
applied  
sciences

Systematic Review

K-Means-Based Nature-Inspired Metaheuristic Algorithms for
Automatic Data Clustering Problems: Recent Advances and
Future Directions

Abiodun M. Ikotun 1, Mubarak S. Almutari 2 and Absalom E. Ezugwu 1,*

����������
�������

Citation: Ikotun, A.M.; Almutari,

M.S.; Ezugwu, A.E. K-Means-Based

Nature-Inspired Metaheuristic

Algorithms for Automatic Data

Clustering Problems: Recent

Advances and Future Directions.

Appl. Sci. 2021, 11, 11246. https://

doi.org/10.3390/app112311246

Academic Editors: Federico Divina,

José Ignacio Abreu Salas and Yoan

Gutiérrez Vázquez

Received: 16 October 2021

Accepted: 23 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Road,
Pietermaritzburg 3201, South Africa; 220078470@stu.ukzn.ac.za

2 College of Computer Science, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia;
almutairi@uhb.edu.sa

* Correspondence: ezugwua@ukzn.ac.za

Abstract: K-means clustering algorithm is a partitional clustering algorithm that has been used widely
in many applications for traditional clustering due to its simplicity and low computational complexity.
This clustering technique depends on the user specification of the number of clusters generated from
the dataset, which affects the clustering results. Moreover, random initialization of cluster centers
results in its local minimal convergence. Automatic clustering is a recent approach to clustering where
the specification of cluster number is not required. In automatic clustering, natural clusters existing
in datasets are identified without any background information of the data objects. Nature-inspired
metaheuristic optimization algorithms have been deployed in recent times to overcome the challenges
of the traditional clustering algorithm in handling automatic data clustering. Some nature-inspired
metaheuristics algorithms have been hybridized with the traditional K-means algorithm to boost its
performance and capability to handle automatic data clustering problems. This study aims to identify,
retrieve, summarize, and analyze recently proposed studies related to the improvements of the
K-means clustering algorithm with nature-inspired optimization techniques. A quest approach for
article selection was adopted, which led to the identification and selection of 147 related studies from
different reputable academic avenues and databases. More so, the analysis revealed that although
the K-means algorithm has been well researched in the literature, its superiority over several well-
established state-of-the-art clustering algorithms in terms of speed, accessibility, simplicity of use,
and applicability to solve clustering problems with unlabeled and nonlinearly separable datasets
has been clearly observed in the study. The current study also evaluated and discussed some of the
well-known weaknesses of the K-means clustering algorithm, for which the existing improvement
methods were conceptualized. It is noteworthy to mention that the current systematic review and
analysis of existing literature on K-means enhancement approaches presents possible perspectives
in the clustering analysis research domain and serves as a comprehensive source of information
regarding the K-means algorithm and its variants for the research community.

Keywords: K-means clustering; automatic clustering; nature-inspired metaheuristic algorithms;
cluster analysis

1. Introduction

Data clustering is an aspect of data mining that aims at classifying or grouping
data objects within a dataset based on their similarities and dissimilarities. A dataset is
segmented into clusters so that the data objects within the same cluster are more similar
than those in other clusters. In other words, data grouping is performed to reduce the
intra-cluster distance among data objects while increasing the inter-cluster distance. Data
clustering has been very useful for classifying data in many applications such as biological
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data analysis, social network analysis, mathematical programming, customer segmentation,
image segmentation, data summarization, and market research [1].

There are several methods used for clustering datasets. These methods are majorly
classified into two categories: the hierarchical clustering methods and the partitional
clustering methods. In the hierarchical clustering technique, data objects are iteratively
grouped in a hierarchical format to generate a dendrogram that depicts the clustering
sequence of the dataset. The partitional clustering technique generates a single dataset
partition to recover the natural groupings within the dataset without any hierarchical
structure using a specific objective function. Among the many partitional clustering meth-
ods is the well-known K-means clustering algorithm. The K-means clustering algorithm
is a partitional non-deterministic method that MacQueen proposed in 1967 [2]. For the
K-means algorithm, objects are grouped into a user-specified ‘k’ number of clusters based
on the minimum distance between the data objects and cluster centers [3]. According
to Ezugwu et al. [4], the K-means clustering algorithm is straightforward to implement,
flexible, and efficient. It has been rated among the top ten algorithms most used in data
mining, and it has enjoyed wide acceptability in many domains due to its low computation
complexity and implementation simplicity. The dependability of the algorithm on the
user’s specification of the number of clusters and the random initialization of the initial
cluster center limits the performance and the accuracy of the cluster results. Different initial
values of k produce different clustering results, and the random selection of the initial
clusters makes the algorithm tends toward converging into local minimal.

Choosing appropriate cluster numbers for datasets containing high dimensional data
objects with varying densities and sizes is difficult without prior domain knowledge [5].
The requirement for pre-defining the number of clusters makes the K-means algorithm
inefficient for automatic clustering. Because, for the automatic clustering methods, the ade-
quate number of clusters in a dataset are determined automatically without any background
information of the data objects in the dataset. In view of this, nature-inspired metaheuris-
tics have been adopted in finding solutions to automatic clustering problems [6,7]. A
few nature-inspired metaheuristics algorithms have been combined with the traditional
k-means algorithm to optimize its performance and increase its ability to handle automatic
clustering problems. In this study, we review and analyze the different nature-inspired
metaheuristic algorithms that have been integrated with K-means or any of its variants in
recent times to solve the automatic data clustering problems.

There are many published articles on reviews regarding the use of nature-inspired
clustering algorithms focusing on automatic clustering alone. An up-to-date study of
all major nature-inspired metaheuristic algorithms for solving automatic clustering prob-
lems was presented by Jose-Garcia and Gomez-Flores [6]. Ezugwu et al. [8] presented a
systematic taxonomical overview and bibliometric analysis of the trends and progress in
nature-inspired metaheuristic clustering approaches, with emphasis on automatic cluster-
ing algorithms. There are domain-specific review works where different metaheuristics
techniques were utilized [9–11]. A review of nature-inspired algorithms that have been
employed to solve partitional clustering problems, including the major areas of applica-
tion, was presented by Nanda and Panda [10]. Mane and Gaikwad [12] presented an
overview of the nature-inspired techniques used for data clustering. Their study covers
the hybridization of several nature-inspired techniques with some traditional clustering
techniques to improve the performance of the existing clustering approaches. This study
presents a systematic review on the different nature-inspired metaheuristic algorithms
integrated with K-means or any of its variants for cluster analysis in the last two decades,
emphasizing automatic clustering. A total of 147 articles were considered in the review.

Despite the various review papers published on the nature-inspired algorithm and
clustering algorithms, including the traditional clustering and automatic clustering meth-
ods, to the best of our knowledge, at the point of writing this paper, no extensive review
study on the hybridization of nature-inspired algorithms with the K-means clustering
algorithm exist with a primary focus on automatic clustering. Because of this limitation
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and identified gap, an up-to-date and in-depth review of hybridization of nature-inspired
metaheuristic algorithm with K-means clustering algorithm and its variants over the last
two decades is presented in this paper.

This study is significant in many ways, and more specifically due to its advantages
of (i) identifying, categorizing, and analyzing the various improvement methods and
hybridization techniques for the classical K-means algorithms in solving various automatic
data clustering problems, (ii) identifying the variants of the K-means based nature-inspired
metaheuristic algorithms, (iii) presentation of further comparative analysis of data in the
form of charts and tables across a wide variety of hybridization techniques attributes,
(iv) identifying the strengths and weaknesses of the existing implementation of hybrid
K-means based nature-inspired metaheuristic algorithms, (v) identifying recent trends of
hybridizing nature-inspired metaheuristic algorithms with the classical K-means algorithm
for solving automatic data clustering problems and open challenges, and (vi) suggesting
new possible future research directions for the domain enthusiasts. It is also noteworthy
that researchers and practitioners interested in exploiting and harnessing the advantages
of K-means clustering with those of nature-inspired algorithms for implementing a better-
performed automatic clustering technique will find this work useful. It will also be helpful
for researchers in the domain of constrained and unconstrained optimization techniques.

The remaining sections of the paper are structured as follows: Section 2 gives a brief
description of the scientific background of K-means clustering algorithm, nature-inspired
metaheuristic algorithms, and automatic clustering problems. The section similarly re-
iterates the research methodology approach to the systematic literature review and analysis
of the study. The existing integration of the K-means clustering algorithm with nature-
inspired metaheuristic algorithms in literature is presented in Section 3. Section 4 discusses
the critical issues of integrating the K-means clustering algorithm with nature-inspired
metaheuristic algorithms for automatic clustering. Subsequently, open challenges and
future research directions are also covered in this section. Finally, Section 5 gives the study
concluding remarks.

2. Scientific Background

The K-means clustering algorithm is a partitional clustering technique that splits a
dataset into k number of clusters using a specific fitness measure. That is, given a dataset
X, X is divided into K non-overlapping groups C = {c1, c2, . . . , ck}, ci 6= ∅, i = 1, . . ., and
such that ∪k

1ci = X; ci ∩ cj = ∅, i, j = 1 . . . k and i 6= j. The partitioning process is handled
as an optimization problem with the fitness measure taking as the objective function such
as minimizing the distances between data objects or maximizing the correlation between
data objects [10]. Mathematically, the optimization problem for cluster analysis is defined
as follows:

Given a dataset X = {xi}, where i = 1, 2, . . . n of d-dimension data points of size n, X
is partitioned into ‘k’ clusters such that

J(ck) = ∑
xiεck

||xi − µk||2 (1)

with the objective function: minimize the sum of the square error over all the k clusters.
That is, minimize

J(C) =
K

∑
k=1

∑
xiεck

||xi − µk||2 (2)

In automatic clustering, the main concerns are determining the best estimate for cluster
number k and correct identification of all the partitions [6]. In other words, an automatic
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clustering algorithm seeks to optimize the number of combinations in the assignments of
N objects into k clusters. This is mathematically represented as:

S(N, K) =
1
K!

K

∑
i=0

(−1)K−i
(

K
t

)
tN (3)

In finding the optimal cluster number, the search space is mathematically represented
as:

B(N) =
N

∑
K=1

S(N, K) (4)

The task of finding an optimal solution for this problem when k > 3 is NP-hard [6,13]
and this makes the search computationally expensive for moderately sized problems [6,14].
In recent times, there has been an immeasurable increase in the magnitude of data being
generated. The current real-world datasets are characterized as being high dimensional
and massive in size. Automatic clustering of such datasets with no background knowledge
of the features of the data objects can be termed a difficult task. Without prior domain
knowledge, it is difficult to determine the appropriate number of clusters for a massive,
high-dimensional dataset. Moreover, due to the enormous size of data objects in real-world
datasets, the distribution of data objects into appropriate clusters to produce an optimal
cluster result is computationally intensive and time-consuming.

2.1. Nature-Inspired Metaheuristics for Automatic Clustering Problems

Metaheuristics are global optimization techniques used to solve complex real-life prob-
lems [8,15]. A higher-level procedure applies simpler procedures in solving optimization
problems [16]. In optimization, inputs to an objective function are adjusted to find the
optimum solution. According to Engelbrecht [17], it is possible to formulate clustering
problems as an optimization problem that can be comfortably solved using single objective
and multi-objective metaheuristics. Metaheuristics can find the optimum solution to global
optimization problems with less computational effort. They find an approximate solution
and are non-deterministic as well as non-problem dependent. Agbaje et al. [18] stated that
most metaheuristic algorithms can partition datasets automatically into an optimal number
of clusters when a good validity measure is applied.

The nature-inspired metaheuristic algorithms are modeled after the behavioral pattern
of natural phenomena exhibiting the learning ability and adaption to emerging situations
in finding appropriate solutions to problems in changing and complex environments [17].
According to Ezugwu et al. [8], nature-inspired algorithms are designed practically to find
a solution to high-dimensional and complex real-world problems. They have satisfactorily
proffer suboptimal solutions to automatic clustering problems within an acceptable time
limit [7]. As a result of their capability for higher heuristic search, they seek the most appro-
priate solution in the search space and at the same time try to maintain the balance between
intensification (local optimal search) and diversification (global optimal search) [19]. The
nature-inspired metaheuristic uses the population to explore the search space, ensuring a
greater probability of achieving optimal cluster partitions [10].

Alongside the successes recorded with solving automatic clustering problems using
nature-inspired metaheuristic algorithms, it has been observed that hybridizing two or
more metaheuristics for the same purpose produces better clustering performance. Accord-
ing to Nanda and Panda [10], the performance of the hybrid algorithms is superior to that of
the individual algorithms in terms of robustness, efficiency, and accuracy. Nature-inspired
metaheuristics have also been hybridized with some of the traditional clustering algorithms
to improve their performance [5]. K-means clustering algorithm is one of the most fun-
damental and popular traditional partitional clustering algorithms that has been used in
many applications. In order to improve its performance for the general clustering problem,
several variants of K-means have been proposed in the literature. The traditional K-means
algorithm, with its numerous variants though credited with computational simplicity, are



Appl. Sci. 2021, 11, 11246 5 of 61

however limited in their performance due to the possibility of getting trapped in the local
optimum because of its hill-climbing approach. As a result, some of the metaheuristic
algorithms have been hybridized with it to improve its performance.

2.2. Review Methodology

A comprehensive literature review includes the basic introduction to a specific problem
and the critical assessment, evaluation, and interpretation of existing related literature
and materials. When considering the authors, countries, publishers, studies, journals, and
universities, there should be no bias. In this comprehensive review, three major phases are
considered: the review planning, the conducting of the review, and the review reporting.
This methodology process is illustrated in Figure 1. The primary aim of the planning phase
is the identification of the need and worth of this review. It includes designing the research
questions that guide selecting relevant related manuscripts for the review and analysis
processes. It also addressed the strategy adopted for literature search from the relevant
academic databases to ensure unbiased and extensive primary studies.
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2.2.1. Research Questions

In this study, answers are provided to the following research questions:

RQ1: What are the various nature-inspired meta-heuristics techniques that have been
hybridized with the K-means clustering algorithm?
RQ2: Which of the reported hybridization of nature-inspired meta-heuristics techniques
with K-means clustering algorithm handled automatic clustering problems?
RQ3: What various automatic clustering approaches were adopted in the reported hy-
bridization?
RQ4: What contributions were made to improve the performance of the K-means clustering
algorithm in handling automatic clustering problems?
RQ5: What is the rate of publication of hybridization of K-means with nature-inspired
meta-heuristic algorithms for automatic clustering?

It is equally important to note that providing answers to these research questions
establishes this study’s primary goal and specific objectives. In other words, the responses
help define the study’s motivation and focus relative to the reader’s interest.

2.3. Adopted Strategy for Article Selection

In determining and shortlisting relevant articles that cover and answer all the designed
research questions stated in Section 2.2.1 successfully, the quest approach was adopted.
To extract relevant articles from the database with better coverage for the study, different
keywords that basically relate to the study along with their synonyms were used in
the search. Relevant articles on “nature-inspired metaheuristic”, “K-means clustering
algorithm”, and “automatic clustering” published in the last two decades were obtained.
The search for articles was performed on seven different academic databases: ACM Digital
Library, Elsevier Journal, Wiley Online Library, IEEE Explore, Springer Link, DLBP, and
CiteSeer. The search for relevant articles was streamlined to the last two decades to reduce
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the number of articles. A total number of 3423 articles were extracted, and 1826 duplicate
copies were removed from the lot. The selected articles were restricted to those published
only in the English language. On careful investigation of the articles’ title, abstract, and
contents, the remaining 1597 articles were further reduced to 147, which made up the final
most relevant articles selected for the study.

3. Data Synthesis and Analysis

This section covers the answers to the designed research questions stated in Section 3.1,
with each subsection distinctly handling answers to each research question.

3.1. RQ1. What Are the Various Nature-Inspired Meta-Heuristics Techniques That Have Been
Hybridized with the K-Means Clustering Algorithm?

Meta-heuristics techniques are developed for providing optimal solutions to optimiza-
tion problems through iterative exploration and exploitation of the entire search space [20].
A number of these algorithms have been integrated with the traditional K-means algorithm
to improve the process of data clustering. The following section presents the various
nature-inspired meta-heuristics techniques that have been hybridized with the K-means
clustering algorithm.

3.1.1. Genetic Algorithm

The genetic algorithm (GA) was introduced by Holland in 1975 [21] based on the
evolutionary principle of Charles Darwin [22]. The evolutionary principle states that “only
the species that are fit to survive can reproduce their kind”. The computer simulation
of this evolutionary process produced the Genetic Algorithm [21]. The earliest work on
hybridizing the K-means clustering algorithm with GA for data clustering was reported
by Krishna and Murty [23] in their paper titled ‘Genetic K-Means Algorithm’. The main
purpose of the hybridization was to find a global optimal partition of a given dataset
based on a given number of clusters. It also addressed the problem of expensive crossover
operators and costly fitness functions common with the traditional GA. Even though
GKA was able to converge to the best-known optimum, the number of clusters needs
to be specified. Bandyopadhyay and Maulik [24] introduced KGA-clustering, which
exploits the searching capability of K-means while avoiding the problem of local optimal
convergence. Cheng et al. [25] presented prototypes-embedded genetic K-means (PGKA)
where prototypes of clusters were encoded as chromosomes. Laszlo and Mukherjee [26]
evolve centers for K-means clustering algorithm using GA by constructing hyper-quad tree
on the datasets to represent cluster centers set. In their paper, Laszlo and Mukherjee [27]
also proposed a novel crossover operator for neighboring centers exchange for superior
partitions of large simulated datasets. Dai, Jiao, and He [28] proposed parallel genetic
algorithm-based K-means clustering adopting the variable-length chromosome encoding
strategy. Chang, Zhang, and Zheng [29] integrated the K-means algorithm with GA with
gene rearrangement (GAGR) to improve clustering performance. Sheng, Tucker, and
Liu [30] proposed niching genetic K-means algorithm (NGKA) for the partitional clustering
algorithm. KMQGA was proposed by Xiao et al. [31] as a quantum-inspired genetic
algorithm for K-means clustering with the Q-bit-based representation for exploration and
exploitation purposes. It was able to obtain the optimal number of clusters and also provide
the optimal cluster centroid. Rahman and Islam [32] proposed a novel GA-based clustering
technique that automatically finds the correct numbers of clusters and produces high-
quality cluster centers that serve the initial seeds for the K-Means algorithm to produce
a high-quality clustering solution. Kapil, Chawla, and Ansari [3] optimized the K-means
algorithm using GA.

