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Featured Application: Quantum Computation.

Abstract: Recently, from the deduction of the result MIP* = RE in quantum computation, it was
obtained that Quantum Field Theory (QFT) allows for different forms of computation in quantum
computers that Quantum Mechanics (QM) does not allow. Thus, there must exist forms of compu-
tation in the QFT representation of the Universe that the QM representation does not allow. We
explain in a simple manner how the QFT representation allows for different forms of computation by
describing the differences between QFT and QM, and obtain why the future of quantum computation
will require the use of QFT.

Keywords: quantum computation; quantum mechanics; quantum field theory

1. Introduction

There have been indications that a Quantum Computer (QC) will not avoid the difficul-
ties existing in a present-day Classical Computer (CC) to preserve the validity of Moore’s
law [1]; however, recent work has indicated that the quantum computations represented
by Quantum Field Theory (QFT) can make computations that are not representable using
Quantum Mechanics (QM) [2]. Until the publication of ref. [2], it was usually assumed
that Tsirelson’s problem had a positive resolution, hence allowing for a computationally-
equivalent usage of QFT and QM; however, ref. [2] has shown such a positive resolution is
incompatible with the undecidability of Turing’s halting problem.

A major difference between QM and QFT is that, for the former, the combined system
of two measurement devices is based in the tensor product of the Hilbert space of each of
the measurement devices, whereas for the latter, it is assumed that there is a unique Hilbert
space for the two measurement devices [2–4]. This difference in the system representation
between QM and QFT implies that the method of defining the non-communication of the
measurement devices will be different for QM versus for QFT [5].

In QM, this non-communication is represented by each of the possible measurement
devices to represent the system being measured by its own Hilbert space, whereas the
combined measurement that uses multiple measurement devices is simply the tensor
product of the Hilbert space of each of the measurement operators; whereas in QFT,
non-communication is expressed by the commutativity of the operators of each of the
measurement devices [2,3]. It is therefore possible to differentiate, for a nonlocal game G,
between the supremum of success probabilities when using a tensor product approach, rep-
resented as ωTP(G); and the supremum of success probabilities when using a commuting
operator approach, represented as ωCO(G).

Until recently, it was assumed in Physics, Mathematics and Computer science that
ωTP(G) = ωCO(G), which was the positive resolution of Tsirelson’s problem and is
equivalent to the positive resolution of Connes’ embedding problem [2,6]. However, recent
work has demonstrated that ωTP(G) < ωCO(G) [2], which implied that the QC-limiting
results obtained (e.g., ref. [1]) could perhaps be overcome by results obtained using QFT
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representations, and this is what we will analyze in this work. Since QFT is a more
fundamentally valid representation of the Universe than QM, this implies that the results
obtained using a QFT representation are always more realistic than those obtained from a
QM representation [4].

A recent result in QFT representations of QCs [2] indicates that although Turing’s
halting problem is unsolvable, it is verifiable using QFT. This differentiation between
verification-computability and resolution-computability is known in CCs; however, in CCs
it is a matter of efficiency, whereas in the QFT representation of QC [2] there is a chasm
between the two, caused by the occurrence of quantum entanglement. This chasm was
already suggested for the QM representation of QC in previous works (e.g., ref. [1]), but in
ref. [2], the chasm is demonstrated for the QFT representation of QC.

2. Materials and Methods

The comparison between Classical Mechanics (CM) and QM approaches to the
Hammersley-Clifford Theorem (HCT) allowed for the comparison between CCs and QCs
expressed in ref. [1], which indicated that QCs are likely to out-perform CCs for the physical
systems with a small number of physically-allowed alternative future states, but not when
that number of possible future states is large. This result of ref. [1] agrees with the result in
ref. [2], in that the presence of quantum entanglement allows for a chasm of computability
between verifying and finding solutions, as the quantum entanglement allows for the
verification of solutions that are unfindable [2,3]. The occurrence of quantum entanglement
is thus very useful in the case where there are few alternative future states, but not nearly
as useful when there are many alternative future states; hence, this makes QC more useful
than CC for the former but not for the latter, in agreement with the ref. [1] results.

