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Abstract: Video streaming services are one of the most resource-consuming applications on the
Internet. Thus, minimizing the consumed resources at runtime in general and the server/network
bandwidth in particular are still challenging for researchers. Currently, most streaming techniques
used on the Internet open one stream per client request, which makes the consumed bandwidth in-
creases linearly. Hence, many broadcasting/streaming protocols have been proposed in the literature
to minimize the streaming bandwidth. These protocols can be divided into two main categories,
namely, reactive and proactive broadcasting protocols. While the first category is recommended for
streaming unpopular videos, the second category is recommended for streaming popular videos. In
this context, in this paper we propose an enhanced version of the reactive protocol Slotted Stream Tap-
ping (SST) called Share All SST (SASST), which we prove to further reduce the streaming bandwidth
with regard to SST. We also propose a new proactive protocol named the New Optimal Proactive
Protocol (NOPP) based on an optimal scheduling of video segments on streaming-channel. SASST
and NOPP are to be used in cloud and CDN (content delivery network) networks where the IP
multicast or multicast HTTP on QUIC could be enabled, as their key principle is to allow the sharing
of ongoing streams among clients requesting the same video content. Thus, clients and servers
are often services running on virtual machines or in containers belonging to the same cloud or
CDN infrastructure.

Keywords: video streaming; cloud-based streaming; stream sharing; video-on-demand; bandwidth
minimization

1. Introduction

Video streaming consumes will exceed almost 80% of the total Internet traffic by
2023 [1]. Thus, designing streaming protocols that minimize the network and server
consumed bandwidth is still a challenging task for researchers and industrial parties. Most
of the current streaming techniques [2–5] are based on unicast communication using HTTP
or RTP/RTSP oriented streaming protocols, where one channel is opened per client request.
This leads to a quick depletion of the available bandwidth when the video is requested by
many viewers simultaneously [6]. To tackle this problem, many video (mainly video and/or
audio) broadcasting protocols were proposed at the end of the 90s and the first decade
of the current century to minimize the consumed bandwidth during video streaming.
Most of these protocols are based on stream sharing implemented by using multicast
channels. Unfortunately, the nondeployment of IP multicast on the Internet has blocked
the implementation and wide use of these protocols. Nevertheless, the full control of large
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companies in their cloud/content delivery networks (CDNs) makes the deployment of
IP multicast or HTTP multicast through QUIC [7] possible within their private networks.
This encourages the reuse of broadcasting protocols proposed in the literature to optimize
the consumed video streaming bandwidth between virtual machines/containers in their
clouds/CDNs.

The broadcasting protocols can be divided into two main categories, namely, reactive
protocols [8–15] and proactive protocols [6,16–22]. In the first category, the server opens
streams upon receiving client (Internet users’ devices) requests. This is recommended for
streaming videos with low request rate [15] which we qualify by unpopular video in this
paper. However, in the second category, videos are divided into segments where the server
repeatedly broadcasts them through a set of channels regardless of the number of clients
requesting it. This category is recommended for streaming popular videos. As we are
focusing on the cloud/CDN internal network, the clients and the servers are running in
the same cloud datacenter infrastructure (or CDN infrastructure). The clients are front-end
nodes, which could be containers, virtual machines or CDN proxy servers. These latter are
the sources of video streams loaded by Internet users’ devices. However, the servers are
back-end nodes, which could be containers, virtual machines or back-end CDN servers
connected to the video source. They perform all the necessary video preprocessing tasks
(dividing the stream into segments, transcoding and storing) of the received streams. They
supply the front-end nodes with the necessary videos to stream. Our main goal in this
paper is to minimize the bandwidth induced by the streams internally opened between the
back-end and the front-end nodes for streaming unpopular and popular videos.

The main contributions of the current paper are:

• to propose a new reactive protocol named Share All Slotted Stream Tapping (SASST)
based on the technique Slotted Stream Tapping (SST) [11,23] for unpopular video
streams. It has been shown in [11,23] to be competitive in performances and in ease of
implementation than the rest of the reactive protocols,

• to propose a new proactive technique named the new optimal proactive protocol
(NOPP) for popular video streams using optimal video segments to broadcast channels
scheduling for known and unknown time horizon cases.

The remainder of this paper is organized as follows: In the second section, we present
the cloud architecture that we consider in this paper and the related work. The third and
fourth sections are dedicated to the explanation and modeling of the reactive and proactive
proposed techniques SASST and NOPP, respectively. Finally, we conclude the paper, and
we cite some future works as a continuity to the current one.

2. Related Work

In this section, we detail the considered cloud architecture serving as a background
for this paper. Furthermore, we define the storage nodes and the streaming nodes and how
they are interacting in the context of a cloud/CDN based streaming application. Then, we
present the related work with a special focus on video broadcasting protocols.

2.1. Considered Cloud-Based Streaming Architecture

In this paper, we consider the commonly used architecture for cloud-based on-demand
and live streaming applications (such as Amazon CloudFront media streaming [24], IBM
Video Streaming [25], Microsoft Azure Media Service [26] and Google Video Streaming ser-
vices [27]). The architecture allows the user of the service to create a streaming application
by enabling a chain (or pipe) of video processing starting from the video supply (live or
recorded content) until video streaming to the potential clients of the enabled application.
The nodes in the chain are often deployed as virtual machines or containers in the cloud.

As illustrated in Figure 1, the different services (video reception, processing, storing
and streaming) are often running in virtual machines or containers.
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Figure 1. Cloud-Based Video Streaming Architecture.