In more recent works, Sinha and Jana [33] combined GA with Mahalanobis distance
and K-means for clustering distributed datasets using the MapReduce framework. Islam
et al. [34] extended GENCLUST by combining genetic operators’ capacity to combine
the different search space solutions with the K-means’ hill climber exploitation. Zhang
and Zhou [35] proposed NClust, which combined novel niching GA (NNGA) with K-
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means to determine clusters number automatically. Mustafi and Sahoo [36] explored the
GA framework and differential evolution (DE) heuristic to improve the cluster center
selection and obtain the required number of clusters respectively for the traditional K-
means algorithm. El-Shorbagy et al. [37] proposed an enhanced GA with a new mutation
where the K-means algorithm initializes the GA population for finding the best cluster
centers. Genetic K-Means clustering (GKMC) was proposed by Ghezelbash, Maghsoudi,
and Carranza [38] for optimally delineating multi-elemental patterns in stream sediment
geochemical data.

Kuo et al. [39] integrated self-organizing feature maps neural network with genetic k-
means for Market segmentation. Sheng, Tucker, and Liu [30] employed NGKA in clustering
gene expression data. Li et al. [40] combined GA with an improved K-means clustering
algorithm for video image indexing. Karegowda et al. [41] used GA and entropy-based
fuzzy clustering (EFC) to assign initial cluster centers for the K-means algorithm for PIMA
Indian diabetic dataset clustering. Eshlaghy and Razi [42] used an integrated framework
that combines a grey-based K-means algorithm with GA for project selection and project
management. Lu et al. [43] combined GA and K-means to solve the multiple traveling
salesman problem (MTSP). K-means was combined with improved GA by Barekatain,
Dehghani, and Pourzaferani [44] for energy consumption reduction and network lifetime
extension in wireless sensor networks. Zhou et al. [45] proposed NoiseClust, which
combines GA and K-means++ with an improved noise method for mining better origins
and destinations in global position system (GPS) data. Mohammadrezapour, Kisi, and
Pourahmad [46] used K-means clustering with GA to identify homogeneous regions of
groundwater quality.

3.1.2. Particle Swarm Optimization

The particle swarm optimization (PSO) is a population-based metaheuristic search
algorithm that is based on the principle of social behavior of swarms [47]. It is a powerful
optimization tool credited with implementation simplicity, fewer parameter configura-
tion, and global exploration ability [48]. According to Niu et al. [48], diverse versions
of PSO have been reported in the literature with a number implemented for clustering
purposes [49–57]. Several pieces of literature report the hybridization of PSO with the
K-means clustering algorithm. Van der Merwe and Engelbrecht [49] proposed two different
approaches of integrating PSO with K-means clustering algorithm for data clustering. In
one of the approaches, PSO was used to find centroid for a specified number of clusters,
while in the other approach, K-means was used to find the initial swarm for PSO. Omran,
Salman, and Engelbrecht [58] presented a dynamic clustering approach (DCPSO) based on
the integration of PSO with the K-means clustering algorithm. The PSO is used to select the
best number of clusters with the K-means clustering algorithm used to refine the chosen
clusters’ centers.

Chen and Zhang [59] combined K-means and PSO to propose RVPSO-K for clustering
Web Usage patterns achieving better stability. Kao, Zahara, and Kao [60] proposed K-NM-
PSO, which hybridized PSO and Nelder–Mead simplex search with K-means clustering
algorithm. Kao and Lee [61] presented KCPSO—K-means and combinatorial particle
swarm optimization, which do not require the specification of cluster number a priori.
K-harmonic means (KHM) was hybridized with PSO by Yang, Sun, and Zhang [62] to fully
use the advantages of the two algorithms for better cluster analysis. Niknam and Amiri [53]
introduced FAPSO-AC-K, which combines fuzzy adaptive particle swarm optimization
with ant colony optimization and K-means clustering algorithm for better cluster partition.
Tsai and Kao [63] presented a selective regeneration PSO (SRPSO), which was hybridized
with a K-means clustering algorithm to develop an efficient, accurate and robust K-means
selective regeneration PSO (KSRPSO) for data clustering. Prabha and Visalakshi [64]
proposed an improved PSO-based K-means clustering algorithm that integrates PSO and
the traditional K-means clustering algorithm with normalization as a preprocessing step
for transforming the dataset attributes values.
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Emami and Derakhshan [65] proposed PSOFKM, which combined PSO with fuzzy
K-means to explore the merits of the two algorithms solving the problem of initial states
sensitivity of the traditional K-means clustering algorithm. Hybridization of K-means
with improved PSO and GA for improved convergence speed and global convergence was
proposed by Nayak et al. [66]. The IPSO handled the global search for optimal cluster
center while GA was used to improve the particles quality and diversification of solution
space. Niu et al. [48] proposed a population-based clustering technique that integrates PSO
with the traditional K-means algorithm. Six different variants of PSO were integrated with
the Lloyd’s K-means [67] separately, varying the PSO’s neighbor social communications.
Ratanavilisagul [68] proposed an improvement on the regular hybridization of PSO and
K-means clustering algorithm by applying mutation operation with PSO particles. Paul,
De, and Dey [69] presented a modified PSO (MfPSO) based K-means algorithm where the
MfPSO is employed to generate initial cluster centers for the K-means clustering algorithm.
Jie and Yibo [70] proposed a technique for outlier detection by combining PSO with K-
means for fault data sorting of feeder in distribution network information system. The PSO
was used to optimize the cluster centroid while the K-means algorithm determined the
optimal number of clusters. Chen, Miao, and Bu [71] presented an aggregation hybrid of
K-means clustering algorithm with PSO for image segmentation.

3.1.3. Firefly Algorithm

The firefly algorithm (FA) is a swarm intelligence metaheuristic optimization tech-
nique that was first introduced by Yang in 2009 [72]. According to Xie et al. [73], FA has
a unique capability of automatic subdivision compared with other metaheuristic search
algorithms. Hassanzadeh and Meybodi [74] presented a hybrid algorithm K-FA that com-
bined the K-means algorithm and firefly algorithm. The firefly algorithm was used to
find centroid for specified k number of clusters with K-means algorithm used for refining
the centroid. Mathew and Vijayakumar [75] proposed using a firefly-based clustering
method to parallel K-means for handling a large number of clusters. Similar to Hassan-
zadeh and Meybodi [74], the FA finds the initial optimal centroid, which is then refined
using K-means for improved clustering accuracy. Nayak et al. [76] presented an integrated
clustering framework combining optimized K-means with firefly algorithm and Canopies
for better clustering accuracy.

To address K-means’ initialization sensitivity and local optimal convergence, Behera
et al. [77] proposed FCM-FA, hybridizing fuzzy C-means with a firefly algorithm for
faster convergence. Nayak, Naik, and Behera [78] proposed a novel firefly-based K-means
algorithm—FA-K-means, in which the global search capacity of the FA was used to re-
solve the problem of local convergence of the K-means for efficient cluster analysis. Xie
et al. [73] proposed two variants of the FA (IIEFA—inward intensified exploration FA and
CIEFA—compound intensified exploration FA) which are incorporated into the K-means
clustering algorithm for improved clustering performance. Jitpakdee, Aimmanee, and
Uyyanonvara [79] proposed a hybrid firefly algorithm and K-means algorithm for color
image quantization. Kuo and Li [80] integrate a firefly-algorithm-based K-means algorithm
with a firefly-algorithm-based support vector regression with wavelet transform in devel-
oping an export trade value prediction system. Kaur, Pal, and Singh [81] introduced a
K-means and firefly algorithm hybridization for the intrusion detection system.

Langari et al. [82] proposed KFCFA—K-member fuzzy clustering and firefly algorithm,
which is a combined anonymizing algorithm for protecting anonymized databases against
identity disclosure in social networks. HimaBindu et al. [83] proposed a firefly-based
K-means algorithm with global search capability for clustering big data. Wu et al. [84]
proposed a novel kernel extreme learning machine model coupled with K-means clustering
and firefly algorithm (Kmeans-FFA-KELM) for the monthly reference evapotranspiration
estimation in parallel computation.



Appl. Sci. 2021, 11, 11246 9 of 61

3.1.4. Bat Algorithm

The bat algorithm (BA), introduced by Xin-She Yang in 2010 [85], is one of the nature-
inspired optimization algorithms based on the echolocation behavioral pattern of bats.
K-Medoids was combined with the bat algorithm by Sood and Bansal [86] for partitioning
clustering using the echolocation behavior of bats to determine the initial cluster number.
Tripathi, Sharma, and Bala [87] hybridized the K-means algorithm with a novel dynamic
frequency-based bat algorithm variant (DFBPKBA) as a new approach for clustering in a
distributed environment with a better exploration and exploitation capability. The MapRe-
duce model in the Hadoop framework was used to parallelize the hybrid algorithm to
ensure satisfactory results within a reasonable time limit. Pavez, Altimiras, and Villav-
icencio [88] introduced the K-means binary bat algorithm (BKBA) using a generalized
K-means-based binarization mechanism applied to the bat algorithm to solve multidimen-
sional backpack problems. Gan and Lai [89] introduce a bat algorithm clustering based on
K-means (KMBA) for automated grading of edible birds nest, which produce nearly 86%
dataset clustering accuracy compared with the standard bat algorithm. Chaudhary and
Banati [90] hybridized K-means and K-medoids with an enhanced shuffled bat algorithm
(EShBAT). K-means and K-medoids were used in generating a rich starting population for
EShBAT to produce an efficient clustering algorithm.

3.1.5. Flower Pollination Algorithm

The flower pollination algorithm (FPA) is a metaheuristic optimization algorithm moti-
vated by the process of pollinating flowering plants. Xin-She Yang developed the first FPA in
2012 [91] as a global optimization technique. Jensi and Jiji [92] proposed a novel hybrid FPAKM
clustering method that combines the flower pollination algorithm with the K-means clustering
algorithm. Kumari, Rao, and Rao [93] introduce a flower pollination-based K-means clustering
algorithm using vector quantization for better medical image compression.

3.1.6. Artificial Bee Colony

The artificial bee colony (ABC) is a swarm intelligence algorithm inspired by bees’
search mode and division of labor in fining the maximum amount of nectar [94]. Armano
and Farmani [95] proposed kABC, which combined K-means and ABC to improve K-
means capability in finding global optimum clusters. Tran et al. [96] presented EABCK,
an enhanced artificial bee colony algorithm, and K-means to improve the performance of
the K-means clustering algorithm. The ABC was guided by the global best solution with
mutation operation to produce an enhanced version of EABC. Bonab et al. [97] combined
an artificial bee colony algorithm and differential evolution with a modified K-means
clustering algorithm to address the problem of local optimum convergence of K-means in
color image segmentation.

The CAABC-K, which is a hybrid of chaotic adaptive artificial bee colony algorithm
(CAABC) with K-means algorithm, was proposed by Jin, Lin, and Zhang [98]. The CAABC-
K had better convergence speed and accuracy compared with some conventional clustering
algorithms. Dasu, Reddy, and Reddy [99] integrate the K-means clustering algorithm and
ABC optimization algorithm for remote sensing images classification. K-means algorithm
was used for image segmentation, while ABC was used for classification. Huang [100]
combined ABC with an accelerated k-means algorithm for color image quantization. Wang
et al. [101] proposed the ABC-KM algorithm for the improvement of wind farm clustering.
Modified artificial bee colony combined with K-means clustering algorithm—MABC-
K, was proposed by Cao and Xue [102] to establish a hybrid algorithm framework for
clustering problems.

3.1.7. Grey Wolf Optimizer

Mirjalili, Mirjalil, and Lewis [103] proposed the grey wolf optimizer (GWO) as a meta-
heuristic optimization algorithm mimicking grey wolves’ hunting mechanism and leader-
ship hierarchy. Katarya and Verma [104] combined fuzzy c-mean (FCM) with grey wolf
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optimizer as a collaborative recommender system proposed to enhance system accuracy
and precision. Korayem, Khorsid, and Kassem [105] proposed ‘K-GWO’—a combination
of GWO and traditional K-means clustering algorithm into which a capacity constraint was
incorporated for solving capacitated vehicle routing problems. Pambudi, Badharudin, and
Wicaksono [106] enhanced the K-means clustering algorithm using GWO. The GWO rule
was used in minimizing the SSE of the population and searching for a new cluster center.
Mohammed et al. [107] introduced KMGWO, in which the K-means clustering algorithm
was used to enhance GWO’s performance.

3.1.8. Sine–Cosine Algorithm

The sine–cosine algorithm (SCA) is a population-based optimization algorithm that uses
a mathematical model based on sine and cosine function in finding the optimal solution to
optimization problems [108]. The SCAK-means is a hybridization of the sine-cosine algorithm
and K-means clustering algorithm proposed by Moorthy and Pabitha [109]. They integrated
with a resource discovery system adopted in cloud computing resource sharing management.

3.1.9. Cuckoo Search Algorithm

The cuckoo search (CS) algorithm is a nature-inspired metaheuristic algorithm devel-
oped by Xin-She Yang in 2009 [110]. It imitates the obligate parasitism of special female
cuckoo species, which mimic the color and pattern of their chosen host birds. Step size
affects the precision of the cuckoo search metaheuristic algorithm [111]. Saida, Kamel, and
Omar [112] combined the K-means algorithm with CS for document clustering to avoid
the problem of a drastic increase in iterations in the standard CS. Girsang, Yunanto, and
Aslamiah [113] proposed a combination of cuckoo search algorithm and K-means called
FCSA to accelerate the computational time of the clustering algorithm. The FCSA uses
CS in building robust initialization while K-means was used to accelerate the building
of the solutions. Ye et al. [111] presented an improved cuckoo search K-means algorithm
(ICS-Kmeans) to address the step size problem common with the cuckoo search algorithm.
Lanying and Xiaolan [114] used the CS algorithm in optimizing the K-means algorithm
for collaborative filtering recommendations. Tarkhaneh, Isazadeh, and Khamnei [115]
introduced a hybrid algorithm combining the K-means algorithm with CS and PSO that
yields more optimized results than each of the individual standard algorithms.

Singh and Solanki [116] integrate K-means with a modified cuckoo search algorithm
(K-means modified cuckoo search) to achieve a global optimum solution in a recommender
system. Arjmand et al. [117] proposed a hybrid clustering algorithm that combined the
K-means clustering algorithm used for segmentation with cuckoo search optimization for
generating the initial centroids for the K-means algorithm in breast tumor segmentation.
García, Yepes, and Martí [118] proposed a K-means cuckoo search hybrid algorithm with
the cuckoo search metaheuristics serving as the continuous space optimization mecha-
nism and using the learning technique of the unsupervised K-means algorithm in the
discretization of the obtained solution. Multiple kernel-based fuzzy c-means algorithm was
hybridized with cuckoo search to produce MKF-cuckoo by Binu, Selvi, and George [119]
with more effective objective functions designed by the researchers instead of using the
K-means objective function. Manju and Fred [120] solved the problem of segmentation
and compression of compound images using a hybrid of K-means clustering algorithm
and multi-balanced cuckoo search algorithm. Deepa and Sumitra [121] combined cuckoo
search optimization with a K-means clustering algorithm to achieve an optimal global
solution in an intrusion detection system.

3.1.10. Differential Evolution

The differential evolutionary (DE) algorithm is a powerful and efficient population-based
optimization algorithm based on evolutionary theory. It is presented as a floating-point encoding
evolutionary algorithm for minimizing possibly nonlinear and non-differentiable continuous
space functions [122,123]. Kwedlo [124] introduced DE-KM, a combination of differen-
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tial evolution algorithm and K-means clustering algorithm. The mutation and crossover
operation of DE generates each candidate solution, which is then fine-tuned using the
K-means algorithm. Cai et al. [125] proposed a hybrid of DE and one-step K-means algo-
rithm termed CDE (clustering-based DE) for solving unconstrained global optimization
problems. The one-step K-means was introduced to enhance DE performance by acting as
several multi-parent crossover operators to utilize the population information efficiently.
Kuo, Suryani, and Yasid [126] proposed ACDE-K-means integrating automatic cluster-
ing based differential evolution algorithm with K-means algorithm seeking to improve
ACDE algorithm’s performance by the use of the K-means algorithm for tuning the cluster
centroids.

Sierra, Cobos, and Corrales [127] hybridized the K-means clustering algorithm and
DE for continuous optimization using the DE operators to work on the groups generated
by the K-means algorithm for better diversification and escaping from local convergence.
Hu et al. [128] proposed an improved K-means clustering algorithm using a hybrid of
DE and FOA (fruit fly optimization algorithm) embedded into K-means. Wang [129]
proposed a weighted K-means algorithm based on DE with an initial clustering center
and strong global search capability. Silva et al. [130] used a u-control chart (UCC) to
automatically determine the k activation threshold for ACDE with the cluster number
generated serving as the specified k value for the K-means algorithm, thus improving the
performance of the clustering algorithm. Sheng et al. [131] presented a combination of
differential evolution algorithms with adaptive niching and K-means termed DE-NS-AKO
for partitional clustering. The K-means-based adaptive niching adjusts each niche size to
avoid premature convergence. As reported earlier, Bonab et al. [97] presented a combination
of DE with a modified K-means algorithm with ABC for color image segmentation. Mustafi
and Sahoo [132] explored the combination of GA and DE to find the original seed point and
determine the required cluster numbers for the traditional K-means algorithm to reduce
the possibility of its convergence into local optimal.

3.1.11. Invasive Weed Optimization

The invasive weed optimization (IWO) proposed by Mehrabian and Lucas in 2006 [133]
is a stochastic optimization algorithm that was inspired by a common agricultural phe-
nomenon of invasive weeds colonization. IWO has a powerful exploitative and explorative
capability [134]. Fan et al. [134] proposed a clustering algorithm framework for hybridizing
IWO with a K-means algorithm to improve the performance of the traditional K-means
algorithm. Pan et al. [135] presented a clustering algorithm combining IWO and K-means
based on the cloud model—CMIWOKM. The cloud model-based IWO directs the K-means
algorithm iterative search operation to ensure a definite evolution direction to improve the
proposed algorithm’s performance. Boobord, Othman, and Abubakar [136] proposed a
WK-means hybrid clustering algorithm combining IWO and K-means clustering. In WK-
means, the initial solutions for the K-means algorithm are generated by the IWO algorithm.
They further proposed hybridized clustering algorithm PCAWK adopting principal com-
ponent analysis method to reduce redundant dimensionality of a real-world dataset and
employed their WK-means algorithm to generate optimal clusters from the dataset [136].
Razi [137] presented a hybridization of IWO and DEA-based K-means algorithm for facility
location problems where K-means was used for maintenance stations clustering while a
zero-one programming model based on IWO was used to conduct the Pareto analysis of
rank and distance.

