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Abstract: Upper gastrointestinal endoscopy is widely performed to detect early gastric cancers. As
an automated detection method for early gastric cancer from endoscopic images, a method involving
an object detection model, which is a deep learning technique, was proposed. However, there
were challenges regarding the reduction in false positives in the detected results. In this study, we
proposed a novel object detection model, U-Net R-CNN, based on a semantic segmentation technique
that extracts target objects by performing a local analysis of the images. U-Net was introduced as a
semantic segmentation method to detect early candidates for gastric cancer. These candidates were
classified as gastric cancer cases or false positives based on box classification using a convolutional
neural network. In the experiments, the detection performance was evaluated via the 5-fold cross-
validation method using 1208 images of healthy subjects and 533 images of gastric cancer patients.
When DenseNet169 was used as the convolutional neural network for box classification, the detection
sensitivity and the number of false positives evaluated on a lesion basis were 98% and 0.01 per image,
respectively, which improved the detection performance compared to the previous method. These
results indicate that the proposed method will be useful for the automated detection of early gastric
cancer from endoscopic images.

Keywords: gastric cancer; endoscopy; deep learning; convolutional neural network

1. Introduction
1.1. Background

Gastric cancer (GC) is one of the most common malignant tumors of the stomach
mucosa. According to global statistics, GC is the second leading cause of cancer deaths,
and the number of patients with GC is increasing due to changes in dietary habits and
longer life expectancy [1,2]. GC may be effectively treated if detected early. Therefore, early
detection and treatment of gastric cancer are essential.

Radiography and endoscopy are used to screen for GC. During endoscopy, a specialist
inserts an endoscope through the patient’s mouth or nose and directly observes the mucous
membrane of the digestive tract to detect abnormalities. The detection sensitivity of GC
by endoscopy is high, and if lesions are found during the examination then tissue may be
collected and simple treatment can be given [3].

However, specialists who perform the procedure need to detect abnormalities while
operating the endoscope, making the examination process sophisticated and complicated.
This results in widely varying diagnostic accuracy, and some studies have reported that
lesions were missed in 22.2% of cases [4]. If physicians could use the results of computerized
image analysis and detect abnormalities during the examination, they could solve some of
these problems and detect GC at an early stage. Deep learning, an artificial intelligence
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technology, has recently been confirmed to have high capability for image recognition by
several studies that were conducted in the medical field [5–10]. Therefore, we focused on
the automated detection of GC in endoscopic images using a computer-aided diagnostic
method based on deep learning technology.

1.2. Related Works

There are many studies on deep learning for the diagnosis of GC using endoscopic
images, including studies on the classifications between GC and healthy subjects and the
automated recognition of GC regions.

Shichijo et al. investigated the prediction of Helicobacter pylori infection using a
convolutional neural network (CNN) and obtained a sensitivity of 88.9% and specificity of
87.4% [11]. Li et al. developed a method to discriminate between GC and normal tissue
using magnified narrow-band imaging (NBI) [12]. They used Inception-v3 as the CNN
model for classification and obtained a sensitivity of 91.18% and specificity of 90.64%.
Zhang et al. developed a method to classify precancerous diseases (polyp, ulcer, and
erosion) using CNN and obtained a classification accuracy of 88.9% [13].

Hirasawa et al. developed a single-shot multi-box detector (SSD), an object detection
model, for the automated detection of early-stage GC [14]. The sensitivity of detection was
92.2% and the positive predictive value was 30.6%. Sakai et al. also developed a method
for object detection of GC by classifying GC regions and normal regions using micropatch
endoscopic images [15]. The detection sensitivity and specificity of the method were 80.0%
and 94.8%, respectively.

We proposed a method for extracting the presence and invasive regions of early
GC using Mask R-CNN, which can perform both object detection and segmentation [16].
We showed that the automated detection sensitivity for early GC was 96.0% and that
the segmentation concordance was 71%. Although the method had sufficient detection
sensitivity, the average number of false positives (FP) was 0.10 per image (3.0 per patient).
The Mask R-CNN used in this study introduced an object detection model for common
natural images. It captured the clear contour of the object in the image, so that lesions with
a relatively clear shape that caused unevenness were detected correctly. On the other hand,
many lesions of early GC, in which only the surface of the gastric mucosa was cancerous,
were not detected correctly by the object detection model because contours were unclear.