A management tool is used to control and orchestrate the virtual machines (VMs)/
containers involved in the application pipe/chain created in the cloud based on load balanc-
ing and VMs/containers health (processor load, memory load and network load) [24–27].
Streaming video nodes are often deployed on physical servers spread all over the world to
be as close as possible to the final users. These nodes are connected to the main datacenter
through private networks (most likely virtual private networks) often deployed on the In-
ternet. Cloud companies have full control of routers, enabling private networks that allow
multicast routing protocols to be activated over them to minimize the consumed bandwidth
in the cloud backbone network. To avoid firewalls, HTTP-based streaming protocols are
used where the video serves as small segments (chunks), such as web pages [5].

Generally, cloud-based streaming applications provide the client with a web page
presenting the video catalog as HTML5 video tags, as done in YouTube, Dailymotion and
Facebook video, for example. The links encoded on the page are generated to minimize the
consumed resources in the cloud and offer the best possible user experience. The client
is often redirected to the nearest video streaming node to him. As multicast routing is
disabled on the Internet, each client is served through a unicast stream.

In this paper, we focus on minimizing the server node bandwidth as well as the
consumed bandwidth in the network connecting the different nodes in the chain run by the
cloud-based streaming application. This is portrayed as a set of interconnected network
devices in the cloud/CDN of Figure 1.

2.2. Previous Work

Many research works have paid attention to the optimization of resource consumption
in clouds. While some of them focused on the VM/container to physical node (server) place-
ment (VMP) [28–31] problem, other works investigated the virtual network embedding
(VNE) [32] problem. Solving the VMP problem aims to efficiently use the physical process-
ing nodes (servers) while deploying virtual nodes (VMs/containers) on the cloud infrastruc-
ture. Some works considered [28–31] application needs in their optimization algorithms.
However, other works targeted the trade-off between power consumption and cloud
performance in fulfilling application needs [33–36]. The VNE problem solving [32,37–41]
considers the link load between the nodes involved in the deployment of an application
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in the cloud (as well as Internet service providers (ISP) networks) in addition to the node
load. The set of nodes and links builds a virtual network to be embedded on top of the
physical datacenter’s infrastructure. The main goal here is to ensure a balanced use of
the available physical resources, namely, the processing (servers) and network (switchers,
routers and links) nodes. Network slicing [42,43] has been also considered in the cloud
context to efficiently organize the bandwidth sharing among concurrent VMs hosted in
the same physical node. While the works in this thematic (network slicing) deal with
inter-slices optimization and efficient management, we rather consider in this work the
intra-slice consumed bandwidth minimization.

In this paper, we suppose the existence of the virtual network in the cloud datacenter,
and we aim to optimize the way the SNs (streaming nodes) share the video streams
requested through the storage nodes. As mentioned in the Introduction, proactive and
reactive video broadcasting protocols have been proposed to minimize the servers and
network bandwidth.

Proactive protocols are subdivided into three subcategories. They are based on the
same idea, which consists of dividing the video into many segments to be streamed
through several channels. The size of each segment and the scheduling of the different
segments among the various channels vary from one subcategory to another. The first
subcategory is staggered broadcasting (SB) [6,18,44–46]. Given n channels and a movie
of duration D, SB divides the movie into n equally sized segments. The n instances of
the same movie are broadcast on n separate channels repeatedly, where each instance is
shifted from the previous instance by the size of one segment, namely, D

n . The second
subcategory is called pyramid broadcasting. Protocols in this subcategory are based on the
pyramid broadcasting protocol (PB) [6,16,20,22]. Having n channels, PB divides each movie
into n segments with sizes growing geometrically with the parameter α > 1. The first
channel repeats broadcasting the first segment, the second channel repeats broadcasting
the second segment, and so on for the remaining channels. The client must download data
simultaneously from all channels to obtain a continuous fluid video display. Data must
be downloaded at a rate equal to n times the playback (displaying) rate. A more efficient
protocol named the Pagoda Broadcasting Protocol was proposed (PaB). PaB [6,47,48] uses
a more complicated segment-to-channel scheduling algorithm. It distributes segments
over the channels using the series {1,3,5,15,25}. Apart from the first channel where the first
segment is broadcast repeatedly, PaB uses the remaining channels in a pairwise manner.
The client also has to download data from all channels at once. PaB is better than all
protocols of this subcategory in terms of the required server bandwidth while maintaining
the same waiting time. A more efficient algorithm was proposed in [49]. Like PaB, it does
not schedule segments to a channel in a sequential manner. It outperforms PaB because
it is based on a more complicated heuristic to schedule segments to channels. In [50],
the authors invented a new heuristic for segment-to-channel scheduling that enhances
the performance of the version given in [49] in terms of the consumed bandwidth. The
third subcategory is named the Harmonic Broadcasting (HB) HB [21,51]. It is based on the
harmonic broadcasting protocol proved to be the best protocol [18] in terms of the required
server bandwidth. HB divides each movie into equally sized segments, where each segment
is broadcast through a separate channel. The channel bit rates are in decreasing order:
the first channel bit rate is equal to the playback (displaying) rate denoted b, the second
channel bit rate is equal to b

2 , the third is equal to b
3 , etc. The client must download data

from all channels at the same time to obtain a smooth video display.
Some proactive protocols use a sequential segment to channel scheduling, namely, SB,