3.1.12. Imperialist Competitive Algorithm

The imperialist competitive algorithm (ICA) is an evolutionary optimization algorithm
inspired by imperialistic competition [138]. Niknam et al. [139] proposed a robust and
efficient hybrid evolutionary clustering algorithm called hybrid K-MICA. K-MICA is
a combination of K-means clustering algorithm and modified imperialist competitive
algorithm where MICA is used to generate the population and form the initial empires;
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the K-means algorithm is then used to improve the empire’s colonies and imperialists’
positions, which are then fed back into MICA. Abdeyazdan [140] presented ICAKHM, a
hybridization of modifier imperialist competitive algorithm and K-harmonic means to
solve the problem of local optimum convergence of the K-harmonic means. Emami and
Derakhshan [65] proposed ICAFKM combining imperialist competitive algorithm with
fuzzy K-means to assist the regular FKM escape from converging into local optimum and
increase convergence speed.

3.1.13. Harmony Search

The harmony search (HS) is a metaheuristic optimization algorithm that imitates
musicians’ music improvisation process of searching for a perfect state of harmony [141].
Forsati et al. [141] presented a pure HS clustering algorithm for a globalized search in the
solution space. The proposed HSCLUST was then hybridized with a K-means clustering
algorithm in three different modes to avoid the problem of initial parameter dependence of
the K-means algorithm. Each proposed hybridization depended on the stage at which the
K-means algorithm is performed in the clustering process. Mahdavi and Abolhassani [142]
proposed harmony K-means (HKA) based on an HS optimization algorithm for document
clustering for faster global optimum convergence. Cobos et al. [143] hybridized the K-
means algorithm with global best HS, frequent term sets, and Bayesian information criterion
termed IGBHSK for automatic Web document clustering. The Global-Best HS performs
the global search in the solution space while the K-means algorithm seeks the optimum
value in the local search space. Chandran and Nazeer [144] proposed an enhanced K-
means clustering algorithm based on hybridization of the K-means with improved HS
optimization technique for finding global optimum solutions. Nazeer, Sebastian, and
Kumar [145] presented HSKH—harmony search K-means hybrid for gene expression
clustering, which produced a more accurate gene clustering solution. Raval, Raval, and
Valiveti [146] proposed a combination of HS and K-means for optimizing wireless sensor
network clustering. The HS was used to generate the initial solution, which is then fed into
the K-means algorithm for a more precise solution. Kim et al. [147] proposed a scheme for
load balancing with switch migration for the distributed software-defined network (SDN)
employing a combination of HS and K-means for clustering the switches.

3.1.14. Blackhole Algorithm

The phenomenon of the black hole in astrophysics inspired the design of the blackhole
(BH) algorithm. During optimization, the best candidate acts as the black hole in each
iteration and pulls other candidates to itself [148]. It does not require manual parameter
setting [149], and it lacks the capability for exploring the search space [150]. Eskandarzade-
halamdary et al. [151] proposed BH-BK comprising blackhole and bisecting K-means
algorithms for precise clustering and global optimal convergence with local refinement.
Pal and Pal [152] hybridized the K-means clustering algorithm with the BH optimization
approach for data clustering. Some better results from the K-means algorithm are used in
initializing a portion of the population while the rest are randomly initialized. The BH al-
gorithm was used by Feng, Wang, and Chen [153] in determining the K-means algorithm’s
initial centroids for their proposed new clustering method for Image classification based
on the improved spatial pyramid matching model.

3.1.15. Membrane Computing

Membrane computing (MC) is a P system classified under a distributed parallel com-
puting model [154]. A K-means clustering method based on the P system and DNA genetic
was proposed by Jiang, Zang, and Liu [155]. The initial cluster center was analyzed using
DNA encoding, and the clustering was realized using the P system. Zhao and Liu [156]
proposed a GKM-genetic K-means membrane-clustering algorithm combining genetic
K-means algorithm and membrane computing for clustering multi-relational dataset har-
nessing the benefit of the P system parallelism with the K-means algorithm local search
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capability and the good convergence of the GA. Weisun and Liu [157] proposed a new P
system hybridized with a modified differential evolution K-means algorithm to improve
the K-means algorithm’s initial centroids.

Zhao, Liu, and Zhang [158] constructed a P system for solving the K-medoids algorithm
providing a new idea for great parallelism and lower computational time complexity for
cluster analysis. Wang, Xiang, and Liu [159] designed a tissue-like P system for their proposed
hybrid algorithm of K-medoids and K-means algorithms. The K-means algorithm is used
to obtain the elementary clustering result, and the K-medoids is then used to optimize the
results. The tissue-like P system creates a parallel platform for the execution, thus efficiently
improving the computational time. Wang, Liu, and Xiang [160] proposed an effective method
for initial centroid selection for the K-means algorithm, which incorporates a tissue-like P
system to avoid the boundedness of the K-means initialization method.

3.1.16. Dragonfly Algorithm

The dragonfly algorithm (DA) is inspired by the natural static and dynamic swarming
behaviors of dragonflies. In DA, the exploration and the exploitation phases are modeled
using the dragon flies social interaction in their navigation, food searching, and enemy
avoidance while swarming statically or dynamically [161]. Angelin [162] proposed a
dragonfly-based K-means clustering combined with a multi-layer feed-forward neural
network for outlier detection using an optimization-based approach. Kumar, Reddy, and
Rao [163] combined the fuzzy c-means algorithm with the wolf hunting-based dragonfly
to detect change in synthetic aperture radar (SAR) images.

3.1.17. Ant Lion Optimizer

The ant lion optimizer (ALO) is inspired by the hunting mechanisms of antlions in
nature. It involves five main steps: ants’ random walks, traps building, entrapments in
traps, prey catching, and traps rebuilding. Majhi and Biswal [164] proposed a K-means
clustering algorithm with ALO for optimal cluster analysis, which performed better in
terms of F-measure and sum of intra-cluster distances. Chen et al. [165] combined quantum-
inspired ant lion optimizer with K-means algorithm to propose QALO-K, an efficient hybrid
clustering algorithm. Murugan and Baburaj [166] integrated improved K-medoids with ant
lion optimizer and PSO to proposed ALPSOC, which can obtain optimized cluster centroid
with improved clustering performance while preserving the computational complexity.
Naem and Ghali [167] proposed a hybridized clustering algorithm termed K-median
modularity ALO that combined K-median with ant lion optimizer to handle the problem
of community detection in the social network. Dhand and Sheoran [168] proposed a secure
multi-tier energy-efficient routing protocol (SMEER) that combined an ant lion optimizer
(as cluster head selector) with a K-means algorithm (for clustering).

3.1.18. Social Spider Algorithm

The social spider optimization (SSO) algorithm was proposed by Cuevas in 2013,
simulating the cooperative behavior of social spiders based on the biological laws of a
cooperative colony [169]. Chandran, Reddy, and Janet [170] proposed a hybrid of social
spider optimization and K-means termed SSOKC to speed up the clustering process of
SSO. Thiruvenkatasuresh and Venkatachalam [171] employed the fuzzy c-means clustering
process, which adopted the social spider optimization technique with GA for finding
optimized cluster centroid in their proposed brain tumor images segmentation process.

3.1.19. Fruit Fly Optimization

The fruit fly (FFO) is inspired by the fruit fly’s foraging behavior in nature [172].
A hybrid of K-means and fruit fly optimization termed Kmeans-FFO was proposed by
Sharma and Patel [173] for optimal clustering quality. Jiang et al. [174] used a fruit fly
algorithm and K-means clustering algorithm to optimize earthquake rescue center site
selection and layout. Gowdham, Thangavel, and Kumar [175] proposed using the fruit fly
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algorithm to select the initial cluster centroid for the k-means clustering algorithm in finding
the optimal number of clusters in a dataset. Hu et al. [128] proposed DEFOA-K-means,
an improved K-means clustering algorithm that uses a hybrid of fruit fly optimization
algorithm and differential evolution (DEFOA) for optimal cluster solutions that are not
zero. Wang et al. [176] proposed FOAKFCM, a kernel-based fuzzy c-means clustering
based on fruit fly algorithm where the initial cluster center is determined using the fruit fly
algorithm first, and then the kernel-based fuzzy c-means is applied in classifying the data.

3.1.20. Bees Swarm Optimization

The bees swarm optimization (BSO) is a swarm-intelligence-based optimization al-
gorithm inspired by the foraging behavior of bees such that a swarm of bees cooperates
together in finding a solution to a problem [177]. Djenouri, Belhadi, and Belkebir [178]
used the combination of the K-mean algorithm and bee swarm optimization in document
information retrieval. The K-means algorithm generates similar clusters from the collec-
tion document, while the BSO was used to deep explore the document clusters. Aboubi,
Drias, and Kamel [179] proposed BSO-CLARA for clustering large datasets combining
K-medoids clustering and bees swarm optimization behavior. Djenouri, Habbas, and
Aggoune-Mtalaa [180] used the K-means clustering algorithm as a decomposition tool
in their proposed improved version of the BSO metaheuristic, termed BSOGD1, which
incorporates the decomposition method for solving the MAX-SAT problem.

3.1.21. Bacterial Colony Optimization

The bacterial colony optimization (BCO) algorithm is inspired by the basic growth
law of bacterial colonies [181]. It requires a high computational cost for completing a given
solution. Revathi, Eswaramurthy, and Padmavathi [182] hybridized the K-means clustering
algorithm with BCO to produce a BCOKM clustering algorithm for better cluster partition
with reduced computational cost compared with BCO clustering. The BCO searches for the
global optimum solution in the search space and then hands the clustering process to the
K-means algorithm. Vijayakumari and Deepa [183] combined the fuzzy c-means algorithm
with the fuzzy BCO (FBCO) to propose a hybrid fuzzy clustering algorithm (HFCA) for
higher cluster analysis performance.

3.1.22. Stochastic Diffusion Search

The stochastic diffusion search (SDS) is a multi-agent global search and swarm intel-
ligence optimization algorithm based on simple iterated agents’ interactions [184]. The
strong mathematical framework of the SDS algorithm describes its behavior in relation to
resource allocation, global optimum convergence, and linear time complexity with robust-
ness and criteria for minimal convergence. Karthik, Tamizhazhagan, and Narayana [185]
proposed a stochastic diffusion search K-means clustering technique named ‘scattering
search K-means’ (SS-K means) for locating optimal clustering points for the identification
of points of data leakage in social networks.

3.1.23. Honey Bee Mating Optimization

The honey bee mating optimization (HBMO) is a swarm-based optimization algorithm
inspired by the natural process of real honey bees mating [186]. Teimoury et al. [187] hy-
bridized K-means with the honey bee mating algorithm to resolve the problems associated
with the K-means clustering algorithm to improve the performance of the clustering algorithm.
Aghaebrahimi, Golkhandan, and Ahmadnia [188] combined the K-means algorithm with
HBMO to solve the problem of localization and sizing of flexible AC transmission systems
(FACTS) in a power system to reduce the generation, transmission, and power costs.

3.1.24. Cockroach Swarm Optimization

The cockroach swarm optimization (CSO) is a swarm intelligence algorithm inspired
by the social behavior of cockroaches mimicking their ruthless social behavior, chase



Appl. Sci. 2021, 11, 11246 15 of 61

swarming, and dispersion [189]. Senthilkumar and Chitra [190] combined the K-means
algorithm and cockroach swarm optimization (MCSO) in their proposed novel hybrid
heuristic–metaheuristic load balancing algorithm for IaaS-cloud computing resource alloca-
tion. K-means clustering was used to cluster the files into small chunks to reduce the time
required for file download, while the MCSO was employed in measuring the load ratio.

3.1.25. Glowworm Swarm Optimization

The glowworm swarm optimization (GSO) is a nature-inspired optimization algorithm
based on lighting worms’ natural behavior, which controls their light emission using it for
different purposes [191]. K-means algorithm was combined with basic glowworm swarm
optimization by Zhou et al. [192] for their proposed novel K-means image clustering
algorithm based on GSO termed ICGSO to effectively override the problems inherent in
the K-means algorithm and produce better clustering qualities. Onan and Korukoglu [193]
presented a cluster analysis approach based on GSO and K-means clustering algorithms.
Tang et al. [194] hybridized the k-means algorithm with an improved GSO self-organizing
clustering algorithm for automatic cluster analysis with better cluster quality.

3.1.26. Bee Colony Optimization

The bee colony optimization (BCO) is a swarm-intelligence-based algorithm that
simulates the bee swarm’s autonomy and self-organizing with distributed functioning be-
havior [195]. The intelligence of collective bees’ is explored in BCO for possible applications
in finding the solution to combinatorial problems which are characterized by uncertainty.
Das, Das, and Dey [196] integrate the K-means algorithm and modified bee colony opti-
mization algorithms producing MKCLUST and KMCLUST to improve the performance
of MBCO in terms of global optimum convergence and diverse clustering solutions. In
MKCLUST, the K-means algorithm was used to fine-tune MBCO explorative power further,
while in the KMCLUST, the local optimal problem of K-means was dealt with improving
the exploration capability and solution’s diversity. Four different K-means algorithms with
BCO algorithm hybrids were proposed by Forsati, Keikha, and Shamsfard [197] which
solved the problem of local optimum convergence for large and high dimensional datasets.

3.1.27. Symbiotic Organism Search

The symbiotic organism search (SOS) is a nature-inspired metaheuristic algorithm
based on the three symbiosis relationships mechanism often employed by the individual
prescribed for survival in the ecosystem. These relationship behaviors include mutualism,
commensalism, and parasitism, denoting the biological interactions between organisms.
SOS has only one control parameter, which makes its implementation easier compared
with other metaheuristic optimization approaches. In Yang and Sutrisno [198], automatic
K-means was applied to symbiotic organisms search algorithm initial solution for the
creation of subpopulation which enhances the quality and efficiency of searching. The
sub-ecosystem created through the automatic K-means enables the CSOS algorithm to
combine the local and global searches on the dataset.

3.2. RQ2. Which of the Reported Hybridization of Nature-Inspired Meta-Heuristics Techniques
with K-Means Clustering Algorithm Handled Automatic Clustering Problems?

Table 1 presents the summary of the reviewed literature on hybridized algorithms.
It includes a hundred and forty-seven (147) hybridized K-means with 28 different MOA
clustering algorithms. The fifth column indicates the characteristic of each hybridized
clustering algorithm as either automatic or non-automatic. The role of the corresponding
MOA and K-means algorithms in the hybridized algorithms was stated in columns eight
and nine, respectively. In contrast, columns ten and eleven, respectively, report the dataset
used for the algorithm testing and the criteria for their performance measure. From the
147 reviewed articles, only 23 K-means/MOA hybrid algorithms addressed the issue of
automatic data clustering.
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Table 1. List of hybridized algorithms combining K-means algorithm with various MOA.

Metaheuristic
Algorithm Objective Application

Method for
Automatic
Clustering

MOA Role K-Means Role Dataset Used for
Testing Compared with Performance

Measure

Genetic Algorithm (GA)

1 Zhou et al.,
[45]-NoiseClust

Niche Genetic Algorithm
(NGA) and K-means++ Automatic

Global
Positioning
System

Density-Based
Method

Adaptive
probabilities of
crossover and
mutation

2 Dai, Jiao & He,
[28]-PGAClust

Parallel Genetic Algorithm
(PGA) and K-means Automatic

Dynamic mining
of cluster
number

3 Li et al. [40] GA and K-means Automatic

Adopting a
k-value learning
algorithm using
GA

4 Kuo et al.
[39]-SOM+GKA SOM and Modified GKA Automatic

Market
Segmentation in
Electronic
Commerce

Self-Organizing
Feature Maps
(SOM) neural
networks

SOM+K,
K-means

Within Cluster
Variations (SSW) and
number of
misclassifications

5 Eshlaghy & Razi
[42]

Grey-based K-means and
GA

Non-
Automatic

Research and
Project selection
and management

Project allocation
selection

clustering of different
projects SSE

6 Sheng, Tucker &
Liu [30]-NGKA

Niche Genetic Algorithm
(NGA) + one step of
K-means

Improving GA
optimization
procedure for
general
clustering

Non-
Automatic Gene Expression

Gene Expression
Data
(Subcellcycle_384
subcellcy-
cle_2945 data,
Serum data
Subcancer data

GGA and GKA Sum of Square Error
(SSE)

7 Karegowda et al.
[41] K-means + GA

Avoidance of
random selection
of cluster centers

Non-
Automatic

Medical Data
Mining

initial cluster
center
assignment

Clustering of dataset PIMA Indian
diabetic dataset

Classification error
and execution time

8
Bandyopadhyay
& Maulik
[24]-KGA

GA + K-means
Escape from
local optimum
convergence

Non-
Automatic

Satellite image
classification

GA perturb the
system to avoid
local
convergence

determining new
cluster center for each
generation

Artificial Data
Real-life data
sets (Vowel data,
iris data, Crude
oil data)

K-means and
GA-Clustering

9 Cheng et al.
[25]-PGKA

Prototype Embedded GA +
K-Means

Encoding Cluster
prototypes for
general GA
clustering

Non-
Automatic SKY testing data K-Means, GKA

and FGKA Ga based criteria

10 Zhang & Zhou
[35]-Nclust

novel niching genetic
algorithm (NNGA) +
K-means

Finding better
cluster number
automatically

Automatic General Cluster
Analysis

Improved
canopy and
K-means ++

UCI dataset GAK and
GenClust

SSE, DBIPBM,
COSEC, ARI and SC
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Table 1. Cont.

Metaheuristic
Algorithm Objective Application

Method for
Automatic
Clustering

MOA Role K-Means Role Dataset Used for
Testing Compared with Performance

Measure

11

Ghezelbash,
Maghsoudi &
Carranza [38]
-Hybrid GKMC

Genetic K-means
clustering + Traditional
K-means algorithm

General
Improvement of
K-Means

Non-
Automatic

Geochemical
Anomaly
Detection from
stream
sediments

Determining
cluster center
locations

General Clustering GSI Analytical
Data

Traditional
K-Means
Clustering
(TKMC)

Prediction rate curve
based on a defined
fitness function

12
Mohammadrezapou,
Kisi &
Pourahmadm
[46]

K-means + Genetic
Algorithm and Fuzzy
C-Means + Genetic
Algorithm

Avoidance of
random selection
of cluster centers

Automatic

Homogeneous
regions of
groundwater
quality
identification

GA method

Determining the
optimum
number of
clusters

General Clustering

Av. Silhouette width
Index; Levene’s
homogeneity test;
Schuler & Wilcox
classification; Piper’s
diagram

13 El-Shorbagy et al.
[37] K-means + GA

Combining the
advantages of
K-means and GA
in general
clustering

Non-
Automatic

Electrical
Distribution
system

GA Clustering
with a new
mutation

GA population
Initialization for best
cluster centers

UCI dataset
K-means
Clustering and
GA-Clustering

14
Barekatain,
Dehghani &
Pourzaferani [44]

K-means + Improved GA
New
cluster-based
routing protocols

Automatic

Energy
Reduction and
Extension of
network Lifetime

Determine the
optimum
number of
clusters

Dynamic clustering of
the network

Ns2Network
(Fedora10)

Other network
routing
protocols, i.e.,
LEACH,
GABEEC and
GAEEP.