In ref. [1], it is described how for QC the quantum HCT is only capable of having a
one-to-one map of the surrounding environment if the sub-Hamiltonians of each of the
cliques of the graph representing the environment commute with each other, which implies
that the quantum system is in a pure state, which allows that quantum system to make
a one-to-one map of its surrounding environment provided that the environment is also
in a pure state. However, the ωTP(G) < ωCO(G) result of ref. [2] implies that there are
nonlocal games, labeled as G, and that there are winning strategies for that game in the QFT
representation which cannot be represented in the QM representation. Moreover, in the
QFT representation, the winning strategy means that the operators commute, whereas in
the QM representation it means that the Hilbert space of the quantum system is the tensor
product of the Hilbert spaces corresponding to each sub-Hamiltonian. Whereas for the
QFT representation of QC, the condition proposed in ref. [1] for the equivalence between
environment-representation and environment is performed without the use of the sub-
Hamiltonians, and hence the tensor-approach condition must be replaced by the condition
that the operators for the different cliques of the quantum system graph commute with
each other. Nevertheless, as will be described below, pure states in QFT are not attainable
and can only be approximated as idealized simplifications [4].

If the Universe was representable by QM, the difficulties that QCs represented using
QFT have in representing external environments will be at least as large as the difficulties
that QCs represented using QM have, but the Universe is better represented by QFT than
QM. Hence, both the Universe and the QC in the QFT representation are at best in an
“almost” pure state. Thus, one might at first consider that by using the QFT representation
of the “almost” pure state of the Universe can be represented by an “almost” pure state of
the QC; but the difference between the “almost” pure state of QFT and the pure state of
QM is the pattern of creation and destruction of particles in the vacuum state |0 〉, which
implies that the random difference between the “almost” pure state and the pure state will
be different for the QC and for the Universe. Hence, the difficulties of using a QC to map
the surrounding environment by using a QFT representation are larger than the difficulties
that arise when using a QM representation. The reason why QFT needs to be used instead
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of QM is that, at a small enough scale, QM is no longer a realistic enough approximation
and thus QFT needs to be used instead.

The QFT is an extension of QM from low-velocity classical relativity to Einstein’s
special relativity, but if m0 is the rest mass,

→
u =

(
uz, uy, uz

)
is the velocity, c is the speed

of light in vacuum,
→
p =

(
px, py, pz

)
is the momentum and E is the energy, the relation

between momentum and the energy is very different between classical relativity where

for a free particle E =

∣∣∣→p ∣∣∣2
2m0

and for special relativity where E2 = c2
∣∣∣→p ∣∣∣2 + m0

2c4. This is
important because the sobreposition principle of QM assumes that the relation between
energy and momentum must be linear for the energy, which is valid for classic relativ-
ity but not special relativity. Dirac resolved that problem and obtained a linear relation
between energy and momentum for special relativity, but the consequence was that the
energy and each of the three components of the momentum were now a four element

spinor, respectively E =
{

E(1), E(2), E(3), E(4)
}

,
→
p =

{
→
p
(1)

,
→
p
(2)

,
→
p
(3)

,
→
p
(4)
}

; so too were

the electric potential spinor φ =
{

φ(1), φ(2), φ(3), φ(4)
}

and the vector potential spinor

→
A =

{
→
A
(1)

,
→
A
(2)

,
→
A
(3)

,
→
A
(4)
}

where the electron charge is−e. In the notation developed by

Dirac usually used in QM, the energy operator is i} d
dt , where t is time and } is the reduced

Planck constant, and acts on a four-component vector column
{

ψ(1), ψ(2), ψ(3), ψ(4)
}

, where

each component is a complex function in spacetime. The E spinor notation used here simply
represents, in each of the four components, the complex function obtained by the action of

the energy operator; hence E =
{

E(1), E(2), E(3), E(4)
}
≡
{

i} dψ(1)

dt , i} dψ(2)

dt , i} dψ(3)

dt , i} dψ(4)

dt

}
,

and so forth for the other QM operators.
For ease of representation, the 4D spinors described above, e.g., E, are divided into two