PB and HB, while others such as PaB use a different segment to channel scheduling. We
can then categorize proactive protocols based on these criteria. On the other hand, some
proactive protocols oblige clients to wait for a fixed delay before starting the video display.
These protocols are called fixed delay broadcasting protocols [52]. Fixed delay pagoda
broadcasting (FDPB) is considered the most efficient fixed delay protocol [52] in terms of
the consumed network and server bandwidth. The most well-known reactive protocol is
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stream tapping (ST) [15]. ST assumes that each customer set top box (STB) includes a buffer
capable of storing several minutes of video. This buffer allows the client to tap into the
current streams originally created for previous clients having requested the same video.
The first client receives the requested movie on a special stream called the complete stream
(CS). Further late clients requesting the same movie are served through temporary streams
called full tap streams (FTS) to download the missed part of the movie. While displaying
this first part of the movie using an FTS, video from a chosen ongoing complete stream
is stored in the buffer. When the frame to be displayed from the FTS is the same as the
first frame stored from the CS stream, the client terminates his FTS and begins displaying
from its buffer, which continues to be fed from the corresponding CS. Unfortunately, this
protocol performs worse than proactive protocols at a high workload [18] as the consumed
bandwidth increases very rapidly with the number of clients demanding the same movie.
A more recent reactive protocol is the Split and Merge Protocol, SAM [12]. Upon the arrival
of the first client, SAM initiates a predefined batch time interval. All clients arriving within
this batch interval will be served by the same video stream, called the S stream (equivalent
to the CS in ST but no FTS is used in SAM), which is opened at the end of this time interval.
In addition, SAM is an interactive protocol; it handles interactive operations through special
streams called interactive streams (I stream) and the use of a client (synchronized) buffer.
When a client performs an interactive operation, he will be served through a new I stream
until he can be merged to an ongoing S stream through his synchronized buffer. In [8],
the authors proposed the Dyadic optimal algorithm in terms of the consumed bandwidth
when the request arrival time sequence is known (optimal for offline scenario) beforehand.
The optimal solution is determined by dynamic programming. It has been shown by
the authors in [8] that optimal stream sharing algorithms (including Dyadic) are very
complex to implement. Hence, a trade-off between the performance and the complexity
of implementation should be assured when designing the broadcasting protocol. While
proactive protocols are recommended to broadcast frequently requested movies, reactive
protocols should be used when the client arrival rate is low. In a recent work, the authors
proposed reactive broadcasting protocols named slotted stream tapping (SST) [11,23]. This
protocol performs like proactive protocols at a high workload and like reactive protocols
at a low workload. It is based on the same ST Broadcasting scheme. The novelty of SST
is to consider a slotted time axis where all clients arriving within one slot obtain their CS
(or FTS) at the beginning of the next slot.

In Table 1, we summarize the principles and the performances (the consumed band-
width) of the representative related works. Through, this table we can make the following
observations:

• In reactive protocols: Dyadic is outperforming Unicast, ST and SST techniques in
terms of bandwidth consumption. But, it is very hard to implement as reported in [8] .
This raises the following question: Could we assure a trade off between the bandwidth
consumption and the implementation level of difficulty in the reactive category?

• In proactive protocols: modern HTTP streaming protocols are based on (1) dividing
the video into equally-sized segments and (2) sending them to the client as fast as
segments are ready. SB is the only protocol compliant with these two properties (of
modern streaming protocols). Unfortunately, its segments to channels scheduling is
not optimal in terms of the consumed bandwidth. This raises the following question:
How could this scheduling problem be stated and solved?

To answer the aforementioned two questions, we propose in this paper new streaming
techniques, namely, SASST as a reactive technique for unpopular video streaming and
NOPP as a proactive optimal technique for popular video streaming. Both proposed
techniques minimize the server and the internal cloud (or CDN) streaming bandwidth.
Since only one quality (the highest) is considered by SASST and NOPP, we suppose that
any video adaptation (transcoding) mechanism is done by the streaming nodes on the fly.
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Table 1. Summary of representative works, their principles and performances.

Principle Bandwidth Implementation

Reactive

Unicast
Opens a stream
for each client request.

B = λD
λ is the request
rate,
D is the video
duration.

Easy.

ST [15]

Makes clients sharing
one main stream (TS)
and provides the missed
part by an additional
unicast stream (FTS).

B =
√

λD + 1− 1 Medium.

SST [11,23]

In addition to what ST
does, SST groups
client request per slots
to be served through
the same streams.

B =
√

2D− 1
2 Medium.

Dyadic [8]

Allows clients to share
all opened streams in a
pseudo-optimal way.
The arrival sequence
should be known in
advance to be optimal.

No analytical
expression. Hard.

Proactive

SB [6,18,44–46]

Divides the movie into n
equally-sized segment
and broadcasts each
segment repeatedly in
a channel.

B = n Easy.

Pyramid
[6,16,20,22]

Divides the movie into
n segments with size
growing geometrically.
Each segment is
broadcast repeatedly
in a channel.

B = n( n
√

D
w − 1),

D is the video
duration,
w is the client
waiting time.

Hard.

Harmonic
[21,51]

Divides the movie into n
equally-sized segment
S1, S2, . . . Sn and broadcast
them such as S1 is
broadcast in channel 1
with rate b, S2 in channel 2
with rate b

2 ,. . . Sn in
channel n with rate b

n .

B = ∑n
i=1

1
i

Hard.
It is rather used
as lower bound
benchmark.

3. Optimizing Cloud-Based Streaming Internal Bandwidth: Case of an
Unpopular Video

For unpopular content streaming, in this section we present a new variant of the proto-
col Slotted Stream Tapping called SASST. We consider the on-demand scenario (not the live
scenario) where video and/or audio files stored in the cloud storage nodes are requested.

First, we describe the SASST principle. Then, we evaluate the performances of SASST
in terms of the average consumed bandwidth for both cases of (1) a deterministic high load
and (2) a Poisson load of SN request arrivals.
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3.1. SASST Principle

As SST is the baseline of the SASST technique, we begin by being reminded of the SST
principle; then, we detail how SASST varies from SST. We choose SST as the baseline, as it
was proven in [11,23] to be competitive in terms of performance and ease of implementation
with regard to the other reactive protocols.