15 Lu et al. [43] K-means + GA

Combining the
advantages of
the two
algorithms

Non-
Automatic

Multiple
Travelling
Salesman
Problem

16 Sinha & Jana [33]
GA with Mahalanobis
distance + K-Means with
K-means++ Initialization

clustering
algorithm for
distributed
dataset

Automatic GA method
Initial clustering
using GA
method

Fine-tuning the result
obtained from GA
clustering

Breast Cancer
Iris
Glass
Yeast)

Map
Reduced-based
Algorithms,
MRk-means,
parallel K-means
and scaling GA

Davies-Bouldin index,
Fisher’s discriminant
ratio, Sum of the
squared differences

17 Laszlo &
Mukherjee [26] GA + K-means

improving
GA-based
clustering
method

Non-
Automatic

Evolving initial
cluster centers
using
hyper-quad tree

To return the fitness
value of a
chromosome

GTD, BTD, BPZ,
TSP-LIB-1060
TSP-LIB-3038;
Simulated
dataset

GA-based
clustering,
J-Means

18 Zhang, Leung &
Ye [199] GA + K-means Improving

accuracy
Non-
Automatic Credit Scoring

Reduce data
attribute’s
redundancy

Removal of noise data
German credit
dataset
Australian credit
dataset

C4.5, BPN, GP,
SVM+GA and
RSC

19 Kapil, Chawla &
Ansari [3] K-means + GA Optimizing the

K-means Automatic General Cluster
Analysis GA method

Generating
initial cluster
centers

Basic K-means
clustering

Online User
dataset K-means SSE

20 Rahman & Islam
[32]-GENCLUST GA + K-means

Finds cluster
number with
high-quality
centers

Automatic General Cluster
Analysis

Deterministic
selection of
Initial Genes

Generating
initial cluster
centers

Basic K-means
clustering UCI dataset

RUDAW,
AGCUK, GAGR,
GFCM and
SABC

Xie-Beni Index, SSE,
COSEC, F-Measure,
Entropy, and Purity
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21 Islam et al. [34]
GENCLUST++ GA + K-means

Computational
complexity
reduction

Automatic General Cluster
Analysis GA method

Generating
initial cluster
centers

Basic K-means
clustering UCI dataset

GENCLUST-H,
GENCLUST-F,
AGCUK, GAGR,
K-Means

GA Performance
Measure

22 Mustafi & Sahoo
[36] GA + DE + K-means Choice of initial

centroid Automatic Clustering Text
Document Using DE

Generating
initial cluster
centers

Basic K-means
clustering Corpus K-Means Standard clustering

validity parameters

23 Laszlo &
Mukherjee [27] GA + K-means Superior

Partitioning
Non-
Automatic

German credit
dataset
Australian credit
dataset

24

Patel,
Raghuwanshi &
Jaiswal
[200]-GAS3KM

GAS3 + K-means
Improving the
performance of
GAS3

Automatic GA method
Generating
initial cluster
centers

Basic K-means
clustering

Unconstrained
unimodal and
multi-modal
functions with or
without epistasis
among
n-variables.

GAS3 GA Performance
Measure

25
Xiao, Yan, Zhang,
& Tang
[31]-KMQGA

K-means + QGA
Quantum
inspired GA for
K-means

Automatic GA method
Generating
initial cluster
centers

Basic K-means
clustering

Simulated
datasets
Glass, Wine,
SPECTF-Heart,
Iris

KMVGA
(Variable String
Length Genetic
Algorithm)

Davies–Bouldin rule
index

Particle Swarm Optimisation (PSO)

26 Jie and Yibo [70] PSO + K-means Outlier detection Non-
Automatic

Distribution
Network Sorting

Optimizing the
clustering center

Determining the
optimal number of
Clusters

Simulated
datasets K-Means SSE

27 Tsai & Kao
[63]-KSRPSO

Selective Regeneration
PSO + K-means

SRPSO
Performance
improvement

Non-
Automatic

Global optimal
convergence

Basic K-means
clustering

Artificial
datasets,
Iris, Crude oil,
Cancer, Vowel,
CMC, Wine, and
Glass

SRPSO, PSO and
K-Means

Sum of intra-cluster
distances and Error
Rate (ER)

28
Paul, De & Dey,
[69]-MfPSO
based K-Means

MfPSO + K-Means
Improved multi-
dimensional data
clustering

Non-
Automatic

Cluster center
generation

Basic K-Means
clustering

Iris, Wine, Seeds,
and Abalone

K-Means and
Chaotic Inertia
weight PSO

DBI, SI, Means, SD
and computational
time, ANOVA test
and a two-tailed t-test
conducted at 5%
significance

29
Prabha &
Visalakshi [64]-
PSO-K-Means

PSO + Normalisation +
K-Means

Improving
performance
using
normalization

Non-
Automatic

Global optimal
convergence

Basic K-means
clustering

Australian, Wine,
Bupa,
Mammography,
Sattelite Image,
and Pima Indian
Diabetes

PSO-KM,
K-Means

Rand Index,
FMeasure, Entropy,
and Jacquard Index
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30 Ratanavilisagul
[69]-PSOM

PSO + K-Means +
mutation operations
applied with particles

Avoidance of
getting
entrapped in
local optima

Non-
Automatic

Global optimal
convergence

Basic K-means
clustering

(Iris, Wine, Glass,
Heart, Cancer,
E.coli, Credit,
Yeast

Standard PSO,
PSOFKM,
PSOLF-KHM

F-Measure (FM),
Average correct
Number (ACN), and
Standard Deviation
(SD)of FM.

31 Nayak et al. [66] Improved PSO + K-Means

optimal cluster
centers for
non-globular
clusters

Non-
Automatic

Global optimal
convergence

Basic K-means
clustering

K-Means,
GA-K-Means,
and
PSO-K-Means

32
Emami, &
Derakhshan
[65]-SOFKM

PSO + FKM

Escape from
local optimum
with increased
convergence
speed

Non-
Automatic

Global optimal
convergence

Fuzzy K-means
clustering

FKM, ICA, PSO,
PSOKHM, and
HABC
algorithms

Sample, Iris,
Glass, Wine, and
Contraceptive
Method Choice
(indicated as
CMC)

F-Measure (FM) and
Runtime Metrics

33 Chen, Miao & Bu
[71] PSO + K-Means

Solving initial
center selection
problem and
escape from local
optimal

Non-
Automatic

Image
Segmentation

Global optimal
convergence

Dynamic clustering
using k-means
algorithm

Lena, Tree and
Flower images
from the Matlab
Environment

K-Means
PSOK

Sphere function and
Griewank function

34 Niu et al. [48]
Six different PSOs with
different social
communications +
K-means

Escape from
local optimum
convergence
with accelerated
convergence
speed

Non-
Automatic

Global optimal
convergence

Refining partitioning
results for
accelerating
convergence

Iris, Wine, Coil2,
Breast Cancer,
German Credit,
Optdigits, Musk,
Magic 04, and
Road Network
with synthetic
datasets

PSC-RCE,
MacQueens
K-Means,
ACA-SL,
ACA-CL,
ACA-AL and
Lloyd’s K-means

Mean squared error
(MSE—sum of
intra-cluster
distances)

35
Yang, Sun &
Zhang
[62]-PSOKHM

PSO + KHM
Combining the
merits of PSO
and KHM

Non-
Automatic

Global optimal
convergence

Refining cluster
center and KHM
clustering

Artificial
datasets, Wine,
Glass, Iris,
breast-cancer-
Wisconsin, and
Contraceptive
Method Choice.

KHM, PSO Objective function of
KHM and F-Measure

36 Chen & Zhang
[59]-RVPSO-K PSO + K-means

Improved
stability,
precision, and
convergence
speed.

Non-
Automatic

Web Usage
Pattern
Clustering

A parallel search
for optimal
clustering

Refining cluster
center and K-means
clustering

Two-day Web log
of a university
website

PSO-K Fitness Measure and
Run-time

37
Niknam, &
Amiri, [53]-
APSO-ACO-K

Fuzzy Adaptive PSO +
ACO + K-means

Solving
non-linear
partitioning
clustering
problem

Non-
Automatic

Provide Initial
state for
K-means
algorithm

Basic K-means
clustering

Artificial
datasets, Iris,
Wine, Vowel,
Contraceptive
Method Choice
(CMC),
Wisconsin breast
cancer, and
Ripley’s glass

PSO, ACO, SA,
PSO–SA,
ACO–SA,
PSO–ACO, GA,
TS, HBMO, and
K-means

Total mean-square
quantization error
and F-Measure
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38
Kao, Zahara &
Kao
[60]-K-NM-PSO

K-means + + PSO Effective global
convergence

Non-
Automatic

Providing more
accurate
clustering

Provide initial
seedling

Artificial
datasets, Vowel,
Iris, Crude-oil,
CMC, Cancer,
Glass, and Wine

PSO, NM–PSO,
K–PSO, and
K-means

Sum of the
intra-cluster distances
and the Error Rate

39
Omran, Salman
& Engelbrecht
[58]-DCPSO

Dynamic Clustering PSO +
K-means

An automatic
clustering with
reduced effect of
initial conditions

Automatic Image
Segmentation

Binary PSO
optimization

Basic PSO
clustering Refine cluster center

Lenna, mandrill,
jet,
peppers, one
MRI, and one
satellite
image of Lake
Tahoe

GA and Random
Search dynamic
Clustering

Dunn’s index,
Validity index
proposed by Turi,
S_Dbw validity index

40
Van der Merwe
& Engelbrecht
[49]

PSO + K-means
Improving the
performance of
PSO

Non-
Automatic PSO clustering Initial Seedling for

PSO

Artificial
datasets Iris,
Wine, Breast
cancer, and
Automotives

K-Means and
PSO

The Quantization
error, the intra-cluster
distances and the
inter-cluster distances

41 Kao & Lee
[61]-KCPSO

Combinatorial PSO +
K-means Automatic

Discrete PSO to
optimize cluster
numbers

Optimizing the
number of
clusters

Basic K-means
clustering

Artificial
datasets, Iris, and
Breast Cancer

DCPSO and
GCUK DB index

Firefly Algorithm (FA)

42
Mathew &
Vijayakumar
[75]-MPKM

K-means + Firefly Parallelization of
K-Means

Non-
Automatic

Initial optimal
cluster centroid

Refine optimized
centroid

Wisconsin
diagnostic breast
cancer, Wine,
Glass, and Credit
data

Parallel K-means Accuracy, SSW, SSB,
DBI, DDI and SC.

43

Jitpakdee,
Aimmanee &
Uyyanonvara
[79]- FA-K

K-means + Firefly

Hybrid-
clustering-based
color
quantization

Non-
Automatic

Colour Image
Quantization

Initial cluster
centroids and
Global optimal
convergence

Refine initial
centroids

Three images
from USC-SIPI
Image Database
(Lena, Peppers,
and Mandrill)

FA and K-Means

Mean Square Error
(MSE) and Peak
Signal-to-Noise Ratio
(PSNR)

44 Kuo & Li [80]
Wavelet Transform + FA
based K-Means + F A
based SVR

Forecasting
model with
wavelet
transform

Non-
Automatic

Export Trade
Forecasting

Noise detection
and
Normalisation

Basic clustering
GA-SVR,
PSO-SVR,
FA-SVR and
DE-SVR

Mean Square Error
(MSE)

45 HimaBindu et al.
[83] Firefly + K-Means Improved Big

Data Clustering
Non-
Automatic

Generate initial
cluster centroids

Basic K-means
clustering

Iris Plants
database, Glass,
Wine, two
microarray
information
indexes and
Artificial
datasets.

K-Means,
K-Means++

Total computation
time, centroid
selection time and
accuracy
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46 Langari et al.
[82]-KFCFA

K-member Fuzzy
clustering + FA

A combined
anonymizing
algorithm

Non-
Automatic

Social Network
Privacy
Preservation

Optimizing the
primary clusters

The use of the
K-member version of
fuzzy c-means

Social network
databases from
Facebook,
Twitter, Google +
and YouTube

47 Kaur, Pal &
Singh [81] K-means + Firefly

IDS training
model for data
classification

Non-
Automatic

Intrusion
Detection

Initialize method
for the K-Means

Clustering for
Classification

NSL-KDD
dataset

K-Means + Bat
K-Means +
Cuckoo,
K-Means++,
K-Means,
Farthest First
and Canopy

CCI, TP, FP Precision,
Recall, F-Measure,
ROC and Time to
build training model.

48 Nayak et al. [77] Optimized K-means with
firefly and Canopies

A hybrid
algorithm for
classification

Non-
Automatic Pre-clustering Basic Clustering Haberman’s

survival dataset
K-means
algorithm

Classification
accuracy

49
Xie et al.
[74]-IIEFA and
CIEFA

K-means + Improved
Firefly

resolve
initialization
sensitivity and
local optimal
traps

Non-
Automatic FA Clustering

Generate Initial
Cluster Models as
seed solution

ALL-IDB2
database Sonar,
Ozone, Wbc1,
Wbc2 Wine, Iris,
Balance, Thyroid,
and E. coli

GA, ACO,
K-means, FA,
DA, SCA, CFA,
CFA2, NaFA,
VSSFA, and MFA

Sum of intra-cluster
distances
Av.accuracy
Av.sensitivity,
Av.specificity &
macro-average
F-score

50
Wu et al.
[84]-Kmeans-
FFA-KELM

K-means + FFA + Kernel
Extreme Learning
Machine Model

Non-
Automatic

Evapotranspiration
Estimation

Building various
sub-models

Decomposition of
training dataset into
multiple subsets

meteorological
data (Tave, Tmax,
and Tmin), wind
speed, relative
humidity and
sunshine

FFA-KELM
Coefficient of
determination, RMSE,
MAE, SI and NSE

51 Behera et al. [77]
-FCM-FA

Fuzzy C-Means + FireFly
Algorithm

tackles Fuzzy
C-Means
problems

Non-
Automatic

52
Nayak, Naik &
Behera
[79]-FA-K-means

Firefly + K-means
global search
capacity for
K-means

Non-
Automatic

53
Hassanzadeh &
Meybodi
[74]-K-FA

K-means + Firefly Finding initial
centroids

Non-
Automatic

Finding initial
centroids Refining the centroids

Standard data set
from UCI (Iris,
WDBC, Sonar,
Glass, and Wine)

K-means, PSO,
KPSO

Intra-cluster distance
and clustering error

Bat Algorithm (BAT)

54
Tripathi, Sharma
& Bala
[87]-DBPKBA

Bat algorithm + K-means

the parallelized
approach in a
distributed
environment

Non-
Automatic

Obtaining global
optimum
convergence

better population
initialization

Wine, Magic,
Poker hand and
Replicated wine

K-means, PSO,
and Bat
Algorithm

Best and Average
intra-cluster distance
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55 Chaudhary &
Banati [90]-HESB

EShBAT + K-medoids +
K-means

Leveraging
optimisation
capabilities

Non-
Automatic

Dividing
populations into
groups

starting population
and refining solutions

BA, EShBAT,
K-means,
K-Medoids

56 Gan, & Lai
[89]-KMBA K-means + Bat Algorithm Classification of

EBN
Non-
Automatic

EBN
Classification

Basic Bat
Algorithm
Clustering

Initiating Initial
points for BA

Three classes of
data (Grades AA,
A, and B)

Classification
Accuracy

57
Pavez, Altimiras,
& Villavicencio
[88]

K-means + Binary Bat
Algorithm

demonstrate
K-means
technique utility
in binarization

Non-
Automatic

Multidimensional
Backpack
Problem

58 Sood & Bansal
[86]

K-Medoids + Bat
Algorithm Automatic

Generating
initial cluster
center for
K-Medoids

K-Medoids clustering K-Medoids

Flower Pollination Algorithm (FPA)

59 Jensi & Jiji
[92]-FPAKM K-means + FPA

Combining the
advantages of
the two
algorithms

Non-
Automatic

Provide Initial
seedlings for
K-means

K-means Clustering

Artificial dataset
iris, thyroid,
wine, CMC,
crude oil, and
glass

FPA, K-means
Mean-square
quantization error
(MSE)

60 Kumari, Rao &
Rao [93] K-means + FPA

optimum
solutions in
Image
compression

Image
Compression

Peak signal to noise
ratio (PSNR), mean
square error (MSE)
and fitness function.

Artificial Bee Colony (ABC)

61
Armano &
Farmani
[95]-kABC

K-means + ABC
finding a global
optimum
solution

Non-
Automatic ABC Clustering Use K-means for

initial seedlings

Iris, Wine, and
Contraceptive
Method Choice
(CMC)

K-means
Distortion Criterion,
Computational Cost,
SD and F-Measure

62 Cao & Xue [102]-
MABC-K-means Modified ABC + K-means

hybridized
framework for
cluster analysis.

Non-
Automatic

Customer
Relationship
Management

Provide initial
cluster center

Basic K-means
Clustering

Simple dataset of
customers and
their orders of an
e-commerce
platform in the
first quarter.

Differential
Evolution
algorithm (DEA),
standard Genetic
algorithm (GA)
and standard
Artificial Bee
Colony
algorithm (ABC)

The mean and
variance of Griewank,
Rastrigin, Rosenbrock,
Ackley and Schwefel
functions.

63 Wang et al.
[101]-ABC-KM ABC + K-means

Improving the
effectiveness of
Wind farm
clustering

Non-
Automatic

Modeling of
Farms with
DFIGs

Provide initial
cluster center

Basic K-means
Clustering MW DFIG K-means

Wind speed
disturbances and
short-circuit faults
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64 Huang [100] ABC + Accelerated
K-means

Non-
Automatic

Colour Image
Quantization

Provide initial
cluster center

Basic K-means
Clustering

Lena, Baboon,
Lake, Peppers,
and Airplane
with a size of 512
× 512

SFLA-CQ

Average mean square,
error, the standard
deviation, and
average computation
time.