2D spinors, e.g., for the energy spinor E = {E+, E−}; with the first indicating the particles
and the second indicating the opposite of the particles with the meaning of opposite defined
below. Thus, E+ 2D spinor indicate particles and E− indicate the opposite. The physics
equations for the QFT are, in this case, the Dirac equation for electromagnetic interactions,
which is presented below using our above notation and where the 2 × 2 Pauli matrices are
represented by σx, σy and σz:{

E+

c
− E−

c

}
=

 m0c− e
c φ+ + σx · (p+x + eA+

x ) + σy ·
(

p+y + eA+
y

)
+ σy · (p+z + eA+

z )

m0c + e
c φ− + σx · (p−x + eA−x ) + σy ·

(
p−y + eA−y

)
+ σz · (p−z + eA−z )

 (1)

The minus sign in E− signifies that it behaves differently from E+, but its meaning
depends on using either Dirac’s or Feynman’s perspective. For Dirac, opposite means
the absence of a particle, whereas for Feynman, opposite means an anti-particle. The
anti-particle is equivalent to a particle moving backward in time with opposite charge
e− = −e+ = e and opposite spin orientation. The Feynman perspective thus obtains from
Equation (1) that:{

E+

c
E−
c

}
=

 m0c + e+
c φ+ + σx · (p+x − e+A+

x ) + σy ·
(

p+y − e+A+
y

)
+ σz · (p+z − e+A+

z )

m0c + e−
c φ− + σx · (p−x − e−A−x ) + σy ·

(
p−y − e−A−y

)
+ σz · (p−z − e−A−z )

 (2)

Hence, a direct consequence of making QM compatible with special relativity is for
the Feynman perspective: i. the existence of antiparticles, ii. the existence of a particle
property called spin, which has the units of action and behaves similarly to a magnetic
moment, iii. the linear relation between energy and momentum expressed in Equation (2)
has the same form for both particles and anti-particles.

The representation used in QM is usually the Schrödinger picture, where the state
of the electron is represented by a complex function called wave-function that covers
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space and evolves through time according to Schrödinger’s equation. However, the
representation most often used in QFT is an improvement of a different form of representing
QM, the Feynman path integral approach. In the Schrödinger picture of QM, the wave-
function square amplitude is a probability density and it has a phase that is dependent on
the evolution from the past to the present time, where the evolution is generated by the
Hamiltonian operator of the system acting on the wave-function of the system; whereas in
the Feynman path representation of QM the same wave-function is created through the
addition of all possible paths between the past and the present, with each path occurring
in a location x at a time t being generated by a Lagrangian L(x,t) where each Feynman-path
step of a mass m, associated to a time step of ∆t, has a complex number associated to it

approximately equal to
√

m
i2π}∆t e

i ∆t
} L

(x,t+ ∆t
2 ) . The Heisenberg uncertainty of the Schrödinger

picture is represented in the Feynman picture by the integration across all the possible
paths to calculate the amplitude and phase of a transition between an initial and final state.

In QFT, the L(x,t+ ∆t
2 ) of QM is replaced by an integration of an interaction Lagrangian

density Lint across spacetime. Moreover, the
√

m
i2π}∆t e

i ∆t
} L

(x,t+ ∆t
2 ) step of the Feynman path

approach to QM is replaced by the expression in Equation (3). The interaction Lagrangian
density Lint will depend on the quantum fields, and it is the quantum fields that will vary
across spacetime. Additionally, in QFT the sum is not performed over paths but over all the
time-ordered configurations of the quantum fields, which in short is referred to as the “all
configurations” sum. QFT assumes that spacetime coordinates

(→
r , t
)

are flat [4], meaning
that the spacetime curvature caused by gravity is very small, and so the phase contribution

by spacetime location
(→

r
′
, t′
)

to the time-ordered transition between two quantum field

configurations, ψ
(
→
r ,t)

and ψ
(
→
r ,t+∆t)