3.1.1. SST Principle

Each streaming node (SN) acts as a proxy node that loads the stream (back-end stream)
from the storage node in the cloud and forks it to the clients requesting it. When the
first streaming node requests the back-end stream, the storage node begins streaming it
internally in the cloud network through a multicast complete stream (CS). When another
streaming node later requests the same back-end stream, it will be asked (by the storage
node using a manifest file, for example) to share the CS with the first streaming node and
will be assigned a new multicast FTS stream to recover the missed video part (as it comes
later than the first SN). The video content downloaded from the shared CS is buffered
in a circular buffer, while the video content downloaded from the FTS is immediately
relayed to the front-end clients. When the missed part is completely recovered, the FTS is
closed, and the streaming continues through the circular buffer. This is the principle of the
original version of SST. Recall that a slotted time axis is considered where all the requests
coming within the same slot are served through the same CS and/or FTS starting from the
beginning of the next slot.

Figure 2 portrays the SST principle. It contains four subfigures numbered from 1 to
4 illustrating how SST deals with late requests. As shown in subfigure 1, the first SN is
served through a CS.

1
st
 Streaming Node Arrival

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11

CS

2
nd

 SN Arrival

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11

CS

Streaming Position of the 1
st
 SN

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11
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1
st
 Streaming 

Node (SN)

1
st
 SN

1

3

FTS

2
nd

 SN Buffer

2

42
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 SN
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1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11
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2
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Time axis Time axis

Time axis Time axis

1 2

3 4

2
nd

 SN Buffer

Figure 2. Illustration of the SST principle and how it handles late requests. In (1) the first SN request
arrives and gets a CS. In (2) the second SN request arrives late for two slots. In (3) the Streaming
node opens a FTS for the second SN to get the two missed slots while sharing the CS with first SN.
In (4) the FTS is closed and the second SN continues getting the video from its buffer.

Then, as portrayed in subfigure 2, the second SN comes two slots later than the first
SN. The second SN is assigned, as portrayed in subfigure 3, an FTS to serve the missed
video slots 1 and 2 while buffering video slots 3 and 4 in a circular buffer from the ongoing
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CS. Finally, as missed slots 1 and 2 are recovered, the FTS is closed, and video streaming to
clients continues through the circular buffer, as shown in subfigure 4 of Figure 2.

The circular buffer serves clients from one end while being filled through the CS from
the other end. In other words, it serves slot 3 while being filled with slot 5, it serves slot 4
while being filled by slot 6, and so on, until the end of the requested video file. Thus, the
buffer size of the second SN illustrated in Figure 2 never exceeds 2 slots, which is equal to
the missed slot duration.

3.1.2. SASST Variant

The original version of SST does not consider FTS sharing between the latest streaming
nodes. In this paper, we consider the sharing of FTS between them to further minimize the
consumed bandwidth. Figure 3 represents the FTS handling with SST and SASST at a high
workload where at least an SN request comes per slot. It can be seen that FTSs are shorter
in the SASST case illustrated in Figure 3b than in the SST case shown by Figure 3a. Let’s
take the example of the 8th SN node. As it arrives during the 7th time slot, using SST, it
will be assigned a 7 slot FTS duration to serve the 7 missed slots. However, with SASST, it
will only be assigned a 4 slot FTS duration (8th SN FTS), which saves 3 time slots compared
to SST. This is because the 8th SN node obtains video slots 2, 4 and 6 through the 7th SN
FTS and obtains video slots 1, 3, 5 and 7 through the 8th SN FTS. Hence, any late SASST
SN node will share the FTS opened for the previous SN to further reduce the consumed
bandwidth with regard to SST. Recall that SN requests that are received within the same
time slots share the same FTSs.

1 2 3 4 5 7 8 9 10 11 13 14 15 16 176 12

Time axis

CS1 2 3 4 5 7 8 9 10 11 13 14 15 16 176 12

1

1 2

1 2 3

1 2 3 4

2nd SN FTS

3rd SN FTS

4th SN FTS

5th SN FTS

1st SN
2nd SN

 3rd SN
 4th SN

 5th SN
 6th SN

 7th SN
 8th SN

1 2 3 4 6th SN FTS5

1 2 3 4 7th SN FTS5 6

1 2 3 4 5 6 7 8th SN FTS

(a)

1 2 3 4 5 7 8 9 10 11 13 14 15 16 176 12

Time axis

CS

1st SN
2nd SN

1 2 3 4 5 7 8 9 10 11 13 14 15 16 176 12

1

 3rd SN

1 2

 4th SN

1 3

 5th SN

1 2 4

2nd SN FTS

3rd SN FTS

4th SN FTS

5th SN FTS

1 3 5

1 2 4 6

6th SN FTS

1 3 5 7

7th SN FTS

8th SN FTS

 6th SN
 7th SN

 8th SN

(b)
Figure 3. Example of FTS handling with SST and SASST at a high workload. (a) SST FTS;
(b) SASST FTS.

SASST could be easily implemented over IP multicast using Real Time Protocol (RTP)
or multicast-HTTP over QUIC. The SN needs to know the currently opened CS and FTS
through a session description or announcing mechanism. Session Description Protocol
(SDP) or DASH like manifest files could be used in this context. Once done, it starts
downloading the video slots through multicast channels as described in the previous
paragraph. The storage node could push the video slots using RTP or HTTP/3 packets.

3.2. SASST Performance Evaluation: Case of a Deterministic High Load

As portrayed in Figure 3b, we consider in this subsection the deterministic high load
scenario where we have at least one SN request per time slot.

Let l be the number of missed video slots by a late SN request, as be the number of
slots streamed through and FTS and bt be the number of slots tapped into (shared through)
the FTS opened to the previous late SN request, as represented in boxes with orange color
in Figure 3b.