65 Tran et al. [96]
-EABCK Enhanced ABC + K-means

improvement for
K-means
algorithm

Non-
Automatic

Generate initial
cluster center

Basic K-means
Clustering

Artificial
datasets (Iris,
Wine, Glass,
E.coli, Liver
disorder, Vowel,
Pima, WDBC,
and CMC

ABC, CABC,
K-means, HABC,
K-means++ and
FAPSO-ACO-K

Mean square error
(MSE) and Euclidean
distance.

66 Bonab et al. [97] Modified K-means + ABC
+ DE

escape from local
optimum

Non-
Automatic

67
Jin, Lin & Zhang
[98]-CAABC-K-
means.

CAABC + K-means for optimal
clustering

Non-
Automatic

Generate initial
points for
K-means

clustering

Iris,
Balance-Scale,
Wine, E.coli,
Glass, Abalone,
Musk, Pendigits,
Skin Seg, CMC,
and Cancer

ABC, IABC,
HABC, CAABC,
DFSABCelite
and
PSO+K-means

Sphere, Rosenbrock,
Rastrigin, Alpine and
Ackley

68 Dasu, Reddy &
Reddy [99] K-means + ABC Satellite Image

Classification
Non-
Automatic

Image
Classification Classification Segmentation Remote sensing

Images PSO
Sensitivity, Specificity,
Overall accuracy and
Kappa Coefficient.

Grey Wolf Optimization (GWO)

69
Pambudi,
Badharudin &
Wicaksono [106]-
GWO-K-means

GWO + K-means

Optimizing the
weakness of
K-means
through GWO

Non-
Automatic

Image
Segmentation

Generate initial
points for
K-means

initial centroid
refinements, final
optimal solution

Brain MRI K-means Sum of Square Error
(SSE)

70

Korayem,
Khorsid &
Kassem
[105]-K-GWO

K-means + GWO
cluster analysis
performance
improvement

Non-
Automatic

Capacitated
vehicle routing
Problem

Generate initial
points for
K-means

K-means clustering

Benchmark
problems
downloaded
from the web
http://www.
branchandcut.
org/ accessed on
17 October 2021.

Compared three
different
versions of the
proposed
algorithm

Total distance
travelled

http://www.branchandcut.org/
http://www.branchandcut.org/
http://www.branchandcut.org/
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71 Katarya & Verma
[104] Fuzzy-C-Means + GWO Non-

Automatic
Recommender
System

Generating
Initial Clusters
and initial
clusters centroids

Classification by
similarity of user
ratings

Movie lens
dataset

PCA, PCA-SOM,
K-means,
PCA-K-means,
K-means
improved,
SOM-Cluster,
FCM,
KM-PSO-FCM,
PCA-GAKM and
GAKM-Cluster

Mean absolute error,
standard deviation,
precision and recall

72 Mohammed et al.
[107]-KMGWO K-means + GWO

Performance
Enhancement of
GWO using
K-means

Classical
Engineering
problem

CEC2019
benchmark test
functions

GWO, CSO,
WOA-BAT,
WOA

Sine-Cosine Algorithm (SCA)

73
Moorthy &
Pabitha [109]-
SCAK-means

SCA + K-means
resource
discovering for
cloud resources

Non-
Automatic

Cloud
computing

Updating initial
centroid position

Generate initial
clusters Cloud resources K-means

Intra Cluster
similarity,
Inter-Cluster
similarity, the
similarity of cloud
resources, and
convergence rate

Cuckoo Search Algorithm (CSA)/Cuckoo Search Optimizatin (CSO)

74 García, Yepes &
Martí [118] CSO + K-means

solving
combinatorial
optimization
problems

Non-
Automatic

Design of
counterfort
retaining walls

Production of
new solution in
continuous space

Generate initial
solution
(Discretization)

The emission
and cost values
obtained from
[34,66]

K-means, HS

Wilcoxon signed-rank;
the Shapiro–Wilk or
Kolmogorov—
Smirnov-Lilliefors
normality test

75 Manju & Fred
[120] CSO + K-means

Optimization-
based
segmentation
and compression

Compound
images
segmentation
&compression

76
Deepa, &
Sumitra
[121]-CSOAKM

CSO + K-means optimal global
solution

Non-
Automatic

Intrusion
Detection System

Generate initial
cluster centroid

NSL-KDD
dataset

IGNB chi square
selection, and
COFS

Image quality index,
PSNR, RMSE, SSIM
and SDME

77 Arjmand et al.
[117]

an automatic
tumor
segmentation
algorithm

Non-
Automatic

Breast tumor
segmentation

Generate initial
Centroids for
K-means
algorithm

Clustering for
segmentation

RIDER breast
dataset

K-means and
Fuzzy C-Means

78
Binu, Selvi &
George [119]-
MKF-Cuckoo

Cuckoo Search Algorithm
+ Multiple Kernel-based
Fuzzy C-Means

Searching for the
best cluster
centroids

Non-
Automatic

Iris and wine
datasets

Cluster accuracy, rand
coefficient, jacquard
coefficient and
computational time.



Appl. Sci. 2021, 11, 11246 25 of 61

Table 1. Cont.

Metaheuristic
Algorithm Objective Application

Method for
Automatic
Clustering

MOA Role K-Means Role Dataset Used for
Testing Compared with Performance

Measure

79
Girsang,
Yunanto &
Aslamiah
[113]-FCSA

Cuckoo search algorithm +
K-means

faster cluster
analysis

Non-
Automatic Exploration Convergence

Iris, Wine, Yeast,
Abalone, Breast
cancer, Glass,
E.coli,
Haberman,
Sonar, and
Parkinson

K-means Mean and Standard
Deviation

80
Tarkhaneh,
Isazadeh &
Khamenei
[115]-HCSPSO

CS + PSO + K-means More optimized
cluster result

Non-
Automatic Clustering

PSO and K-means
produces new nest for
CS

Standard
benchmark
datasets

CS, k-means,
PSO, Improved
Cuckoo Search
ICS, ESA),
BFGSAand EBA

81 Ye et al. [111]-
ICS-Kmeans

Improved Cuckoo search +
K-means

Better clustering,
accuracy, and
faster
convergence rate

Non-
Automatic

initial centroids
for K-means
algorithm

Basic K-means
Clustering

UCI standard
dataset (Iris,
Wine, Seeds, and
Haberman)

CS-Kmeans,
K-Means,
PSO-Kmeans

Sum of Square Error
(SSE)

82 Lanying &
Xiaolan [114] Cuckoo Search + K-means

Optimization of
cluster center in
K-Means

Non-
Automatic

Recommender
System

Optimizing the
clustering center

Basic K-Means
Clustering

Movie Lens
dataset

K-Means,
PSO-Kmeans
and GA-Kmeans

Clustering accuracy
and convergence
speed

83 Saida, Kamel &
Omar [112] Cuckoo Search + K-Means

Reduction of the
number of CS
iteration

Non-
Automatic

Document
clustering Clustering Generate Initial

Cluster Centroids

Reuters 21578
Text
Categorization
Dataset and the
UCI Dataset

F-Measure

84 Singh & Solanki
[116]

K-means + Modified
Cuckoo Search

Global optimum
convergence

Non-
Automatic

Initial centroids
for K-means
algorithm

K-means clustering Sum of Square Error
(SSE)

Differential Evolution (DE)

85 Kwedlo
[124]-DE-KM DE + K-means

High-quality
clustering
solutions.

Non-
Automatic

Production of
candidate
solutions

initial centroids
fine-tuning solution

UCI dataset,
TSPLIB library,
USC-SIPI
repository

Global K-means,
DE, two
K-means
variants
algorithm
Genetic K-means
algorithm

Sum of Square Errors
(SSE)

86 Wang [129] DE + K-means Non-
Automatic

Determine the
initial cluster
centers

Clustering using
weighted K-means
algorithm

Iris, Wine, Seed,
and Page Blocks

87 Silva et al. [130] ACDE + K-means

Automatically
determine k
activation
threshold

Automatic DE approach
Automatic
determination of
cluster number

Basic K-means
clustering

UCI standard
dataset

Davies Bouldin Index
(DBI) and Cosine
Similarity (CS)
measure
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88 Cai et al.
[125]-CDE DE + one-step K-means Improvement of

DE Automatic DE approach Clustering multi-parent
crossover operator

unconstrained
single-objective
benchmark
functions with
different
characteristic

DE

Number of fitness
function evaluations
(NFFEs) and quality
of the final solutions.

89 Mustafi & Sahoo
[36] GA + DE + K-means

To improve the
initial cluster
centroids

Automatic Text Document
Clustering DE approach

Generating
improving
cluster centers

Basic K-means
clustering

Basic
implementations
of K-Means

90 Bonab et al. [97] ABC + DE + Modified
K-means

To solve
initialization
problems

initial cluster
centers, find
global solution

Clustering Standard UCI
dataset

91 Sierra, Cobos, &
Corrales [127] DE + K-Means

A hybrid for
continuous
optimization

Non-
Automatic DE clustering Generation of initial

groups for DE
A large set of test
functions DE and PSO

Fitness function value
reached, av. number
of fitness function
evaluation to obtain
optimal value.
Friedman and
Wilcoxon signed test,
with a 95%
significance.

92 Sheng et al. [131]-
DE-ANS-AKO

DE + Adaptive niching +
K-means

Dynamic
adjustment of
niche size to
prevent
premature
convergence

Non-
Automatic DE clustering

Use of one iteration of
k-means for
fine-tuning the initial
solution

Synthetic
datasets, Letter,
Connectionist,
Shuttle, MFCCs,
Isolet1, Isolet2,
HARs Flowers17,
Mnist,
Cancer728,
Yeast2945

DE-AKO,
DE-ANS-KO,
GKA, MEQPSO,
EPSONS,
PSOKM,
CGABC, SHADE,
TSMPSO,
ICMPKHM,
FPAGA

Mean ICV Mean ARI
Mean AC, Mean
runtimes and
Wilcoxon’s rank-sum
tests.

93
Kuo, Suryani &
Yasid [126]-CDE-
K-Means

ACDE + K-means
An Automatic
clustering
algorithm

Automatic Clustering
Tuning cluster
centroids to improve
performance

Iris and Wine DE

94 Hu et al. [128] DEFOA + K-means Improving
K-means

Non-
Automatic Sales database K-Means

the error sum of
squares criterion
function as fitness
function

Invasive Weed Optimisation (IWO)

95 Fan et al. [134]-
IWO-KMEANS IWO + K-means

Improve global
optimization
while utilizing
local
optimization
power

Non-
Automatic Text Clustering

Selection of
initial cluster
center

Basic K-means
clustering

Chinese
documents
(history,
transportation,
medical, and
sports) from the
corpus of Fudan
University

K-Means,
DE-K-Means F-Measure
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96
Pan et al.
[135]-CMIWO
K-Means

IWO + K-means
Overcome the
drawbacks of
K-Means

Non-
Automatic

Direct K-means
search for
definite
evolution
direction

Clustering

97 Razi [137] DEA based K-means +
IWO

Clustering
algorithm for
better facility
location

Non-
Automatic

Facility Location
problem

Determining the
Pareto solution
for the
bi-objective
model

Clustering

98
Boobord,
Othman, &
Abubakar
[136]-PCAWK

PCA + IWO + K-means Non-
Automatic

PCA for
dimensionality
reduction

WK-means for
clustering

Wine, Cancer,
USCensus90,
SPECTF Heart
and Musk2000

PCAK

Sum of Square Error
(Best, Average, Worst
and Standard
deviation)

Imperialist Competition Algorithm (ICA)

99
Emami &
Derakhshan
[65]-ICAFKM

ICA + Fuzzy K-means

Escape from
local optimal and
increased
convergence
speed

Non-
Automatic

Clustering in an
alternate manner
with the FKM

Clustering in an
alternate manner with
the ICA

Iris, Glass,
Sample,
Contraceptive
Method Choice
(CMC), and Wine

ICA, PSOKHM,
PSO, FKM and
HABC

F-measure and
runtime metrics

100 Abdeyazdan
[140]-ICAKHM

Modifier ICA +
K-Harmonic means

Compensate
existing
problems in
cluster analysis

Non-
Automatic

Milling
Machines
classification

generates the
initial population
and empires

Generates initial
empires for the
modified ICA

Iris, Glass,
Contraceptive
Method Choice,
and Wine

ICAKM, KHM,
GSOKHM and
PSOKHM
methods.

F-measure, KHM (X,
C), Runtime (s)

101 Niknam et al.
[139]-K-MICA

K-means + Modified
Imperial Competitive
Algorithm

Optimum
clustering

Non-
Automatic

Generates
population and
forms the initial
empire

Improve empires’
colonies &
imperialists position

Iris, Vowels,
Wine and
Contraceptive
method choice

ACO, MICA, SA,
PSO, GA,
HBMO, TS and
K-Means

The best, average,
worst of the fitness
function and
Standard deviation of
the fitness function.

Harmony Search (HS)

102
Nazeer,
Sebastian &
Kumar
[145]-HSKH

Harmony Search +
K-Means

Better cluster
accuracy

Non-
Automatic

Clustering Gene
expression Data

Determining the
initial cluster
centroids

Clustering
Human
Fibroblast Serum
data and the Rat
CNS data

K-Means, SOM,
IFCM, VGA,
CRC

Silhouette Index

103 Forsati et al.
[141]-HSCLUST

Harmony Search +
K-Means

Less dependent
on initial
parameters

Non-
Automatic

Document
Clustering Initial centroids Obtain the best vector

from the HS
K-Means,
HSCLUST F measure

104 Chandran &
Nazeer [144]

Enhanced K-Means +
Harmony Search

Better cluster
solution

Non-
Automatic

Determining the
initial cluster
centroids

Clustering

UCI Machine
Learning
Repository
dataset (Iris,
New-Thyroid
and Breast
Cancer)

K-Means,
HS-K-means Cluster Purity metric.
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105 Raval, Raval &
Valiveti [146]

Harmony Search +
K-Means

Cluster Analysis
Optimization

Non-
Automatic

Sensor Network
Energy
Utilization

Finding initial
cluster centers
called Clustering
Hierarchy (CH)

Fine-tuning the initial
CH obtained from HS

Dataset
simulation using
NS2 simulator

K-Means, HSA
Energy dissipation,
Total data transfer in
number of packets

106 Cobos et al.
[143]-IGBHSK

Global best Harmony
Search + K-Means

Hybridizing
Global best
Harmony Search
with K-Means

Automatic Web document
clustering

Using BIC or
Davies-Bouldin
index

Providing global
search strategy
in the solution
space

Finds the optimum
value in a local search
space

Datasets based
on Reuters-21578
and DMOZ

Carrot2 BIC, Precision, Recall,
F-measure, NRL, OTC

107
Mahdavi &
Abolhassani
[142]-HKA

K-means + Harmony
Search

An algorithm
based on HS
optimization

Non-
Automatic

Web document
clustering

Global search for
optimum
solutions

Localize search in the
proximity of the
obtained global
solution

TREC-5, TREC-6,
TREC-7, DMOZ,
and 20
Newsgroup

K-Means, GA,
PSO AND GM

Quality and speed of
convergence,
F-Measure

108 Kim et al. [147] Harmony Search +
K-means

Clustering-based
SDN load
balancing
scheme

Non-
Automatic

SDN load
balancing

Fine-tuning the
solution from
K-means
clustering

Basic clustering

100 to 1000
switches and 10
to 100 controllers
are randomly
placed in an area
of 100 × 100

HS, P-HS, and
P-HS-K. Measure of accuracy

Black Hole (BH) Algorithm

109

Eskandarzadehalamdary,
Masoumi, &
Sojodishijani
[151]-BH-BK

Black Hole + Bisecting
K-means

Improve
performance of
bisecting
K-means

Non-
Automatic

Generates initial
cluster centroids
for BK-means

Basic clustering and
refinement

Iris, Glass,
Vowel, and
Contraceptive
Method Choice
(CMC)

Bisecting
K-Means, BH,
PSO

Sum of intra-cluster
distances and Error
Rate (ER)

110 Feng, Wang &
Chen [153] Black Hole + K-means

Initial cluster
centers for
K-means

Non-
Automatic

Image
Classification

Determining the
initial cluster
center for
K-means

Basic clustering and
refinement

111 Pal & Pal [152] Black Hole + K-means Improved cluster
analysis

Non-
Automatic Clustering Partly generates

initial cluster center K-Means

Membrane Computing (P System)

112 Jiang, Zang &
Liu [155]

K-means + DNA genetic
Algorithm + P system

K-means based
on DNA genetic
algorithm and P
system

Non-
Automatic

Analyze the
initial cluster
center with P
system

Randomly
generated
dataset

Convergence rate,
Measure of accuracy
and intra cluster
distance

113 Wang, Xiang &
Liu [159]

K-means + K-medoids +
Tissue-like P system

Handling noises
and outliers

Non-
Automatic

Tissue-like P
system to
present parallel
operation

optimizing the result
with K-medoids UCI dataset K-means and

K-medoids

114 Zhao, Liu &
Zhang [158] P system + K-medoids

Using P system
to realize
K-medoids
algorithm

Non-
Automatic

Provide parallel
operation for
lower time
complexity

Clustering
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115 Weisun & Liu
[157] MDE K-means + P system

Improved initial
cluster center for
K-means

Non-
Automatic

Evolve the
objects with
MDE

Clustering
Artificial data
sets, the iris,
wine

K-means
algorithm and
DE -K-means
algorithm

Cluster validity index,
Xie-Beni index,
the PBMF index

116 Zhao & Liu
[156]-GKM

K-Means + GA +
Tissue-like P system

Improved initial
cluster center for
K-means

Non-
Automatic

P system for
parallelism and
GA for good
convergence

Clustering

117 Wang, Liu &
Xiang [160]

K-means + Tissue-like P
system

Improved initial
cluster center for
K-means

Non-
Automatic

Selection of
initial cluster
centers

Clustering

UCI datasets
-Wine, Glass,
Haberman,
Soybean-small,
and Zoo

K-means, CCIA,
kd-tree,
K-means++,
FSDP, Bai’s,
Khan’s

No of initialisation
cells

Dragonfly Algorithm (DA)

118 Angelin [162] K-means + Dragonfly Outlier detection Non-
Automatic

Optimizing the
generated
clusters

Initial cluster
generation

Arrhythmia,
Diabetics and
Epileptic seizure

K-means and
K-median

Detection rate, ROC
as objective function

119
Kumar, Reddy,&
Rao [164]-
WHDA-FCM

Wolf hunting-based
dragonfly + Fuzzy
C-means

SAR Images
change detection

Non-
Automatic

SAR Image
Change
detection

Selection of
optimal
coefficients
(cluster center)

Clustering SAR Images

DWT-FCM,
NR-ELM,
GADWT-FCM,
ABDWT-FCM,
PSDWT-FCM,
FFDWT-FCM,
GWDWT-FCM,
AGWDWT-FCM
and
DADWT-FCM

accuracy, specificity,
sensitivity, precision,
negative predictive
value, F1 score and
Matthew’s correlation
coefficient. False
positive rate, false
negative rate and
false discovery rate

Ant Lion Optimizer (ALO)

120 Chen et al.
[165]-QALO-K

Quantum-inspired ant lion
optimizer + K-Means

An efficient
algorithm for
intrusion
detection

Non-
Automatic

Intrusion
detection

Generate initial
cluster center for
K-means

Clustering

KDD Cup
datasets and Iris,
Glass, Wine,
Cancer, Vowel,
CMC and Vehicle

GA, ACO,
MBCO,
MKCLUST and
ALO-K

Accuracy rate (AR),
Detection Rate (DR),
False positive rate
(FPR) and F-measure
(F1)

121
Murugan &
Baburaj
[166]-ALPSOC

Improved K-medoids +
Ant lion + PSO

Computational
efficiency and
better
performance

Non-
Automatic

Optimized the
generated initial
clusters

Generate initial
clusters

UCI
datasets—Glass,
Leaf, Seeds,
Soybean and
Ionosphere

K-Means,
K-Means -FA,
KMeans—PSO

Intra-cluster distance,
F-measure, Rand
Index, Adjusted Rand
Index, Entropy and
Normalized Mutual
Information

122 Dhand &
Sheoran [168]

Ant Lion Optimizer +
K-Means algorithm

Energy-efficient
routing protocol

Non-
Automatic

Energy-efficient
routing protocol Clustering
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123 Majhi & Biswal
[164]

K-Means + Ant Lion
Optimizer

Optimal cluster
analysis

Non-
Automatic

Optimized the
generated
clusters

Generate initial
clusters

Glass, vowel,
ionosphere, leaf,
gene expression
cancer RNA-seq,
waveform
database
generator
(version 2),
immunotherapy,
and soybean

K-Means,
KMeans-PSO,
KMeans-FA,
DBSCAN and
Revised
DBSCAN

Sum of intra-cluster
distances and
F-measure.