, is for QFT (see Appendix A) approximately:

〈0| ∑all configurations

{
ψ
(
→
r ,t+∆t)

ψ
(
→
r ,t)

ei ∆t
} [c·∆t]3Lint(

→
r
′
,t′)
}
|0 〉

〈0| ∑all configurations

{
ei ∆t

} [c·∆t]3Lint(
→
r
′
,t′)
}
|0 〉

(3)

A consequence of Equations (2) and (3) making quantum fields compatible with
special relativity is that the particles of the electromagnetic field, the photons, are quanta

of the
[

φ,−c
→
A
]

quantum field, and the electrons are quanta of the electron quantum

field; therefore, both photons and electrons are being created and destroyed, as much as
energy-momentum conservation and Heisenberg’s uncertainty rules allow. The breaking
of energy-momentum conservation being typically through the occurrence of extremely
short-lived virtual particles and virtual antiparticles, which constitute the vacuum state
|0 〉 [4]. The existence of a quantum electrodynamics dynamic vacuum state |0 〉EM has been
experimentally confirmed multiple times and is the theoretical basis for cavity quantum
electrodynamics which is one of the major approaches towards QC [7].

The establishment of Equations (2) and (3) is the end of QM and the start of QFT,
as several of the tenets of QM need to be abandoned. In QM, the state of a particle is
represented in a Hilbert space, and the number of required Hilbert spaces grows with
the number of particles, and hence there are as many Hilbert spaces as there are particles.
However, in QFT the number of particles is dynamic and often undeterminable, and hence
the use of Hilbert spaces becomes completely impractical, except for simplistic models
where the number of particles is preserved or is irrelevant. Thus, in QFT the quantum
fields are considered to exist everywhere, and it is their interaction that can be used to
calculate the probability of certain events. Hence, in QFT, the tensor-product approach
cannot be used to assess the occurrence of entanglement of quantum systems and instead
the commuting-operator approach is used.
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In QM, it is often said that a certain electron is mostly located in a certain region and
another electron is located in some other region; however, in QFT those two electrons
are indistinguishable quanta manifestations of the same electron quantum field with the
two quanta associated to different spacetime locations. In QM, there is only one electron
quantum field in the Universe and all electrons are quanta of that field. The electron
quantum field is a fermionic quantum field because the electron spin is a semi-integer
multiple of }, specifically 1

2 · }, which is referred to as being spin 1
2 .

The Standard Model of Physics (SMP) uses the Feynman perspective of QFT to explain
all Physics, except for gravity, and when QFT is assessed, it is usually assumed that it is
the SMP that is being considered. The SMP consists of bosonic and fermionic quantum
fields. The twelve fermionic quantum fields are arranged as three generations, with each
generation having four quantum fields, specifically: 2

3 e charge quark, − 1
3 e charge quark,

−e charge lepton, and 0 charge neutrino. The electron is the lepton of the first generation,
whereas the proton and the neutron are constituted by the first-generation quarks. The
bosonic quantum fields are a global gauge-invariant Higgs field, together with local gauge-
invariant quantum fields that are specifically associated to the SU(3), SU(2) and U(1) gauge
symmetries. Thus, there are twelve local, gauge bosonic quantum fields each of them with
spin 1 · }, referred to as spin 1; the bosonic quantum fields being 3 ∗ 3− 1 = 8 for SU(3),
2 ∗ 2− 1 = 3 for SU(2) and 1 for U(1); plus the spin 0 Higgs, global, gauge bosonic QF.
In short, the SMP of the Universe is constituted by twenty-five quantum fields and all
particles are quanta of those quantum fields. Those quantum fields are the twelve quantum
fields with spin 1

2 , twelve with spin 1 and one with spin 0. The vacuum state of the SMP
is |0 〉SMP and has also been experimentally confirmed [4]; moreover, for small enough
energies (i.e., large enough wavelengths) it can be affirmed that |0 〉SMP ≈ |0 〉EM.