We have
l = as + bt (1)
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Let us recursively instantiate Equation (1) to each SN arrival of Figure 3b,

1 = 1s + 0t,

1s : slot 1 which is streamed through the 2nd SN FTS
(2)

2 = 2s + 0t,

2s : slot 1 and slot 2 are streamed through the 3nd SN FTS
(3)

3 = 2s + 1t,

2s : slot 1 and slot 3 are streamed through the 4nd SN FTS

1t : slot 2 is tapped through the 3nd SN FTS

(4)

. . .

n = (
n
2
+ 1)s + (

n
2
− 1)t if n is even (5)

or

n = (
n + 1

2
)s + (

n− 1
2

)t if n is odd (6)

At a given value of l = n, the storage node should decide to open a CS instead of an
FTS to a new SN request to minimize the consumed bandwidth and then start a new cycle.
The average bandwidth value denoted B is the same in each cycle and is stated as follows:

B(n) =
SCS(n) + SFTS(n)

n
(7)

where SCS(n) denotes the number of video slots streamed through CSs and SFTS(n) denotes
the number video slots streamed through FTSs during a cycle duration of n time slots.

At the stationary regime, the storage node opens a CS for each n slot. Thus,

SCS(n) =
D
n

n = D (8)

where D is the CS duration.
To determine SFTS, let us first consider the case of n being even. By summing the first

terms as of Equations (2)–(5), we obtain

SFTS(n) = 1 + 2

n
2

∑
i=2

i + (
n
2
+ 1) =

n2

4
+

n
2
+ 1. (9)

When n is odd, we obtain by summing the terms as of Equations (2)–(6) (except
Equation (5)),

SFTS(n) = 1 + 2

n+1
2

∑
i=2

i =
n2

4
+ n− 1

4
. (10)

Replacing SCS(n) and SFTS(n) in Equation (7) by their expressions determined in
Equations (8)–(10), respectively, gives

B(n) =

{
D+1

n + n
4 + 1

2 , if n is even
D− 1

4
n + n

4 + 1, if n is odd.
(11)

Plotting B for three different values of video duration D = 50, D = 100 and D = 150
shows that we can optimize B with regard to n, as portrayed in Figure 4.
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Figure 4. SASST average bandwidth variation as a function of n.

The optimal value of n denoted as n∗ could be determined by resolving dB
dn = 0,

which gives

n∗ =

2
√

D + 1, if n is even

2
√

D− 1
4 , if n is odd.

(12)

Thus, we can determine the optimal average bandwidth value denoted as B∗ by
replacing n∗ in Equation (11),

B∗(n) =


√

D + 1 + 1
2 , if n∗ is even√

D− 1
4 + 1, if n∗ is odd.

(13)

3.3. SASST Performance Evaluation: Case of a Probabilistic Load

In this case, we suppose that the SN request interarrival follows a random variable.
Let us denote the average time slots separating two successive requests by y. By applying
a recursive Equation (1) to each SN arrival, we obtain

y = ys + 0t (14)

2y = 2ys + 0t (15)

3y = 2ys + 1yt (16)

. . .

ny = (
n
2
+ 1)ys + (

n
2
− 1)yt if n is even (17)

or

ny = (
n + 1

2
)ys + (

n− 1
2

)yt if n is odd. (18)
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By following the same steps as in Section 3.2 (i.e., summing the as of
Equations (14)–(17) if n is even and to (18) if n is odd), we can determine the total FTS slot
number denoted as SyFTS for n being even and odd as follows:

SyFTS(n) =



y[1 + 2

n
2

∑
i=2

i + (
n
2
+ 1)] =y[

n2

4
+

n
2
+ 1],

if n is even

y[1 + 2

n+1
2

∑
i=2

i] =y[
n2

4
+ n− 1

4
],

if n is odd.

(19)

Hence, we can deduce the expression of the average bandwidth value, denoted as By,
consumed by a storage node as follows:

By(n) =


D
y +1

n + n
4 + 1

2 , if n is even
D
y −

1
4

n + n
4 + 1, if n is odd.

(20)

After Resolving dBy
dn = 0, we obtain,

n∗ =

2
√

D
y + 1, if n is even

2
√

D
y −

1
4 , if n is odd.

(21)

Let us replace n∗ in By; then we obtain the optimal value of By denoted B∗y ,

B∗y(n
∗) =


√

D
y + 1 + 1

2 , if n∗ is even√
D
y −

1
4 + 1, if n∗ is odd.

(22)

Assume that the SN request interarrival is an exponential random variable. We can
conclude the probability p0 of having zero arrival per time slot s as follows:

p0 = e−λs (23)

where λ is the Poisson average arrival rate.
Let Y be a random variable denoting the number of slots k between two Poisson

successive requests, defined by

P[Y = k] = pk−1
0 (1− p0) (24)

As y is the average interarrival slot number between two successive requests, we can
then express it as follows using Equations (23) and (24):

y =
+∞

∑
k=1

kP[Y = k] =
1

1− e−λs . (25)

Replacing y by its expression in Equation (22) gives the following:

B∗y(λ) =


√

D
1

1−e−λs
+ 1 + 1

2 , if n∗ is even√
D
1

1−e−λs
− 1

4 + 1, if n∗ is odd.
(26)
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As lim
λ→∞

y = 1, we can deduce the asymptotic values of n∗ and B∗ as follows:

lim
λ→∞

n∗(λ) =

2
√

D + 1, if n is even

2
√

D− 1
4 , if n is odd.

(27)

lim
λ→∞

B∗(λ) =


√

D + 1 + 1
2 , if n∗ is even√

D− 1
4 + 1, if n∗ is odd.

(28)

This shows that the deterministic high load performances done in Section 3.2 are upper
bounds of the probabilistic performances of SASST. Another important result achieved
through Equation (28) is that the average bandwidth of SASST is less than the average
bandwidth of SST, which was expressed in [11,23] as B∗SST =

√
2D − 1

2 for long videos
where D > 3.5 when n∗ is even and for D > 4.5 when n∗ is odd. Recall that SST was
proven to outperform ST in terms of the average consumed bandwidth in [11,23].