124
Naem & Ghali
[167]-K-median
Modularity ALO

K-Median + Ant Lion
Optimizer

Social network
community
detection

Non-
Automatic

Social Networks
community
detection

Optimized the
generated
clusters

Generate initial
clusters

Zachary karate
Club, Bottlenose
Dolphins
network,
American
College football
network,
Polbooks
network

K-means
Modularity PSO,
K-means
Modularity Bat
optimization,
K-means
Modularity CSO,
K-median
Modularity PSO,
K-median
Modularity Bat
optimization,
K-median
Modularity CSO,
GN, FN, BGLL,
HSCDA.

Normalized Mutual
Information (NMI),
Measure of
Modularity for
community quality

Social Spider Algorithm (SSO)

125
Thiruvenkatasuresh
&
Venkatachalam
[171]

Social Spider Algorithm +
Fuzzy C-means

classify and
segment Brain
tumor images

Non-
Automatic

Tumor detection
in Brain images

Optimizing
Centroid Clustering ANFIS and

FCMGWO

126
Chandran,
Reddy, & Janet
[170]-SSOKC

Balance local and
global searches
with improved
convergence
speed.

Non-
Automatic

To find the
vicinity of
optimal solution

initial centroid
refinements and final
optimal solution

UCI datasets
(Iris, Glass,
Vowel, Wine,
Ruspini, and
Cancer)

Kbat, KFA, KPA, CPU Elapse Time

Fruit Fly Optimization (FFO)

127
Sharma & Patel
[173]-K-Means-
FFO

K-means + FFO
Optimal
clustering
quality

Non-
Automatic

Optimize initial
Clusters

Generate initial
clusters

20NewsGroup,
Reuters-21578,
and Classic4
dataset

K-means,
K-means-PSO
and
K-means-ALO

Intra-cluster distance,
Purity Index,
F-Measure and
Standard Deviation

128 Jiang et al. [174] K-means + FOA
Optimal
clustering
quality

Non-
Automatic

Earthquake
Rescue center
Site Selection
and Layout

Optimize initial
Clusters

Generate initial
clusters

Integrated data
of affected areas

RWFOA and
MFOA

Weighted sum of
construction costs,
transportation costs
and penalty costs of
emergency rescue
centers
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129 Wang et al.
[176]-FOAKFCM

Kernel-based Fuzzy
C-means + FOA

Integrating
kernel-based
fuzzy c-means
and FOA

Non-
Automatic

Initialize initial
cluster centroids

Classifying/Clustering
the data

Iris, Glass, and
Seeds FCM, KFCM

Classification
evaluation index (XB
index

130 Hu et al. [128] DEFOA + K-means

Improving
K-means for
universal
continuous
optimization

Non-
Automatic

Generate initial
cluster centroids

Optimize the initial
clustering Sales database K-means Convergence

performance

Bees Swarm Optimization (BSO)

131
Aboubi, Drias &
Kamel [179]-
BSO-CLARA

BSO + K-medoids
Effective and
efficient
algorithm

Non-
Automatic

PAM, CLARA
and CLARANS

132

Djenouri,
Habbas &
Aggoune-Mtalaa
[180]

Using K-means
as
decomposition

Non-
Automatic Clustering DIMACS

133
Djenouri,
Belhadi &
Belkebir [178]

BSO + K-means
Document
Information
Retrieval
Problem

Document
Information
Retrieval

Exploration of
already created
clusters

Clustering
CACM
collection, TREC,
Webdocs and
Wikilinks

PTM, SVMIR,
KNNIR and
ARMIR

F-measure, Runtime

Bacterial Colony Optimization (BCO)

134

Revathi,
Eswaramurthy, &
Padmavathi
[182]-BCO + KM

BCO + K-means
Reduced
computational
cost

Non-
Automatic

Selection of
initial cluster
centroids

Optimizing the initial
clusters for optimal
solution

2 Artificial
datasets; UCI
datasets (CMC,
Glass WBC,
Heart, Iris, Wine,
Vowel, Balance)

K-means, PSO,
BFO and BCO

Sum of Square Errors
(SSE)

135
Vijayakumari &
Deepa
[183]-HFCA

FCM + Fuzzy BCO High efficiency Non-
Automatic

Selection of
initial cluster
centroids

Optimizing the initial
clusters for optimal
solution

Iris, WBC, Glass,
Wine, Vowel, and
CMC

FBFO, FBCO,
FCM AND FPSO IntraCluster distance

Stochastic Diffusion Search (SDS)

136

Karthik,
Tamizhazhagan,
& Narayana
[185]-SS-KMeans

SDS + K-means Finding optimal
clustering points

Non-
Automatic

Data Leak
Prevention in
Social Medial

Select initial
centroid for
clustering

Clustering S True Positive Rate
(TPR)

Modified Honey Bees Mating Optimization (HBMO)

137 Teimoury et al.
[187]-HMBK HBMO + KMeans

An optimized
hybrid clustering
algorithm

Non-
Automatic

Selection of
Initial Cluster
centroids

Clustering Wine, Iris and
B.C

SA, PSO, TS,
ACO, GA,
K-means

Sum of Square Error
(SSE)
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138
Aghaebrahimi,
Golkhandan &
Ahmadnia [188]

HBMO + KMeans
Localization and
sizing of flexible
AC transmission
system

Non-
Automatic

Localization and
sizing of Flexible
AC Transmission
System

Determining the
best fitness
function

Data Classification—
Clustering

TCSC, UPFC
AND SVC

Average Installation
Cost, total generation
cost and cost of power
transmission losses

Cockroach Swarm Optimization (CSO)

139
Senthilkumar &
Chitra
[190]-HHMA

MCSO + K-means Load balance in
cloud networks

Non-
Automatic

Measuring the
load ratio Clustering

Overall Response
time and Processing
time

Glowworm Swarm Optimization (GSO)

140 Onan &
Korukoglu [193] K-means + GSO

An efficient and
effective hybrid
algorithm

Non-
Automatic

Find initial
Cluster
Centroids

Clustering

Iris, Breast
Cancer, E.coli,
Diabetes,
Haberman’s
survival data

K-means, Fuzzy
C-Means, GSO

F-measure and Rand
Index

141
Tang et al.
[194]-VSGSO-D
KMeans

Improved GSO + K-means

Multi-modal
optimization for
optimal cluster
analysis

Non-
Automatic

Generates the
initial cluster
center

Clustering Iris dataset
K-means,
K-means++,
K-means||, GSO
+ K-means,

Run time, minimum
number of iterations,
SSE, NMI, Purity and
Rand Index

142 Zhou et al. [192] GSO + K-means
Avoid the effect
of the initial
condition

Non-
Automatic

Image
Classification

Generates the
initial cluster
center

Clustering Pepper, Lena,
and Mandrill

K-means, Fuzzy
C-Means

Quantization error,
the maximum
intra-distance, the
minimum
inter-distance

Bee Colony Optimization (Bee)

143
Das, Das & Dey
[196]-MKCLUST
& KMCLUST

MBCO + K-means Faster
convergence

Non-
Automatic

Either generate
initial centroids
or does the
clustering

Either generate initial
centroids or does the
clustering

Glass, Wine,
Vowel, CMC,
Cancer, HV, Iris

MBCO,
K-NM-PSO,
K-PSO, K-HS,
KIBCLUST,
IBCOCLUST,
PSO

Percentage Error (PE)

144 Forsati, Keikha &
Shamsfard [197] Improved BCO + K-means

An efficient
algorithm for
large and high
dimensional
dataset

Non-
Automatic

Document
Clustering

Generates initial
cluster centroids Clustering

Wine, Iris, Glass,
Vowel, Cancer
Document
dataset (Politics,
TREC, DMOZ,
20 Newsgroup
and Web Ace)

GA, ACO,
K-means, PSO,
CABC,
IBCOCLUST,
HSCLUST,
K-NM-PSO,
K-PSO, K-GA,
K-HS, K-ABC

Cluster Quality and
Rate of Convergence

Bacteria Foraging Optimization (BFO)

145
Niu, Duan &
Liang
[201]-BFCA

BFO + K-means

Efficient
algorithm with
global and
parallel search
capacities

Non-
Automatic

Generates initial
cluster centroids Clustering
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Cuckoo Optimization Algorithm (COA)

146
Lashkari &
Moattar
[202]-ECOA-K

ECOA + K-means

Fast convergence
algorithm with
intelligent
operators

Non-
Automatic

Generate initial
cluster centroids Clustering

UCI dataset
(CMC, Iris, and
Wine)

BH, Big Bang Big
Crunch (BBBC),
CSA, COA,
K-means

Purity Index,
Convergence rate,
Coefficient of
Variance, time
complexity

Symbiotic Optimization Search (SOS)

147 Yang, & Sutrisno
[198]-CSOS SOS + K-means

An automatic
hybrid clustering
algorithm

Automatic

Assigning half
the population
size as the
number of
clusters

Clustering
Generate initial
cluster centroids
automatically

28 benchmark
functions,

CRPS, SaNSDE,
rCMA-ES, GA,
SOS and GWO

Number of successful
runs, Average
computational time,
and Average number
of evaluations
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3.3. RQ3. What Were the Various Automatic Clustering Approaches Adopted in the
Reported Hybridization?

Different authors have varied approaches in achieving automatic clustering in inte-
grating K-means with the corresponding MOA in the reviewed literature. Zhou et al. [45]
adopted the Noise Method [203] and the K-means++ method [204]. Dai, Jiao, and He [28]
achieved automatic clustering through dynamic optimization of cluster number k through
heredity, mutation with parallel evolution, and community intermarriage of the parallel
genetic algorithm coupled with variable-length chromosome encoding. From the work
of Li et al. [40], an optimal K-value was generated from the initial seed of chromosomes
ranging between 1 and MaxClassVal, expressing the K-value by a byte classified into
255 kinds. Kuo et al. [39] employed the self-organizing feature map (SOM) neural network
method [205,206] which involves the projection of high dimensional input space into a
low-dimensional topology for the visual determination of the cluster number. An im-
proved canopy [207] with K-means++ [204] techniques were used by Zhang and Zhou [35],
where the canopy technique leverages domain-specific attributes to design a cheap dis-
tance metric for creating canopies using Euclidean distance. Mohammadrezapour, Kisi,
and Pourahmad [46] generated the initial number of clusters from a uniform distribution
over a specified range of 2 to M, where M is the number of objectives in a multi-objective
optimization algorithm [208]. Patel, Raghuwanshi, and Jaiswal [200] used the approach of
determining the female chromosomes using the sex determination method (SDM) in the
genetic algorithm and assigning the number of females as k.

In Barekatain, Dehghani & Pourzaferani [44], the dataset was segmented into nonequiv-
alent cells, and the nodes whose residual energy is more than the average of its cell were
selected as cluster heads. The number of cluster heads is then taken as k. The use of Maha-
lanobis distance to consider the covariance between data points for better representation of
initial data and the number of generated groups using the MapReduce framework forms
the number of clusters was adopted by Sinha & Jana [33]. In Kapil, Chawla & Ansari [3],
data objects act as candidates for cluster centroids. The GA operators are executed to find
the fittest instance that serves as the initial cluster centroids. The number of fittest instances
obtained automatically determines the number of clusters. Rahman and Islam [32] used a
fixed number of chromosomes (half selected deterministically and the other half randomly)
for the initial population for the GA process from which the fittest instance is obtained as
cluster centroids. The method of allocating a range of values for k (between 2 and 10) and
selecting the best value that produced the optimal solution was used by Islam et al. [34].
Mustafi and Sahoo [36] combined the GA framework with differential evolution for ob-
taining the number of clusters, while Xiao et al. [31] employed a GA-based method that
adopts a Q-bit representation for the dataset pattern with a single run of the conventional
K-means on each chromosome. Omran, Salman, and Engelbrecht [58] used PSO to find
the best set of cluster centroids among the existing data object to produce the optimum
number of clusters, and Kao and Lee [61] used discrete PSO in optimizing the number of
clusters. In the case of Sood and Bansal [86], the Bat algorithm was employed in optimizing
the initial representative objects for each cluster.

The idea of using a manual strategy to find k activation threshold by DE to automati-
cally determine the number of clusters was adopted by Silva et al. [130]. At the same time,
Cai et al. [125] used the idea of random generation of k values, where k is an arbitrarily
generated integer number [36,97]. Kuo, Suryani, and Yasid [126] also used the DE approach
in obtaining the number of clusters. The use of Bayesian information criterion (BIC) [209]
or the Davies–Bouldin Index (BDI) [210] in automatically finding the number of clusters
was employed by Cobos et al. [143]. Yang and Sutrisno [198] used the idea of specifying the
initial number of clusters as half of ecosize generated as sub-ecosystems, in which CSOS
then optimizes to generate the correct cluster number in a dataset. Table 2 present the list
of adopted automatic clustering approaches, which have been reported in the literature.
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Table 2. List of adopted automatic clustering approaches.

S/N Authors Adopted Automatic Clustering Approach

1 Zhou et al. [45] Noise method combined with K-means++

2 Dai, Jiao and He [28] Dynamic optimization through heredity, mutation with parallel evolution, and community
intermarriage

3 Li et al. [40] Determined optimal number of k from the initial seed of chromosomes ranging between 1 and
MaxClassVal,

4 Kuo et al. [39] Self-organizing feature map (SOM) neural network method

5 Zhang & Zhou [35] An improved canopy with K-means++

6 Mohammadrezapour, Kisi and Pourahmad [46] Optimizing a uniform distribution over a specified range of values

7 Patel, Raghuwanshi and Jaiswal [200] Sex determination method

8 Barekatain, Dehghani & Pourzaferani [44] Segmented into nonequivalent cells and selection of nodes whose residual energy is more than the cell’s
average

9 Sinha & Jana [33] The use of Mahalanobis distance and MapReduce framework

10 Kapil, Chawla & Ansari [3] Executing GA operators on data objects as candidates for cluster centroids to find the fittest instance

11 Rahman and Islam [32] Selecting a fixed number of chromosomes (half selected deterministically and the other half randomly)
as the initial population for the GA process to obtain the fittest instances

12 Islam et al. [34] Allocating a range of values for k (between 2 and 10) and selecting the best value that produced the
optimal solution

13 Mustafi and Sahoo [36] Combining GA framework with differential evolution

14 Xiao et al. [31] Employing GA-based method that adopts Q-bit representation for dataset pattern with a single run of
the conventional K-means on each chromosome

15 Omran, Salman and Engelbrecht [58] Using PSO to find the best set of cluster centroids among the existing data objects

16 Kao and Lee [61] Using discrete PSO in optimizing the number of clusters

17 Sood and Bansal [86] Using Bat algorithm to optimize the initial representative objects for each cluster

18 Silva et al. [130] Using a manual strategy to find k activation threshold by DE

19 Cai et al. [125] Random generation of k value as k = rndint [2] where NP is the population size and rndint is a random
integer number

20 Kuo, Suryani and Yasid [126] DE approach in obtaining the number of clusters

21 Cobos et al. [143] Optimizing Bayesian information criterion (BIC) or the Davies–Bouldin index (BDI)

22 Yang and Sutrisno [198] Specifying the initial number of clusters as half of ecosize generated as sub-ecosystems which CSOS
then optimizes

3.4. RQ4. What Were the Contributions Made to Improve the Performance of the K-Means
Clustering Algorithm in Handling Automatic Clustering Problems?

Zhou et al. [45], in their hybridization of K-means with the corresponding MOA, were
able to achieve an automatic selection of high-quality initial seeds without specifying the
number of clusters to be generated as well as avoidance of premature convergence. From
the work of Dai, Jiao, and He [28], the blind estimate of the cluster number by the K-
means algorithm was avoided ensuring precision and reducing the influence of the cluster
number; the algorithm search time was also reduced. The use of SOM in determining the
number of clusters and starting points made the resulting integrated clustering algorithm
more robust [39]. Rahman and Islam [32] and Zhang and Zhou [35] reported high-quality
cluster results in their proposed clustering algorithm but with higher time complexity.
Further work by Islam et al. [34] reportedly yielded higher-quality clusters with equivalent
computational resources.

Patel, Raghuwanshi, and Jaiswal [200] reportedly achieved well distributed and well-
separated clusters, which evolved faster with fewer functions evaluation for obtaining the
optimal. Kapil, Chawla, and Ansari [3] obtained correct clusters from their k-means/GA
integrated clustering algorithm. Mustafi and Sahoo [36] observed a significant reduction in
the possibility of convergence of the K-means algorithm to local optimal. Xiao et al. [31]
in their Q-bit-based GA/K-means integrated clustering algorithm, was able to achieve
effective clustering without knowing cluster numbers beforehand. Omran, Salman, and
Engelbrecht [58] obtained the correct number of clusters with the corresponding clusters
with minimum interference from a user using their proposed integrated K-means/PSO
clustering algorithm. According to Kao and Lee [61], combining K-means with discrete
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PSO enhanced the performance of K-means in finding an optimal solution to dynamic
clustering problems.

