposed to capture the temporal and variables’ association relationships. Fourth,
the integration of the PAA and SAX versions of MTS can combine numerical or symbolic
similarities or distances. Finally, when a new dataset is introduced, the first choices in
parameter settings are k = 1 (the size neighborhood), r = 1 (the Jaccard), and c = 8
(the Manhattan).

The following research topics deserve further investigation:

• More alphabet tri-partition strategies;
• More tri-state completion strategies;
• Adaptive learning of the parameters by cost-sensitive learning; and
• More intelligent metrics combination strategies, e.g., integrated learning.
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