3.4. SASST Performance Evaluation: Numerical Analysis

In this subsection, we compare SASST to SST, ST and Dyadic in terms of the average
consumed bandwidth as a function of the SN request rate denoted as λ. As we can see in
Figure 5a, SASST outperforms SST and ST in terms of the average bandwidth except for
request rates smaller than 0.06, where the performances are very close to one other. Note
here that the video size D = 100 and one slot s = 1.
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B
an
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Bandwidth variation as a function of 
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SASSTodd
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(a)

B
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dw
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 R

ed
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tio
n

Bandwidth reduction variation as a function of 
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SASSTeven
SASSTodd
DYADIC

(b)
Figure 5. Comparison of bandwidth and bandwidth reduction between SASST, SST, ST and Dyadic as a function of the
request arrival rate λ, respectively. (a) Bandwidth; (b) Bandwidth Reduction.

However, Dyadic requires a lower bandwidth than SASST. The maximum difference
between them reaches 1.65 streams for an arrival rate equal to 1. In fact, having one or many
requests per slot does not affect the performance in terms of the consumed bandwidth.
Thus, SASST is very competitive in terms of the consumed bandwidth while being simpler
than Dyadic with regard to the complexity of implementation.

The bandwidth reduction of SASST, SST and Dyadic compared to ST is plotted in
Figure 5b. As we can see in this figure, SASST ranks second after Dyadic. At a high request
rate (λ ≥ 1), the bandwidth reduction values are almost equal to 50%, 39% and 18% for
Dyadic, SASST and SST, respectively. Note that ST bandwidth is taken as reference.

To obtain more insight into the optimal value of (n∗) with regard to the video size D us-
ing SASST, in Figure 6 we plot n∗

D for odd and even cases of n∗ where D ∈ {10, 11, . . .1000}.
As can be seen, as the video size increases, the storage node decides to open CS more
frequently than if the video size is smaller. This could be explained by the rapid growth of
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cumulative FTS sizes that quickly reach the size of the video, which encourages opening a
new CS rather than an FTS for the current late SN request. Indeed, serving late requests
with a smaller FTS if a new CS is opened is better than serving the late requests with very
long FTSs in terms of bandwidth minimization.
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(b)
Figure 6. Percentage of n∗ as a function of the total video size D for n∗ even and odd, respectively. (a) n∗ even; (b) n∗ odd.

4. Optimizing Cloud-Based Streaming Internal Bandwidth: Case of Popular Video

In this section, we study the case of a high SN request rate where it is recommended to
use a proactive streaming protocol. Unlike the reactive protocols (such as SASST presented
in the previous section), the storage node divides the video into equally-sized segments
and broadcasts the them repeatedly on a set of multicast channels regardless of the SN
requests using a schedule that allows the SN to obtain all video segments. We aim to
determine the optimal segments-to-channels scheduling in terms of consumed bandwidth.
This scheduler will be used in the context of NOPP.

In the rest of the current section, we analyze how SASST could be approximated
by the proactive protocol staggered broadcasting. Although it is out of the scope of this
paper, this approximation helps in implementing a smooth transition from using reactive
protocol a proactive one when the video becomes popular at runtime. Then, we detail
the formulation and solving process of the bandwidth optimization problem which leads
to NOPP optimal scheduling of segments to broadcasting channels. Two version are
considered: (1) minimizing the bandwidth when the streaming period of a given video is
known in advance (known time horizon) and (2) when it is not (periodic).

4.1. Approximating SASST by SB

When the system is in a stationary regime, the storage node opens a new CS each
n∗ slots of time. Thus, we can see the CS streaming channels as portrayed in Figure 7a.
If we consider each n∗ in a given CS as a video segment and we name it segmenti where
i ∈ {1, 2, 3, . . ., N} (we assume here that D

n∗ = N), then we obtain the same broadcasting
schema as SB [6,18]. Each channel broadcasts one instance of the video shifted by the
size of one segment from the previous and the next adjacent channels. This means that
one instance of the entire video is broadcast across all channels in each segment duration
period. Hence, any SN can download the entire video if it connects to all the channels at
the same time after one time slot. Using SB, any SN could download the entire video by
connecting to only one channel during the CS duration to download the video segments
one by one.
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The question is how to minimize the number of broadcasting channels while allowing
the SN to download the video without missing any segment. The key scheduling answer
to this question is to broadcast each segment i at least once on any of the channels each
i time slots. By time slot, we mean one segment duration (i.e., equal to n∗ slots). This
property is inherited from the playback continuity property, where a video player must find
segments i available for playback immediately after playing the i− 1 previous segments. In
other words, segment i should be downloaded during the playback period of the previous
segments or should be immediately available on one of the channels for playback. Figure 7b
shows an optimal scheduling of the 17 segments initially broadcast by SASST. As portrayed
in Figure 7a, the streaming bandwidth drops from 17 to 4 broadcasting channels for the
same video.

Time axis

1 2 3 4 5 7 8 9 10 11 13 14 15 16 176 12

1 2 3 4 5 7 8 9 10 11 13 14 15 166 1217

1 2 3 4 5 7 8 9 10 11 13 14 156 121716

1 2 3 4 5 7 8 9 10 11 13 146 12171615

1 2 3 4 5 7 8 9 10 11 136 1217161514

2 3 4 5 7 8 9 10 11 13 14 15 16 176 12 1

...n*

(a)

Time axis

8 11 15 16 13 5 14 11 12 14 13 5 16 9 178 15

5 10 6 12 7 10 6 4 8 5 4 6 7 103 73

2 3 2 4 2 2 3 2 2 3 3 2 49 242

1 1 1 1 1 1 1 1 1 1 1 11 1111

n*

(b)
Figure 7. From proactive SASST to optimal scheduling of 17 segments. (a) SASST as SB; (b) Optimal
Scheduling with 17 segments.