Sood and Bansal [86] achieved better and efficient cluster analysis while integrating
K-medoids with the bat algorithm. According to Silva et al. [130] and Kuo, Suryani, and
Yasid [126], the integration of K-means with DE yielded an excellent cluster result. Cai
et al. [125] reported a balance between exploration and exploitation in the search algorithm
and improving the quality of the final cluster result. A superior and higher performance
of K-means clustering integrated with ABC and DE was reported by Bonab et al. [97].
Cobos et al. [143] reported promising experimental results in their automatic hybridized
clustering algorithm that combined global best harmony search with K-means. In the same
vein, Yang and Sutrisno [198] reported promising performance of their automatic K-means
algorithm hybridized with SOS, which was found faster in high dimensional problems
alleviating the dimensionality effect.

In summary, the performance of the K-means clustering algorithm in handling auto-
matic clustering problems was substantially improved in terms of determination of the
correct number of clusters, high-quality cluster results, performance enhancements and
computational efficiency, and avoidance of convergence into local optimal.

3.5. RQ5. What Is the Rate of Publication of Hybridization of K-Means with Nature-Inspired
Meta-Heuristic Algorithms for Automatic Clustering?

This section examines the rate of publications of articles on hybridization of K-means
with nature-inspired meta-heuristic based on the selected article.

Publications Trend of K-Means Hybridization with MOA

Figure 2 presents the publication trend of K-means hybridization with MOA in the
last 20 years. There is significant growth in research involving hybridization of K-means
with MOA, with 2020 having the highest number of articles. The bifurcated distribution of
this publication is presented in Table 3, showing at least each MOA having a publication on
its hybridization with K-means with reference to its proposed year. K-means hybridization
with CS having the highest number of publications (4) in the year 2019. The total of each
publication per MOA as well as per year is shown on the last but one column and last
row of Table 3, respectively, with GA having the highest number of articles (25) followed
by PSO (16), FA (12), CS (11), DE (10), ABC (8), HS (7), and MC (6). ALO and BAT have
the same number of articles (four each) followed by GWO, IWO, and FFO, each having
four articles; ICA, BH, and GSO came next with three articles each; FPA, DA, Bacterial CO,
HBMO, and BCO has two articles each while the rest has one article each. Due to the fact
that each algorithm has a different year of proposal, the normalized rate of publication
of each MOA is presented in Figure 3. The normalized rate of publication was calculated
using the equation below, where Ni is the number of publications in a year, with j and i
representing the current year and MOA proposal year, respectively

Normalize rate of publication =

(
j

∑
i

Ni

)
/(j− i) (5)

The normalized rate of publication of K-means hybridization with MOA is displayed
in the last column of Table 3. The rate of publication of hybridization of K-means with
MOA for automatic clustering is shown in Figure 3.
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Table 3. The year-wise bifurcated K-means hybridization with MOA Publication Report.

MOA 2002 2003 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total Norm. Ra

ALO (2015) - - - - - - - - - - - - - - 1 1 2 1 5 0.83
ABC (2005) - - - - - - - - - - 1 3 - - - - 3 1 8 0.50
BAT (2010) - - - - - - - - - 1 - - - - 1 1 2 - 5 0.45

Bacterial CO (2012) - - - - - - - - - - - - - - - 1 - 1 2 0.22
BFO (2000) - - - - - - - - - 1 - - - - - - - - 1 0.05
BCO (2012) - - - - - - - - - - - - - - - 1 - 1 2 0.22
BSO (2012) - - - - - - - - - - 1 1 - 1 - - - 3 0.33
BH (2013) - - - - - - - - - - 1 - - 1 - 1 - 3 0.38
CS (2009) - - - - - - - - - 1 1 - - 3 4 2 - 11 0.92

Cockroach SO (2010) - - - - - - - - - - - - 1 - 1 0.09
DE (2013) - - - - - - - 2 - 1 1 1 - 1 1 2 1 - 10 1.25
DA (2015) - - - - - - - - - - - - - - - - 1 1 2 0.33

COA (2011) - - - - - - - - - - - - 1 - - - 1 0.10
FFA (2008) - - - - - - - - 1 - 1 2 2 1 1 1 2 1 12 0.92
FFO ((2000) - - - - - - - - - - - - 2 - - 2 - 4 0.19
FPA (2012) - - - - - - - - - - - 1 - - - - - 1 2 0.22
GA (1988) 1 3 2 1 1 3 - - 1 1 2 2 1 3 2 2 - 25 0.76

GSO (2009) - - - - - - - - 1 1 - - - - - 1 - - 3 0.25
GWO (2014) - - - - - - - - - - - 1 - - 1 - - 2 4 0.57

HS (2001) 1 1 1 1 - 1 - - 1 - - 1 - - 7 0.35
ICA 92007) - - - - - - - 1 - - 1 1 - - - - - 3 0.21
IWO (2010) - - - - - - - - - - 1 2 - - - 1 - - 4 0.36
MC (1998) - - - - - - - - - 1 3 - - - 1 - 1 4 0.20

HBMO (2011) - - - - - - - - - - - - 2 - - - - - 2 0.20
PSO (1995) 1 1 1 1 2 1 - - - 1 1 2 1 - 2 2 - 16 0.62
SCA (2016) - - - - - - - - - - - - - - - - 1 - 1 0.20
SDS (2011) - - - - - - - - - - - - - - - - - 1 1 0.10
SOS (2014) - - - - - - - - - - - - - - - - 1 - 1 0.14

Social Spider O (2015) - - - - - - - - - - - - - - 1 1 - - 2 0.33
Total/Year 1 1 4 3 3 4 5 4 2 8 12 15 10 7 15 19 22 11 147
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The highest number of articles published with respect to this was recorded in the year
2010, 2018, and 2019 with three articles each; 2006, 2009, 2013, and 2015 had two articles each
while the remaining years had only one article each. The automatic/non-automatic K-means
hybridization per MOA is illustrated in Figure 4. Moreover, Figure 4 reveals that most of the
publications on K-means hybridization with MOA addressed general clustering with less
attention paid to automatic clustering. Only 23 articles out of 147 selected articles reported
on automatic clustering. This shows that only 16% of the total articles published in the last
two decades on K-means hybridization with MOA addressed the problem of automatic
clustering. Among the MOA hybridized with K-means, only 7 MOAs (GA, PSO, BA, ABC,
DE, HS, and SOS) out of the 28 reviewed MOA, which amounts to 20.6% that directed
their hybridization towards solving automatic clustering problems. In general, it can be
observed that the rate of publication on K-means hybridization with particular MOA is
relatively low. There is a need for more research in this aspect to explore more possibilities
of improving the performance of the existing hybridized algorithm. This implies that
hybridizing the K-means with these other MOAs for solving automatic clustering problems
needs to be explored. Table 3 shows the year-wise bifurcated K-means hybridization with
MOA publication report. Similarly, the details of the articles selected and used in the
analysis of the study are presented in Table 4.
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Table 4. The selected study articles publication details.

Authors Publishers Journal/Conference Indexing Citation Impact Factor

SCI WOS Scopus Google Scholar DBLP

Abdeyazdan [140] Springer Journal of Supercomputing
√ √ √ √

15 2.474

Aboubi, Drias & Kamel [179] Springer Conf 2

Aghaebrahimi, Golkh&an & Ahmadnia [188] IEEE Conf 8

Angelin, B. [162] Turkish Journal of Computer & Mathematics Education
√ √

0 0.33

Arjmand et al. [117] IEEE Conf
√

5

Armano & Farmani [95] IRIS Int’l Journal of Computer Theory & Engineering
√

36

Bandyopadhyay & Maulik [24] Elsevier Information Sciences
√ √ √ √

465 6.795

Barekatain, Dehghani & Pourzaferani [44] Elsevier Procedia Computer Science
√

38 2.09

Behera et al. [77] Inderscience Int’l Journal of Fuzzy Computation & Modelling
√

2

Binu, Selvi & George [119] Elsevier AASRI Procedia
√ √

17

Bonab et al. [97] Springer Computational Intelligence in Information Systems 12

Boobord, Othman, & Abubakar [136] i-csrs.org Intl. Journal of Advance Soft Computer Appl
√

1 0.79

Cai et al. [125] Elsevier Applied Soft Computing
√ √

120 6.725

Cao & Xue [102] IEEE Int’l Conf on Network & Information Systems for
Computers 4

Chandran & Nazeer [144] IEEE Recent Adv. in Intelligent Computational Systems
√ √

13

Chandran, Reddy, & Janet [170] IEEE Second Int’l Conf on Intelligent Computing & Control
Systems 1

Chaudhary & Banati [90] Inderscience Int’l Journal of Advanced Intelligence Paradigms
√ √ √

0 0.63

Chen & Zhang [59] IEEE Int’l Conf on Wireless Comms, Networking & Mobile
Computing 31

Chen et al. [166] Elsevier Knowledge-Based Systems
√ √ √ √

13

Chen, Miao & Bu [72] IEEE Int’l Conf on Power, Intelligent Computing & Systems 2

Cheng et al. [25] IEEE Int’l Conf on Pattern Recognition (ICPR’06) 23

Cobos et al. [143] IEEE IEEE congress on evolutionary computation 13

Dai, Jiao & He [28] IEEE Int’l Conf on Intelligent Information Hiding &
Multimedia Signal Proc 10

Das, Das & Dey [196] Elsevier Applied Soft Computing
√ √

25 6.725

Dasu, Reddy & Reddy [99] Springer Adv. in Cybernetics, Cognition, & Machine Learning for
Comm Tech 1

Deepa, & Sumitra [121] IOPScience Int’l Conf on Mechanical, Electronics & Computer
Engineering

√
0

Dhand & Sheoran [168] Elsevier Materials Today: Conf Proceeding
√ √

4 31.04
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Table 4. Cont.

Authors Publishers Journal/Conference Indexing Citation Impact Factor

SCI WOS Scopus Google Scholar DBLP

Djenouri, Belhadi & Belkebir [178] Elsevier Expert Systems with Appl
√ √ √ √

48 6.954

Djenouri, Habbas & Aggoune-Mtalaa [180] SCITEPRESS Int’l Conf on Agents & Artificial Intelligence 5

El-Shorbagy et al. [37] Springer Computational Statistics
√ √ √ √ √

14 1

Emami & Derakhshan [65] Springer Arabian Journal of Science & Engineering
√ √ √

28 2.334

Eshlaghy & Razi [42] Inderscience Int’l Journal of Business Systems
√ √

15 0.53

Eskandarzadehalamdary, Masoumi, &
Sojodishijani [151] IEEE Iranian Conf on Elect Engineering 11

Fan et al. [134] IEEE Int’l Conf on Autonomic & Trusted Computing 2

Feng, Wang & Chen [154] Springer International Conf on Scalable Computing & Comms 0

Forsati et al. [141] Elsevier Neurocomputing
√ √ √

60 5.719

Forsati, Keikha & Shamsfard [197] IEEE IEEE/WIC/ACM Int’l Conf on Web Intelligence &
Intelligent Agent Tech 69

Gan, & Lai [89] IEEE Int’l Conf on Automatic Control & Intelligent Systems
(I2CACIS) 3

García, Yepes & Martí [118] MDPI Mathematics
√ √ √

21 2.258

Ghezelbash, Maghsoudi & Carranza [38] Elsevier Computer & Geoscience
√ √ √

23 3.372

Girsang, Yunanto & Aslamiah [113] IEEE Int’l Conf on Elect Engineering & Computer Science 6

Hassanzadeh & Meybodi [74] IEEE Int’l Conf on Elect Engineering & Computer Science 99

HimaBindu et al. [83] Elsevier Materials Today: Conf Proceeding
√ √

0 31.04

Hu et al. [128] IEEE Int’l Conf on Computer Science & Education (ICCSE) 11

Huang [100] MDPI Symmetry
√ √ √ √

1 2.713

Islam et al. [34] Elsevier Expert Systems with Appl
√ √ √ √

2 6.954

Jensi & Jiji [92] arXiv Cornell
Univerity Advanced Computational Intelligence

√
37

Jiang et al. [174] IEEE IEEE Int’l Conf on Artificial Intelligence & Computer
Appl 0

Jiang, Zang & Liu [155] Springer In Int’l Conf on Human Centered Computing 2

Jie & Yibo [71] IEEE Int’l Conf on Power & Renewable Energy 0

Jin, Lin & Zhang [98] MDPI Algorithms
√ √ √ √

0 2.27

Jitpakdee, Aimmanee & Uyyanonvara [79]
World Academy of
Science, Engineering &
Tech

Int’l Journal of Computer & Information Engineering 7

Kao & Lee [61] Elsevier Expert Systems with Appl
√ √ √ √

53 6.954
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Table 4. Cont.

Authors Publishers Journal/Conference Indexing Citation Impact Factor

SCI WOS Scopus Google Scholar DBLP

Kao, Zahara & Kao [60] IEEE Int’l Conf on Intelligent Computing & Intelligent
Systems 400

Kapil, Chawla & Ansari [3] IEEE Int’l Conf on Parallel, Distributed & Grid Computing 67

Karegowda et al. [41] Springer Int’l Conf on Adv. in Computing 16

Karthik, Tamizhazhagan, & Narayana [185] Elsevier Materials Today: Conf Proceeding
√ √

0 31.04

Katarya & Verma [104] Springer Neural Computer & Appl
√ √ √ √

58 5.606

Kaur, Pal & Singh [81] Springer Int’l Journal of System Assurance Engineering & Mgt
√ √ √

15 1.72

Kim et al. [147] IEEE IEEE Annual Consumer Comms & Networking Conf 3

Korayem, Khorsid & Kassem [105] IOP Publishing IOP Conf series: materials science & engineering 44 0.51

Kumar, Reddy & Rao [164] Elsevier Journal of Computational Design & Engineering 4 6.6

Kumari, Rao & Rao [93] Inderscience Int’l Journal of Advanced Intelligence Paradigms
√ √ √

0 0.63

Kuo & Li [80] Elsevier Computers & Industrial Engineering
√ √ √

28 5.431

Kuo et al. [39] Elsevier Expert Systems with Appl
√ √ √ √

120 6.954

Kuo, Suryani & Yasid [126] Springer Institute of Industrial Engineers Asian Conf 16

Kwedlo [124] Elsevier Pattern Recognition Letters
√ √ √ √

128 3.756

Langari et al. [82] Elsevier Expert Systems with Appl
√ √ √ √

17 6.954

Lanying & Xiaolan [115] ACM Int’l Conf on Intelligent Information Proc 0

Lashkari & Moattar [202] Iran Journals Journal of AI & Data Mining
√

5 0.127

Laszlo & Mukherjee, [26] IEEE Transactions on pattern analysis & machine intelligence 153

Laszlo & Mukherjee, [27] Elsevier Pattern Recognition Letters
√ √ √ √

192

Li et al. [40] IEEE Int’l Conf on Digital Content, Multimedia Tech & its
Appl 153

Lu et al. [43] Springer Int’l Conf on Bio-Inspired Computing: Theories & Appl 11

Mahdavi & Abolhassani [142] Springer Data Mining & Knowledge Discovery
√ √ √ √ √

168 3.67

Majhi & Biswal [164] Elsevier Karbala Int’l Journal of Modern Science 44 2.93

Manju & Fred [120] Springer Multimedia Tools & Appl
√ √ √ √

1 2.757

Mathew & Vijayakumar [75] IEEE Int’l Conf on High Performance Computing & Appl 15

Mohammadrezapou, Kisi & Pourahmadm [46] Springer Neural Computer & Appl
√ √ √ √

12 5.606

Mohammed et al. [107] Emerald Publishing World Journal of Engineering
√

0 1.2

Moorthy & Pabitha [109] IEEE Int’l Conf on High Performance Computing & Appl 3

Murugan & Baburaj [166] IEEE Int’l Conf on Smart Tech in Computing, Elect &
Electronics 0

Mustafi & Sahoo [36] Springer Soft Computing
√ √ √ √

15 3.643
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Table 4. Cont.

Authors Publishers Journal/Conference Indexing Citation Impact Factor

SCI WOS Scopus Google Scholar DBLP

Naem & Ghali [167] BEEI Indonesia Journal
√ √

2

Nayak et al. [66] Springer Int’l Conf on Computer & Comm Tech 20

Nayak et al. [77] Springer Computational Intelligence in Data Mining 1

Nayak, Naik & Behera [79] Springer Adv. in Intelligent Systems & Computing 4

Nazeer, Sebastian & Kumar [145] PMC Bioinformatics
√ √ √

8 3.242

Niknam et al. [139] Elsevier Engineering Appl
√ √ √

244 6.212

Niknam, & Amiri [53] Elsevier Applied Soft Computing
√ √

476 6.725

Niu et al. [48] Elsevier Engineering Appl
√ √ √

22 6.212

Niu, Duan & Liang [201] Springer Int’l Conf on Intelligent Data Engineering &
AutoLearning 6

Omran, Salman & Engelbrecht [58] Springer Pattern Analysis & Appl
√ √ √ √

325 2.58

Onan & Korukoglu [193] ProQuest Int’l Symposium on Computing in Science &
Engineering 1

Pal & Pal [152] Springer Computational Intelligence in Data Mining 3

Pambudi, Badharudin & Wicaksono [106] ICTACT Journal on Soft computing 0 0.787

Pan et al. [135] World Scientific Int’l Journal of Pattern Recognition & Artificial
Intelligence

√ √ √
18 1.375

Patel, Raghuwanshi & Jaiswal [200] IEEE IEEE Int’l Advance Computing Conf 13

Paul, De & Dey [70] IEEE Int’l Conf on Electronics, Computing & Comm Tech 11

Pavez, Altimiras, & Villavicencio [88] Springer Proc of the Computational Methods in Systems &
Software

Prabha & Visalakshi [64] IEEE Int’l Conf on Intelligent Computing Appl 26

Rahman & Islam [32] Elsevier Knowledge-Based Systems
√ √ √ √

52 8.038

Ratanavilisagul [69] IEEE Int’l Conf on Computational Intelligence & Appl 1

Raval, Raval & Valiveti [146] IEEE Int’l Conf on Recent Trends in Information Tech 0

Razi [137] Springer Journal of Industrial Engineering Int’l 5 2.02

Revathi, Eswaramurthy, & Padmavathi [182] IOP Publishing In IOP Conf Series: Materials Science & Engineering 0 0.51

Saida, Kamel & Omar [112] Springer Recent Adv. on Soft Computing & Data Mining 11

Senthilkumar & Chitra [190] IEEE Int’l Conf on Smart Systems & Inventive Tech 0

Sharma & Patel [173] ACADEMIA Int’l Journal of Computer Science & Information
Security (IJCSIS)

√ √ √
0 0.702

Sheng et al. [131] IEEE Transactions on Cybernetics 3 11.45

Sheng, Tucker & Liu, [30] Springer Soft Computing
√ √ √ √

2 3.643
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Table 4. Cont.