A CNN used for segmentation rather than object detection analyzes patterns in
the local regions of the image and divides the entire image into regions by determining
whether they match the patterns to be extracted. This behavior involved in determining
individual regions while observing details is similar to that used by an expert physician
when observing the gastric cavity, and segmentation techniques may be able to improve the
accuracy of automated lesion detection. On the other hand, many small regions are often
observed in the segmentation output by CNNs. Excluding these using the FP reduction
technique may greatly reduce the number of FPs and improve detection performance.
Therefore, segmentation techniques that exclude small excess regions are effective for the
automated detection of GC and identification of the extent of invasion.

1.3. Objective

In this study, we develop a deep learning model that may accurately detect the
presence of GC and its extent of invasion using endoscopic images. We propose a novel
deep learning model, U-Net R-CNN, which is a combination of the U-Net segmentation
process and CNN for image classification to eliminate FPs. The efficacy of this method is
confirmed using endoscopic images of early GC and healthy subjects.

2. Methods
2.1. Outline

The outline of the GC detection by U-Net R-CNN proposed in this study is shown
in Figure 1. The endoscopic images were given to the U-Net, the initial candidate regions
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of the GC were extracted, and the bounding box of each extracted region was obtained.
The obtained image patterns in the bounding boxes were subjected to a CNN to classify
FPs and the final candidates (box classification). The final candidate regions where FPs are
excluded were outputs used for diagnosis.
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Figure 1. Outline of the proposed method.

2.2. Image Dataset

The image dataset used in this study was same as that used in our previous study.
Patient details and other information may be found in our previous study [16]. For this
study, 42 healthy and 93 cases (94 lesions) of GC for preoperative examinations were
collected between 16 July 2013 and 30 August 2017 at the Fujita Health University Hospital.
The numbers of images for the above two categories were 1208 and 533, respectively. The
endoscopic images were obtained from multiple directions if a lesion was found during the
examination. Table 1 shows the characteristics of gastric cancer patients and lesions [16].
Regarding the healthy subjects, we reassessed the cases endoscopists diagnosed without
any abnormalities. When we did not find a specific lesion, such as a tumor, polyps, or
gastritis, and a regular arrangement of collecting venules was observed in the mucosa, we
considered this as “healthy” [17].

Table 1. Clinical characteristics of gastric cancer lesions in the dataset.

Characteristics Number of Cases

Tumor position
Lower third 33
Middle third 52
Upper third 9

Macroscopic classification
Type 0-I 0

Type 0-IIa 10
Type 0-IIb 0
Type 0-IIc 63
Type 0-III 0

Type 0 mixed (0-IIa + IIc and IIc + III) 21
Depth of tumor invasion

T1a (mucosa) 71
T1b (submucosa) 23

Histopathological classification
Undifferentiated 13

Differentiated 75
Mixed 6

We obtained images using upper endoscope units (EG-L600ZW7; Fujifilm Corp.,
Tokyo, Japan; GIF-290Z, GIF-HQ290, GIF-XP290N, GIF-260Z; Olympus Medical Systems,
Co., Ltd., Tokyo, Japan) and standard endoscopic video systems (VP-4450HD/LL-4450,
Fujifilm Corp., Tokyo, Japan; and EVIS LUCERA CV-260/CLV-260; EVIS LUCERA ELITE
CV-290/CLV-290SL; Olympus Medical Systems, Tokyo, Japan).

All images were captured using standard white light and stored in JPEG file format.
The matrix size of the images ranged from 640 × 480 to 1440 × 1080 pixels. To make the
matrix size consistent, we resized all images to 512 × 512 pixels. The circular field of view
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was adopted to avoid differences among the endoscopic instruments and to facilitate data
augmentation, before being trimmed as a circle.

The expert endoscopist (TS), who was certified by the Japan Gastroenterological
Endoscopy Society, made the ground truth of a label image. To make the label images, we
used the original Python software.

2.3. Data Augmentation

Rotation and inversion invariance can be established because the endoscope may
capture images of the gastric condition from various angles. Therefore, various images
may be created by rotating or flipping each of the collected images. In this study, to ensure
stable deep learning performance, we prepared, rotated, and flipped original images for
data augmentation and used them for training. Using our in-house software, we generated
images by setting the rotation pitch of the images of GC and healthy subjects to 6◦ and 10◦,
respectively, so that the numbers of images of GC and healthy subjects were equal [16].