This scheduling problem has been proven to be NP-hard in [50]. Nevertheless, for
a fixed video broadcasting time horizon, we can afford to solve the scheduling problem
through an exact method using a linear program formulation. Through a fixed time horizon,
we mean that we know for how long we will keep streaming (broadcasting) the video. The
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optimization problem formulation is presented in the next subsection. For the case of an
unknown time horizon, we propose in Section 4.3 a different formulation of the problem to
preserve a reasonable solving cost with regard to the formulation of the fixed time horizon
described in Section 4.2. NOPP is based on the two proposed versions of optimal schedules
(known and unknown time horizons).

4.2. Linear Program Formulation for a Fixed Time Horizon

Let C be the fixed broadcasting time horizon and N be the total number of equally
sized segments of the media. Generally, C is equal to n ∗ N with (n > 1). Let xij be a
Boolean variable indicating whether or not segment i can be scheduled within time slot j
(xij = 1) (xij = 0) and B be the total number of broadcasting network channels, which is
the total consumed bandwidth (expressed in number of channels) used by NOPP.

Our Linear Program (LP) can be stated as follows:

Minimize B (29)

Subject to :
N

∑
j=1

xjt ≤ B, t ∈ {1, 2, . . ., C} (30)

t+j−1

∑
k=t

xjk ≥ 1, j ∈ {1, 2, . . ., N}

and t ∈ {1, 2, . . ., C− j + 1} (31)
N

∑
i=1

1
i
≤ B ≤ N (32)

xj,t ∈ {0, 1}, j ∈ {1, 2, . . ., N}
and t ∈ {1, 2, . . ., C} (33)

B ∈ N∗ (34)

Constraint (30) means that the number of scheduled segments for any time slot cannot
exceed the total number of channels. Constraint (31) means that each segment i must be
scheduled at least once for any time window of size i slots. The lower bound used in
constraint (32) has been determined in [18,50].

Solving the LP using the Gurobi solver [53] for N = C, N ∈ {2, 3, . . ., 50} gives the
results summarized in Table 2. Note that the solver was installed on a 16 processors Linux
workstation with 2.4 GHz speed each.

The main drawback with fixed time horizon scheduling is the obligation to stop
serving SN requests before a period of time equal to the size of a video instance (only the
SN arriving within C-N are served). Indeed, the requests coming during the streaming
time of the last instance of the video will not be able to download the entire segments. As
shown in Figure 8, a request coming during the third time slot will miss segment 10. An
additional time slot is therefore needed to schedule it (segment 10). We need to add an
increasing number of time slots to schedule as many missed segments as we have new
requests during this last instance of the media.

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1

2 3 2 6 2 4 2 5 2
10 4 5 7 3 8 3 9

Figure 8. An example of an optimal scheduling for N = C = 10 and B∗ = 3. The request arrival
slot is illustrated in black. The green video segments are successfully downloaded. The red video
segment is missed.
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Table 2. Optimal bandwidth B∗ for 49 instances of N = C.

N B∗ t (s) N B∗ t (s) N B∗ t (s) N B∗ t (s)

2 2 0.00040 15 4 0.00462 28 4 0.03661 41 5 0.05058

3 2 0.00348 16 4 0.00535 29 4 0.05818 42 5 0.05389

4 3 0.00021 17 4 0.00585 30 4 0.04598 43 5 0.05724

5 3 0.00118 18 4 0.00658 31 5 0.02178 44 5 0.06411

6 3 0.00139 19 4 0.00706 32 5 0.02313 45 5 0.08320

7 3 0.00134 20 4 0.00836 33 5 0.02594 46 5 0.06859

8 3 0.00157 21 4 0.00883 34 5 0.02769 47 5 0.07418

9 3 0.00189 22 4 0.01036 35 5 0.03048 48 5 0.07737

10 3 0.00308 23 4 0.01498 36 5 0.03213 49 5 0.09644

11 4 0.00229 24 4 0.01350 37 5 0.03544 50 5 0.11897

12 4 0.00255 25 4 0.02127 38 5 0.03567

13 4 0.00396 26 4 0.01838 39 5 0.04350

14 4 0.00393 27 4 0.03915 40 5 0.04664

Unfortunately, this is not obvious, as the repetition of the same optimal schedule does
not guarantee a feasible schedule.

As we can see in Figure 9, the distance between two successive occurrences of each of
the segments 6, 7, 8 and 9 is equal to 10 (one occurrence is counted in the distance), which
violates the playback property where segment i must be scheduled at least once in any i
successive slots. As portrayed in the figure, only 3 segments among 4 could be scheduled
in the free places (in green), which means that the obtained scheduling is not feasible.

To overcome this problem, we propose in the next subsection a new LP model that
allows us to obtain an optimal schedule that could be repeated as many times as we have
new requests without violating the playback propriety.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 3 2 6 2 4 2 5 2 2 3 2 6 2 4 2 5 2
10 4 5 7 3 8 3 9 10 4 5 7 3 8 3 9

Figure 9. An optimal scheduling for N = C = 10 repeated twice. The distance between the two successive occurrences in
red of video segment 6 is equal to 11. The distance between the two successive occurrences in orange of video segment 7 is
equal to 11. The distance between the two successive occurrences in cyan of video segment 8 is equal to 10. The distance
between the two successive occurrences in magenta of video segment 9 is equal to 10. They are all violating the playback
property. Some free slots that could be assigned to some video segments are colored in green.