In the QM representation, a system can be in either a pure state or a mixed state: a
pure state is represented by a wave-function whereas a mixed state is represented by a
statistical ensemble of pure states. Moreover, two quantum systems that have interacted in
the past can stay entangled even as the systems move across spacetime, meaning that the
measurement of one of the systems immediately implies the measurement of the system
entangled to it. The measurement of a quantum system in a pure state occurs by allowing
the entangling of that system to the environment around it: as the entanglement grows in
scale, the state of the system becomes first an arbitrary basis mixed state and then a mixed
state where each state of the statistical ensemble is an eigenstate of the operator associated
to that measurement, meaning that the measurement using an energy operator creates a
mixed state of energy eigenstates. In QFT, the vacuum around the system is always causing
the spontaneous emission of both particles and virtual particles into and away from the
system, hence always creating an entanglement between the system and the environment.
Thus, in QFT the systems are always somewhat mixed and always somewhat entangled
with their environment. The pure states of QM are hence an oversimplification of what is
actually going on in the Universe as described by QFT.

The inexistence of pure states in QFT, except as an idealistic approximation, implies
that the use of Hilbert spaces in QFT has an added difficulty to the other already described
difficulties. Thus, the tensor product approach of QM cannot be at all applied to QFT, and
instead it is necessary to use the commuting operator approach. Notice that in the tensor
product approach, the operator’s measuring systems that are not entangled commute with
each other, implying that in this case there is also nothing in QM representation that is
not best described using the QFT representation. The reason for the ωTP(G) < ωCO(G)
result is now becoming clearer, in QFT there is a spontaneous creation of entanglement
that makes the systems become entangled with the |0 〉SMP vacuum state itself. Hence, by
increasing the ωCO(G) supremum of success probabilities by using commuting operator
strategies from QFT above the ωTP(G) supremum of success probabilities by using tensor
product strategies from QM, the QFT approach simply has a greater number of strategies
that are not available in the QM approach.
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3. Results

We will now assess if these new strategies of the QFT over the QM approach allow
for the reduction or increase of computational capacity. The key question in this work
is whether the computations allowed by QFT that do not occur in QM can improve the
computation capacity of QFs:

(1) QFT perspective affects the capacity of pure states to exist in both the QC and the
Universe, which reduces rather than increases the stability of spin states.

(2) The new computation that QFT allows occurs through the interaction between sys-
tems and the vacuum state |0 〉SMP, but such an interaction could only improve
quantum computation if information could be stored in the vacuum state. This im-
plies that the vacuum states could somehow be programmed. To the best knowledge
of contemporary Physics, the vacuum state cannot be programmed.

4. Discussion

Due to the new forms of quantum computation allowed by the QFT representation of
QCs [2], which we propose to be associated to the dynamic interactions of the quantum
fields with the vacuum state, it might appear that a form of improving the computation
capacity by use of QFT is to move away from the fermionic electronics described in ref. [1]
and to instead focus in bosonic wave confinement technologies, such as those used in
integrated optical memories [8]. Although there are different forms for integrated optical
memories, e.g., [8] the Master-Slave, Feedback Loop, Injection Locking and Phase-Change
Material approaches, they all require the creation of a “box” where light is to be constrained,
and that “box” needs to be built by atoms. Thus, it is not surprising that despite recent
improvements, they cannot go below the 27,000 nanometer2 2D boxes, which even if we
assume a depth of 1 nanometer, would amount to a volume of 303 nanometers.

If the volume is a 30-nanometer diameter sphere and the spin orientation of each boson
constitutes 1 bit of information, there can be N bits stored in that spherical volume provided
the boson quantum field has N polarized quanta each with a different wavelength, with
the condition that each wavelength must be equal to 60

n nanometer where n is an integer.
For the bits stored in the spherical volume to be larger than the information-processing
limit described in ref. [1], i.e., 5 bit/nanometer3, then N > 5× 303 = 1.35× 105 and hence
the wavelength would need to be smaller than 0.44 picometer which is a scale between the
atomic and nuclear scale, thus forcing the use of QFT instead of QM.