2.4. Initial Detection

We extracted the candidate regions for early GC from endoscopic images. For this task,
we employed U-Net, a semantic segmentation technique [18], which was first proposed
in 2015 as a method for extracting cell regions in microscopic images and widely used
in fields other than medical imaging since. The network structure is shown in Figure 2.
U-Net consists of five convolutional and pooling layers, followed by five encoder layers
(upscaling layers). When an image is given to the input layer, the encoder layer in the first
half extracts the features of the image. Then, the decoder layer in the second half outputs
a segmented label image based on the extracted features. In addition, the encoder and
decoder layers are connected to each other and the high-resolution information from the
encoder layer is delivered directly to the decoder layer on the other side, thereby increasing
the resolution of the label image. U-Net provides an initial candidate region for early GC
corresponding to the input image. As for the U-Net parameters, the Dice coefficient was
used as the loss function (the definition of the Dice index is described in Section 2.6), with
the Adam algorithm [19] as the optimization algorithm, 0.0001 as the learning coefficient,
100 as the number of training sessions, and 8 as the batch size.

Appl. Sci. 2021, 11, 11275 4 of 11 
 

Type 0-IIb 0 

Type 0-IIc 63 

Type 0-III 0 

Type 0 mixed (0-IIa + IIc and IIc + III) 21 

Depth of tumor invasion  

T1a (mucosa) 71 

T1b (submucosa) 23 

Histopathological classification  

Undifferentiated 13 

Differentiated 75 

Mixed 6 

2.3. Data Augmentation 

Rotation and inversion invariance can be established because the endoscope may 

capture images of the gastric condition from various angles. Therefore, various images 

may be created by rotating or flipping each of the collected images. In this study, to ensure 

stable deep learning performance, we prepared, rotated, and flipped original images for 

data augmentation and used them for training. Using our in-house software, we 

generated images by setting the rotation pitch of the images of GC and healthy subjects to 

6° and 10°, respectively, so that the numbers of images of GC and healthy subjects were 

equal [16]. 

2.4. Initial Detection 

We extracted the candidate regions for early GC from endoscopic images. For this 

task, we employed U-Net, a semantic segmentation technique [18], which was first 

proposed in 2015 as a method for extracting cell regions in microscopic images and widely 

used in fields other than medical imaging since. The network structure is shown in Figure 

2. U-Net consists of five convolutional and pooling layers, followed by five encoder layers 

(upscaling layers). When an image is given to the input layer, the encoder layer in the first 

half extracts the features of the image. Then, the decoder layer in the second half outputs 

a segmented label image based on the extracted features. In addition, the encoder and 

decoder layers are connected to each other and the high-resolution information from the 

encoder layer is delivered directly to the decoder layer on the other side, thereby 

increasing the resolution of the label image. U-Net provides an initial candidate region for 

early GC corresponding to the input image. As for the U-Net parameters, the Dice 

coefficient was used as the loss function (the definition of the Dice index is described in 

Section 2.6), with the Adam algorithm [19] as the optimization algorithm, 0.0001 as the 

learning coefficient, 100 as the number of training sessions, and 8 as the batch size.  

 

Figure 2. Architecture of U-Net. 

  

Figure 2. Architecture of U-Net.

2.5. Box Classification

The detected candidate regions included many over-detected regions (FPs). These
FPs may be recognized and reduced using a different approach from the segmented U-Net
for segmentation. In the box classification part of the proposed U-Net R-CNN, FPs are
eliminated from the candidate regions by another CNN (Figure 3).
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First, the input image was provided to U-Net and the output labeled image of U-Net
was automatically binarized by Otsu’s method [20], followed by the labeling process to pick
up individual candidate regions. The bounding box of the candidate region was then cut
out and input to the CNN to classify the candidate region as GC or false positive. Finally,
the regions that the CNN identified as GC were used as the final detection results.

For the CNN architecture, we introduced VGG-16 [21], Inception v3 [22], and
ResNet50 [23], as well as DenseNet121, 169, and 201 [24], then selected the best model by
comparing them. These CNN models were pretrained using the ImageNet dataset, which
has a much larger number of training image samples than our original dataset. For the
classification of GC and FPs, we replaced the fully connected layers of the original CNN
models with three layers having 1024, 256, and 2 units.