4.3. Linear Program Formulation for an Unknown Time Horizon

The main change in the new LP model with regard to the fixed time horizon model
is the periodicity constraint. This guarantees the playback property when repeating the
optimal schedule. The LP formulation is stated as follows:
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Minimize B (35)

Subject to :
N

∑
j=1

xjt ≤ B, t ∈ {1, 2, . . ., C} (36)

t+j−1

∑
k=t

xjk ≥ 1,

j ∈ {1, 2, . . ., N} if t ≤ C− j + 1 (37)

C

∑
k=t

xjk +
j−(C−t+1)

∑
k=1

xjk ≥ 1,

if C− j + 1 ≤ t ≤ C (38)
N

∑
i=1

1
i
≤ B ≤ N (39)

xj,t ∈ {0, 1}, j ∈ {1, 2, . . ., N}
and t ∈ {1, 2, . . ., C} (40)

B ∈ N∗ (41)

All the constraints are the same as the previous LP, except constraints (37) and (39),
where we consider circular scheduling. They guarantee that a segment i is scheduled at
least once in any successive i slots from slot j to slot C and from slot 1 to slot i− (C− j + 1).
Note here that the minimum time horizon C for a circular schedule is equal to the video
size N.

Solving the periodic LP for N = C = 10 using a Gurobi solver [53] gives the optimal
circular schedule portrayed by Figure 10.

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 3 2 4 2 6 2 4 2 4
6 7 5 3 7 3 5 3 9
10 8 9 8

Figure 10. An example of optimal circular scheduling for N = C = 10. B∗ = 4.

Table 3 summarizes the solving results of the periodic LP for N ∈ {2, 3, . . ., 48}.
Using the circular optimal schedule, the storage node allocates one more time slot to

stream the segments indicated by the optimal schedule on the broadcasting channels for
any newly arriving SN request where the distance between the newly allocated slot and
the arrival slot is equal to N. As shown in Figure 10, a request arriving at slot 1 induces
allocating slot 11 to broadcast segments 1, 2, 6 and 10.

The plots in Figure 11 show that fixed time schedules could be naturally periodic
(circular). The optimal bandwidth value B∗ is the same for many configurations considered
in fixed time and circular schedules. This proves that at least one optimal schedule exists
for a fixed time horizon version that is naturally periodic.

Through Figure 11 plots, we can observe that in the time horizon value C = 20, the
optimal bandwidth value B∗ decreases by 1. Thus, we can ask the following open question:
what are the time horizon values of C that minimize the bandwidth B for a given video
size N?
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Table 3. Optimal bandwidth B∗ for 47 instances of N = C.

N B∗ t (s) N B∗ t (s) N B∗ t (s) N B∗ t (s)

2 2 0.00024 14 4 0.00671 26 5 0.54185 38 5 0.17875

3 2 0.00260 15 4 0.00784 27 5 0.57136 39 5 0.12900

4 3 0.00023 16 4 0.01246 28 5 0.51263 40 5 0.22479

5 3 0.00128 17 4 0.01099 29 5 0.44969 41 5 0.62120

6 3 0.00144 18 4 0.01755 30 5 0.72769 42 5 0.20406

7 3 0.00214 19 5 149.31110 31 5 0.04119 43 5 0.96535

8 3 0.00242 20 4 0.07884 32 5 0.04682 44 5 0.90229

9 4 0.03365 21 5 0.81072 33 5 0.05502 45 5 1.16545

10 4 0.02758 22 5 0.92566 34 5 0.05346 46 5 1.16282

11 4 0.00388 23 5 0.92439 35 5 0.06545 47 5 1.46099

12 4 0.00496 24 5 1.01415 36 5 0.08506 48 5 1.68586

13 4 0.00744 25 5 0.38786 37 5 0.09712

0 5 10 15 20 25 30 35 40 45 50

N

2

2.5

3

3.5

4

4.5

5

B
*

Circular Scheduling
Fixed Time Scheduling

Figure 11. B∗ as a function of N for circular and fixed time scheduling.

4.4. NOPP Deployment

To deploy NOPP, the following tasks should be performed::

• The administrator of the streaming system should set (1) the number of segments
of the video and (2) the streaming time horizon. in the system ggraphical interface
If he wants to use a periodic scheduling, then he should indicate that instead of the
time horizon.

• The system solves either the first version (with fixed time horizon) or the second
version (periodic) of the LP. A manifest file containing the optimal scheduling is then
generated and stored in the storage node with video segments.

• The SN starts by requesting the manifest (of the session description) file from the
storage node to know how to reorder the arriving segments. Then, it starts the
download of video segments, the reordering and the streaming to the Internet users’
devices. The storage node could use RTP or HTTP/3 to push the video segments.



Appl. Sci. 2021, 11, 11267 19 of 21

5. Conclusions

In this paper we proposed cloud streaming bandwidth optimization techniques. For
unpopular video cases, we presented a new variant of the Slotted Stream Tapping (SST)
protocol called Share All SST (SASST). We analytically proved that SASST reduces the
storage node bandwidth by almost 30% and 20% compared to stream tapping (ST) and SST,
respectively. However, Dyadic further reduces the bandwidth by almost 10% compared to
SASST while being harder to implement, as shown in [8]. We discussed how SASST could
be smoothly turned on a proactive protocol to also serve popular videos. To minimize the
bandwidth, we proposed two LP formulations to obtain the optimal segments to channel
schedules for known and unknown time horizons. We showed how the optimal schedule
for the unknown time horizon case could be repeated infinitely to serve new incoming
requests. We called the new broadcasting protocol based on these optimal schedules
the New Optimal Proactive Protocol (NOPP). As it is optimal, it outperforms the rest of
the proactive broadcasting techniques of the literature in terms of the consumed server
and network bandwidth. In the future, we plan to bring the proposed techniques into
practice, which requires studying in depth the possible ways to change segment-based
streaming protocols, such as HLS, to minimize the steaming bandwidth in a multicast
enabled network.
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