5. Conclusions

We have looked for new ways of increasing the computation capacity by use of the
characteristics of QFT representation that do not occur in the QM representation, but we
were not able to find any such ways. However, we did determine that if Moore’s law is to
continue to be achievable in the future, then QFT will need to be used instead of QM.
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Appendix A

In QFT, the n-points correlation function for general state |Ω 〉 can always be repre-
sented using the general state two points correlation functions 〈 Ω|T

{
ψ
(
→
r1,t1)

ψ
(
→
r2,t2)

}
|Ω 〉

with ψ
(
→
r2,t2)

= ψ†
(
→
r2,t2)

γ0 and where † stands for conjugate transpose, and γ0 is the 4× 4
time-like Dirac matrix. A general state two-points correlation function can be expressed
by perturbation series of the vacuum state |0 〉 two-points correlation function combined
with the interaction Lagrangian density Lint

(→
r , t
)

. If T is the time-ordering of the quan-

tum fields ψ
(→

r , t
)

, then there is an equivalence [4] between the path integral (left side of
Equation (A1)) and the canonical quantization (right side of Equation (A1)) approaches for
calculating 〈Ω|T

{
ψ
(
→
r1,t1)

ψ
(
→
r2,t2)

}
|Ω 〉 where ε is an infinitesimal number:

lim
τ→∞(1−iε)

∫
Dψ ψ

(
→
r1,t1)

ψ
(
→
r2,t2)

ei
∫ τ
−τ dt

∫ τc
−τc d3→r Lint(

→
r ,t)

}∫
Dψ ei

∫ τ
−τ dt

∫ τc
−τc d3→r Lint(

→
r ,t)

}

= lim
τ→∞(1−iε)

〈 0|T
{

ψ
(
→
r1,t1)

ψ
(
→
r2,t2)

ei
∫ τ
−τ dt

∫ τc
−τc d3→r Lint(

→
r ,t)

}

}
|0 〉

〈 0|T
{

ei
∫ τ
−τ dt

∫ τc
−τc d3→r Lint(

→
r ,t)

}

}
|0 〉

(A1)

The numerator of Equation (A1) is a product of the contributions by Feynman dia-
grams connecting the two spacetime locations

(→
r1, t1

)
and

(→
r2, t2

)
with the non-connecting

diagrams, whereas the denominator is a contribution of only the non-connected diagrams;
the division thus eliminates the contribution of the non-connected diagrams (which are
proportional to the vacuum energy density) to Equation (A1) [4]. By dividing the space-
time into discrete spacetime chunks with N elements for each spacetime orientation, it is
obtained from Equation (A1) that for the canonical quantization approach:

≈ lim
τ→∞(1−iε)

lim
Nt ,Nx ,Ny ,Nz→∞

N

∏
jt ,jx ,jy ,jz=1

〈 0|T

ψ
(
→
r1,t1)

ψ
(
→
r2,t2)

ei τ4c3

N4 ·
L
(
→
r (jx ,jy ,jz),t(jt))

}

|0 〉
〈 0|T

ei τ4c3

N4 ·
L
(
→
r (jx ,jy ,jz),t(jt))

}

|0 〉
(A2)

In QFT, the sum is done over all time-ordered configurations of the quantum fields
which we call the “all configurations” sum; moreover, by assuming that spacetime co-
ordinates

(→
r , t
)

are flat, the phase associated to the contribution by the quantum fields

at spacetime location
(→

r
′
, t′
)

to the time-ordered transition between two quantum field

configurations, ψ
(
→
r ,t)

and ψ
(
→
r ,t+∆t)

, is:

〈0| ∑all configurations

{
ψ
(
→
r ,t+∆t)

ψ
(
→
r ,t)

ei ∆t
} [c·∆t]3Lint(

→
r ′ ,t′)

}
|0 〉

〈0| ∑all configurations

{
ei ∆t

} [c·∆t]3Lint(
→
r ′ ,t′)

}
|0 〉

(A3)
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