For the input of the CNN, the image of the candidate region was resized to 224× 224 pixels
and the optimization algorithm was the Adam algorithm with a learning rate of 0.0001 and
200 training epochs. For data augmentation, vertical and horizontal image flipping were
performed randomly.

2.6. Evaluation Metrics

We defined the evaluation metrics to assess the detection and segmentation perfor-
mance of the proposed method. As for the detection sensitivity, when the GC region
obtained by the proposed method and the ground truth region specified by a gastrointesti-
nal specialist overlapped, we evaluated that the target GC was detected correctly. In the
endoscopic examination, the same GC region was often observed in a number of images
because images were taken from many angles. Among these images, some images may
have subtle patterns that are difficult to identify. Therefore, we evaluated the performance
of two counting methods. The first method involved simply counting the number of im-
ages for which GC was detected correctly (image-based sensitivity), while second method
determined whether one lesion was correctly detected in at least one image (lesion-based
sensitivity). Regarding the FPs, the total number of detected healthy regions in healthy
cases were counted; we calculated FPs per case by dividing them by the total number of
healthy subjects.

Although the main task of this study was to detect objects to recognize the presence
of GC, U-Net may extract object regions. Therefore, we evaluated the accuracy of region
extraction using Dice and Jaccard coefficients.

Di and Ji were calculated using the following formulas to evaluate the similarity
between the detected region and the ground truth created by a gastrointestinal specialist:

Di = 2|A∩B|/(|A| + |B|) × 100 [%] (1)

Ji = |A∩B|/|A∪B| × 100 [%] (2)

where A and B are two sets. Here, A indicates the ground truth GC region specified by a
specialist and B indicates the detected region identified by the proposed method.

Di and Ji were evaluated in the two groups. First, all images containing GC areas were
used to evaluate the overall extraction accuracy. In the second method, only the regions
detected by the method were evaluated to confirm the accuracy of the invasion area when
GC was detected.
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In the evaluation, we used a cross-validation method [25]. In this method, the dataset
was split into k groups (called k-fold cross-validation). The network was trained using
the k-1 subset; the remaining subset was used for the test. By repeating the above process
k times, the test results for all data can be obtained. The overall model accuracy can be
calculated by summarizing all test results. In our evaluation, five-fold cross-validation
(k = 5) was introduced; 137 cases were randomly divided into five groups. Here, the images
of the same case were not assigned to both training and test data.

This study was approved by the institutional review board of Fujita Health University,
informed consent was obtained from the patients in the form of an opt-out in the endoscopic
center of Fujita Health University Hospital, and all data were anonymized (No. HM17-226).
This study was conducted in accordance with the World Medical Association Declaration
of Helsinki.

The calculations of the initial detection and FP reduction were performed using
original Python software using an AMD Ryzen9 3950X processor (16 CPU cores, 4.7 GHz)
with 128 GB of DDR4 memory. Trainings of CNN phases were accelerated by NVIDIA
Quadro RTX 8000 GPU (48 GB memory).

3. Results
3.1. Initial Detection

Using the proposed method, we obtained the results for the initial detection before
performing FP elimination. Figure 4 shows a lesion detected in the initial detection process
(a−d) and an example of a missed lesion (e,f). The right image in Figure 4c,d shows those
lesions that were missed by our previous technique but detected by the proposed method.
As a result of the automated detection of all 1741 images using the cross-validation method,
lesions were detected in 491 out of 533 images that contained lesions, while no lesions were
detected in 42 images. When the detection sensitivity was evaluated on a lesion basis, the
presence of GC was detected in at least one image in 98.9% (93/94) of patients, while 1.1%
(1/94) of GCs were not detected in any patient. FPs were detected in 42 of 1208 images in
the healthy group, resulting in an FP count of 0.035 per image.

3.2. False Positive Reduction

Box classification was performed on 533 images (491 true positives and 42 FPs) de-
tected in the initial detection to eliminate the FPs. Figure 5 shows an example of a cropped
image to be given to the CNN for FP reduction. Table 2 shows the detection sensitivity
and the numbers of FPs per image and per lesion when an FP reduction was performed
with six different CNN architectures. DenseNet169 showed the highest ability to eliminate
FPs. Examples of FPs that could be removed by DenseNet169 and those that could not
are shown in Figure 6. The results of the calculation of Di and Ji for GC cases are shown
in Table 3.

Table 2. Comparison of CNN architectures for false positive reduction.

Classifier
Detection Sensitivity False

Positives/ImageLesion-Based Image-Based

None 0.989 0.942 0.0348
VGG16 0.989 0.942 0.0348

ResNet50 0.989 0.932 0.0281
DenseNet121 0.978 0.916 0.0273
DenseNet169 0.989 0.897 0.0108
DenseNet201 0.989 0.901 0.0240
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proposed method; (c,d) FPs that were not eliminated by the proposed method; (e,f) gastric cancer
lesions eliminated by false positive reduction. Arrows indicate the labeled regions.

Table 3. Evaluation results of Di and Ji for cancer segmentation.

Evaluation Using All Gastric Cancer Cases Evaluation Using the Detected Gastric Cancer Cases

Di Ji Di Ji

Previous method [16] 0.542 0.371 0.720 0.494
Proposed method 0.555 0.427 0.602 0.463

4. Discussion

In this study, we proposed a U-Net RCNN that combines U-Net and an FP reduction
method for object detection and performs automatic detection of GC cases. Using the
output images of U-Net, individual candidate regions were recognized by conventional
thresholding and labeling techniques and bounding boxes were obtained. To eliminate FPs,
candidate regions were classified as true GC cases and FPs by CNN.

The lesion-based sensitivity for initial detection by this method was 0.989, while the
number of FPs per image was 0.035, which was much better than the previous study
(sensitivity, 0.957; number of FPs per image, 0.105). The Mask R-CNN introduced in our
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previous method was able to accurately detect visually distinct objects such as unevenness
due to the principles of the object detection model; however, it was difficult to detect
subtle changes in the mucosal surface. On the other hand, U-Net, which was employed
in this study, could analyze local regions in an image. A detailed analysis of the gastric
mucosa in endoscopic images was performed and patterns that differed from normal were
accurately recognized.

In the second stage, we compared the performance of six different CNN architectures
and found that DenseNet169 showed the best performance, reducing FPs by approximately
30% to 0.011, while maintaining a lesion-based detection sensitivity of 0.989.

When evaluated in an image-based manner, the detection sensitivity dropped by
approximately 4% from 0.942 to 0.897. As shown in Figure 5e,f, most of the images that
remained undetected were taken from angles and distances that were difficult to see, and
other images in the case were able to compensate for the detection.

The accuracy of extracting the invasive region of GC was evaluated by Di and Ji and
the results were 0.55 and 0.42, respectively, for all GC images; and 0.60 and 0.46, respectively,
when the evaluation was limited to the correctly detected images. The proposed method
was more accurate than the previous study using Mask R-CNN when evaluating all GC
images, while the previous study was more accurate when evaluating only the detected
regions. This indicates that our method may detect subtle lesions but is not able to extract
the exact shapes. To improve the extraction accuracy, it is necessary to improve the CNN
model used for the initial detection and to add post-processing, such as region growing, to
the extracted images.

Because the proposed method provides a sensitivity of 98% in detecting GC while
keeping FPs at an acceptable level, it may be useful for maintaining high examination
accuracy in screening for GC by covering differences in the experience of physicians.

Although we could not compare our results accurately because a different dataset was
used, the proposed method using U-Net and FP reduction techniques had a better detection
sensitivity than those in previous studies using a SSD [14] and Mask R-CNN [16]. Fur-
thermore, a previous study using SSD detected lesions with a bounding box, whereas the
proposed method segments the GC regions. The detection and segmentation capabilities
of the proposed method are significantly improved compared to the previous methods.

The major limitation of the proposed method is the small number of images. Training
and evaluation of the proposed method were carried out using the data collected at a single
facility only for comparison with our previous method. We plan to expand the dataset by
including data from external facilities.

5. Conclusions

In this study, we developed a deep learning model that can accurately detect the
presence of GC and its invasive area using endoscopic images. In this paper, as a deep
learning model, we proposed a novel U-Net R-CNN that combines the U-Net segmentation
process with a CNN for image classification to eliminate FPs. As a result of the evaluation
using the endoscopic images of early-stage GC and healthy subjects, the proposed method
showed a higher detection ability than the previous techniques. These results indicate that
our method is effective for the automated detection of early GC in endoscopy.
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