Authors Publishers Journal/Conference Indexing Citation Impact Factor

SCI WOS Scopus Google Scholar DBLP

Sierra, Cobos, & Corrales [127] Springer Ibero-American Conf on Artificial Intelligence 6

Silva et al. [130] Springer Int’l Conf on Green, Pervasive, & Cloud Computing 4

Singh & Solanki [116] Springer Emerging Research in Electronics, Computer Science &
Tech 8

Sinha & Jana [33] Springer Journal of Supercomputing
√ √ √ √

21 2.474

Sood & Bansal [86] Citeseer Int’l Journal of Applied Information Systems
√

21

Tang et al. [194] IEEE Int’l Symposium on Distributed Computing & Appl 1

Tarkhaneh, Isazadeh & Khamnei [115] Inderscience Int’l Journal of Computer Appl
√ √ √

11 1.55

Teimoury et al. [187] MDPI Sensors
√ √ √ √

4 3.576

Thiruvenkatasuresh & Venkatachalam [171] Inderscience Int’l Journal of Biomedical Engineering & Tech
√ √

1 1.01

Tran et al. [96] IEEE Chinese Journal of Electronics
√ √ √ √

38 0.941

Tripathi, Sharma & Bala [87] Springer Int’l Journal of System Assurance Engineering & Mgt
√ √ √

32 1.72

Tsai & Kao [63] IEEE Int’l Conf on Systems, Man, & Cybernetics 91

Van der Merwe & Engelbrecht [49] IEEE Congress on Evolutionary Computation 953

Vijayakumari & Deepa [183] Infokara 0

Wang et al. [101] IEEE Access 2 3.367

Wang et al. [176] IEEE Int’l Conf on Grey Systems & Intelligent Services 5

Wang [129] IEEE Adv. Infor Mgt, Comm, Electronic & Auto Control Conf 3

Wang, Liu & Xiang [160] Taylor & Francis Int’l Journal of Parallel, Emergent & Distributed
Systems

√ √ √ √
2 1.51

Wang, Xiang & Liu [159] IEEE Int’l Conf on Intelligent Science & Big Data Engineering 0

Weisun & Liu [157] WSEAS 0

Wu et al. [84] Elsevier Agricultural Water Mgt
√ √

6 4.516

Xiao, Yan, Zhang, & Tang [31] Elsevier Expert Systems with Appl
√ √ √ √

108 6.954

Xie et al. [74] Elsevier Applied Soft Computing
√ √

40 6.725

Yang, Sun & Zhang [62] Elsevier Expert Systems with Appl
√ √ √ √

228 6.954

Yang, & Sutrisno [198] Elsevier Applied Soft Computing
√ √

1 6.725

Ye et al. [111] IEEE Int’l Conf on Convergence & Hybrid Information Tech 10

Zhang & Zhou [35] IEEE Int’l Conf on Artificial Intelligence & Big Data 11

Zhang, Leung & Ye [199] IEEE Int’l Conf on Convergence & Hybrid Information Tech 26

Zhao & Liu [156] Springer Int’l Conf on Human Centered Computing 0

Zhao, Liu & Zhang [158] TELKOMNIKA Indonesian Journal of Elect Engineering, 5

Zhou et al. [192] Guangxi Key Laboratory 19

Zhou et al. [45] MDPI ISPRS Int’l Journal of Geo-Information
√ √ √ √

20 2.899
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4. Results and Discussions
4.1. Metrics

The articles that were selected for this study were based on metrics such as article
publishers, journals, citation numbers, and the impact factors. Articles from conferences
proceedings were also considered. The details of the articles selected are presented in
Table 4. The largest number of articles were selected from IEEE with 46 articles, followed
by Springer and Elsevier with 37 articles and 30 articles, respectively. Inderscience, MDPI,
and IOP publishing, respectively, had six, five, and three articles each. PMC, ProQuest, and
ScitePress have two articles each, while all other publishers have one each. Thirty-two of
the articles were indexed in Science, twenty-four in WOS, sixty-one in Scopus, sixty-six in
Google Scholar, and twenty-two in DBLP. All the articles were gathered between 19 May
2021 and 23 June 2021.

4.2. Strength of This Study

A comprehensive analysis of hybridization of K-means with nature-inspired meta-
heuristic optimization algorithms is presented in this study. It includes a hundred and
forty-seven hybridized K-means with different MOA clustering algorithms. Recent pub-
lications from 2019, 2020, and 2021 are also considered. The role of K-means algorithms
and the corresponding MOA in the hybridized algorithms were highlighted, including
the dataset used for testing and the criteria for their performance measure. This detail
is presented in Table 4. The algorithms that actually handled automatic clustering are
also identified among the lot. The various automatic clustering approaches adopted in
the reported automatic K-means hybridization are also identified and presented. Current
challenges, as well as future directions, are also discussed.

4.3. Weakness of This Study

In order to incorporate details of the relevant manuscripts, a maximum effort has been
expended, and most available articles in the last two decades were considered. Neverthe-
less, it is an impossible task to cover all the manuscripts in a single study. All non-English-
based related manuscripts were not included in this study. Some other metaheuristic
optimization algorithms were not considered as well.

4.4. Hybridization of K-Means with MOA

From this study, it can be observed that the K-means clustering algorithm has been
widely hybridized with various MOA to improve the process of data clustering. The
advantages of K-means in terms of simplicity and low computational complexity have been
harnessed to improve the clustering capability of many of the MOA. The ability of many of
the MOA in global optimum search enhanced the performance of K-means in escaping local
optimal convergence leveraging on their optimization capability. Hybridizing K-means
with MOA provides a balance between exploration and exploitation in the search algorithm
to improve the quality of the final cluster result. There are noticeable improvements in
general clustering performance and efficiency in relation to cluster results.

Specification of the number of clusters as a user parameter is a major challenge in
cluster analysis. The various hybridization of nature-inspired meta-heuristics techniques
with K-means clustering algorithms that handled automatic clustering problems were
presented. From the study, it can be seen that only a few of the hybrid algorithms addressed
the problem of automatic clustering. Different methods were adopted in estimating the
optimal number of clusters in any given dataset. In most of the automatic hybrid algorithms,
the correct number of clusters were optimized from the initial population, which were
either randomly generated or deterministically selected from the data objects.

Automatic specification of cluster number in the K-means with MOA hybrid algorithm
conspicuously enhanced the performance of the former algorithm by reducing the number
of iteration operations required to obtain an optimal result compared with the traditional
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algorithm. Most initialization problems associated with traditional K-means, such as user-
specified parameters of k and random selection of cluster centers, were resolved through
the generation of optimized initial cluster centroids, which was made possible by the
optimization process of the MOA. The number of optimum cluster centers invariably gives
the number of clusters to be generated.

In some of the hybrid algorithms, parallelization of the K-means algorithm and
quantum processing was made possible for faster convergence, handling distributed
datasets, improved multidimensional datasets clustering, and reducing computational
complexity. The issues of outlier detection, noise handling, discovering non-globular
clusters, and non-linear partitioning were solved by some of the hybrid algorithms, as well
as efficient clustering of large and high dimensional datasets.

Furthermore, the various hybridized algorithms were tested on either synthetically
generated datasets, UCI datasets, or some real-life datasets. The datasets used with the
corresponding hybrid algorithm can be found in Table 2. The performance of the hybridized
algorithms was also measured using different cluster analysis performance metrics. This is
also included in Table 2.

4.5. Impact of Automatic Hybridized K-Means with MOA

Hybridization of K-means with MOA for automatic clustering has been found to
improve the performance of these algorithms in handling cluster analysis. Automatic
determination of cluster numbers assists in avoiding the sensitivity of initial seeds in
the initial population [45]. In most cases, it helps select near optimum initial cluster
centroids for the clustering process instead of the usual random selection of the initial
cluster centroids.

Determining the number of clusters automatically also enhances the convergence
speed of the resultant hybridized clustering algorithm due to fewer iterations required to
obtain the optimal cluster result. The impact of automatic hybridized algorithms is more
pronounced when handling real-life datasets. An accurate guess of the correct number
of clusters in real-life datasets is an assiduous task, if not impossible, due to its high
dimensionality and density. Improving traditional K-means to solve real-life automatic
clustering problems through hybridization is of great impact in cluster analysis.

4.6. Trending Areas of Application of Hybridized K-Means with MOA

The trending areas of application of K-means with MOA hybrid algorithms reported
in the reviewed literature include cluster analysis optimization, image segmentation, social
network community detection, localization and sizing of flexible AC transmission system,
routing protocols, color quantization, forecasting models, image compression, satellite
image classification, facility location, intrusion detection, document information retrieval,
and cloud networks load balancing. A summarized list of all the application areas identified
in the cause of the study that are associated with the hybrid K-means algorithms is listed
in Table 1.

4.7. Research Implication and Future Directions

The major emphasis of this study is to identify the K-means hybrid developed for
the purpose of automatic clustering. However, most of the reviewed articles concentrated
efforts on finding solutions to the initial cluster centroid problems of the traditional K-
means algorithm and the problem of local optimum convergence. In some other cases, the
attention was not on improving the K-means clustering algorithm. Instead, the attention
was on improving the performance of the corresponding MOA in handling the cluster-
ing problem. For the few that proposed improving the K-means clustering algorithm,
their performances’ limitations, such as increased d number of user-dependent variables
and algorithm complexity, limit their performances. The same drawbacks also affect the
hybridized algorithm extending the K-means algorithm for handling automatic clustering.
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Moreover, the number of research papers on the hybridization of K-means with MOA
is relatively small compared with the number of existing MOAs and still smaller when the
issue of automatic clustering is considered. There is a need for further research on finding
new K-means hybridization that will enhance its performance in handling automatic
clustering for big data clustering while maintaining its desirable quality of linear order
complexity. In most hybridized algorithms, a higher execution time is required to obtain
higher quality clustering results. Further, they are more computationally expensive due to
the increase in the necessary iteration operation to achieve convergence. A computationally
less expensive hybridized K-means algorithm that can handle automatic clustering will be
highly desirable.

5. Conclusions

In this study, hybridization of the K-means clustering algorithm with different MOAs
has been presented. The primary objective of each hybridization was considered with
the role of corresponding MOA and K-means in the resultant hybridized algorithm. The
various dataset used for testing as well as the criteria used for performance evaluation
were similarly extracted. The various existing MOA and hybrids used for comparison
purposes for judging the performance of the hybridized algorithm were also presented.
The publication rate of research on K-means hybridization with some MOA has also been
presented as well as the normalized rate of the publications. The critical analysis of the
findings from the study revealed the normalized publication rate of the different extracted
articles on integrating K-means with MOAs. Five research questions were designed, and the
corresponding answers were provided in this extensive literature analysis of the different
hybridization methods incorporating the K-means clustering algorithm with MOA.

From the response to the first research question, twenty-nine metaheuristics opti-
mization algorithm, most of which are nature-inspired, were considered with a hundred
and forty-seven articles reviewed that reports the various hybridization with K-means
clustering algorithm or any of its variants. In the provided answers to the second research
question, the various articles whose primary objective was to solve the problem of auto-
matic clustering were identified among the reviewed articles. These articles were relatively
small compared with the total number of articles selected for the study. Various areas of
application where these hybridized algorithms have been deployed are also listed. The re-
viewed hybridized algorithm’s various approaches to automatic clustering were discussed
in response to the third research question. The response to the fifth question presented a
thorough analysis of the publication trend with reference to K-means hybridization with
MOA in the last two decades. A bifurcation presentation of the reviewed algorithms reveals
that there is a generally low rate in research publication involving the hybridization of
K-means with MOA in most of the reviewed literature. This indicates a great need for more
attention in this area of research, most especially for handling automatic clustering prob-
lems. This was further verified by the graphical report obtained from the normalization of
the publication rate. Finally, the study further reveals that the existing hybridized K-means
algorithms with MOAs still require higher execution time when applied to the clustering
of a big dataset to obtain higher quality clustering results.
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Abbreviations

ABC Artificial Bee Colony
ABC-KM Artificial Bee Colony K-Means
ABDWT-FCM Artificial Bee Colony based discrete wavelet transform with fuzzy c-mean
AC Accuracy of Clustering
ACA-AL Agglomerative clustering algorithm with average link
ACA-CL Agglomerative clustering algorithm with complete link
ACA-SL Agglomerative clustering algorithm with single link
ACDE-K-means Automatic Clustering-based differential Evolution algorithm with K-Means
ACN Average Correct Number
ACO Ant Colony Optimization
ACO-SA Ant Colony Optimization with Simulated Annealing
AGCUK Automatic Genetic Clustering for Unknown K
AGWDWT-FCM Adaptive Grey Wolf-based Discrete Wavelet Transform with Fuzzy C-mean
ALO Ant Lion Optimizer
ALO-K Ant Lion Optimizer with K-Means
ALPSOC Ant Lion Particle Swarm Optimization
ANFIS Adaptive Network based Fuzzy Inference System
ANOVA Analysis of Variance
AR Accuracy Rate
ARI Adjusted Rand Index
ARMIR Association Rule Mining for Information Retrieval
BBBC Big Bang Big Crunch
BCO Bacterial Colony Optimization
BCO+KM Bacterial Colony Optimization with K-Means
BFCA Bacterial Foraging Clustering Algorithm
BFGSA Bird Flock Gravitational Search Algorithm
BFO Bacterial foraging Optimization
BGLL A modularity-based algorithm by Blondel, Guillaume, Lambiotte, and Lefebvre
BH Black Hole
BH-BK Black Hole and Bisecting K-means
BKBA K-Means Binary Bat Algorithm
BPN Back Propagation Network
BPZ Bavarian Postal Zones Data
BSO Bees Swarm Optimization
BSO-CLARA Bees Swarm Optimization Clustering Large Dataset
BSOGD1 Bees Swarm Optimization Guided by Decomposition
BTD British Town Data
C4.5 Tree-induction algorithm for Classification problems
CAABC Chaotic Adaptive Artificial Bee Colony Algorithm
CAABC-K Chaotic Adaptive Artificial Bee Colony Algorithm with K-Means
CABC Chaotic Artificial Bee Colony
CCI Correctly Classified Instance
CCIA Cluster Centre Initialization Algorithm
CDE Clustering Based Differential Evolution
CFA Chaos-based Firefly Algorithm
CGABC Chaotic Gradient Artificial Bee Colony
CIEFA Compound Inward Intensified Exploration Firefly Algorithm
CLARA Clustering Large Applications
CLARANS Clustering Algorithm based on Randomized Search
CMC Contraceptive Method Choice
CMIWO K-Means Cloud model-based Invasive weed Optimization
CMIWOKM Combining Invasive weed optimization and K-means
COA Cuckoo Optimization Algorithm
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COFS Cuckoo Optimization for Feature Selection
CPU Central Processing Unit
CRC Chinese Restaurant Clustering
CRPSO Craziness based Particle Swarm Optimization
CS Cuckoo Search
CSA Cuckoo Search Algorithm
CS-K-means Cuckoo Search K-Means
CSO Cockroach Swarm Optimization
CSOAKM Cockroach Swarm Optimization and K-Means
CSOS Clustering based Symbiotic Organism Search
DA Dragonfly Algorithm

DADWT-FCM
Dragonfly Algorithm based discrete
wavelet transform with fuzzy c-mean

DBI Davies-Bouldin Index
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DCPSO Dynamic Clustering Particle Swarm Optimization
DDI Dunn-Dunn Index
DE Differential Evolution
DEA-based K-means Data Envelopment Analysis based K-Means
DE-AKO Differential Evolution with K-Means Operation
DE-ANS-AKO Differential Evolution with adaptive niching and K-Means Operation
DEFOA-K-means Differential Evolution Fruit Fly Optimization Algorithm with K-means
DE-KM Differential Evolution and K-Means
DE-SVR Differential Evolution -Support Vector Regression
DFBPKBA Dynamic frequency-based parallel K-Bat Algorithm

DFSABCelite
ABC with depth-first search framework
and elite-guided search equation

DMOZ A dataset
DNA Deoxyribonucleic Acid
DR Detection Rate
DWT-FCM Discrete wavelets transform with fuzzy c-mean
EABC Enhanced Artificial Bee Colony
EABCK Enhanced Artificial Bee Colony K-Means
EBA Enhanced Bat Algorithm
ECOA Extended Cuckoo Optimization Algorithm
ECOA-K Extended Cuckoo Optimization Algorithm K-means
EFC Entropy-based Fuzzy Clustering

EPSONS
PSO based on new neighborhood search strategy with
diversity mechanism and Cauchy mutation operator

ER Error Rate
ESA Elephant Search Algorithm
EShBAT Enhanced Shuffled Bat Algorithm
FA Firefly Algorithm
FACTS Flexible AC Transmission Systems
FA-K Firefly-based K-Means Algorithm
FA-K-Means Firefly K-Means

FAPSO-ACO-K
Fuzzy adaptive Particle Swarm Optimization with
Ant Colony Optimization and K-Means

FA-SVR Firefly Algorithm based Support Vector Regression
FBCO Fuzzy Bacterial Colony Optimization
FBFO Fractional Bacterial Foraging Optimization
FCM Fuzzy C-Means
FCM-FA Fuzzy C-Means Firefly Algorithm
FCMGWO Fuzzy C-means Grey Wolf Optimization
FCSA Fuzzy Cuckoo Search Algorithm
FFA-KELM Firefly Algorithm based Kernel Extreme Learning Machine
FFO Fruit Fly Optimization
FGKA Fast Genetic K-means Algorithm



Appl. Sci. 2021, 11, 11246 50 of 61

FI F-Measure
FKM Fuzzy K-Means
FM F-Measure
FN A modularity-based algorithm by Newman
FOAKFCM Kernel-based Fuzzy C-Mean clustering based on Fruitfly Algorithm
FPA Flower Pollination Algorithm
FPAGA Flower Pollination Algorithm and Genetic Algorithm
FPAKM Flower Pollination Algorithm K-Means
FPR False Positive Rate
FPSO Fuzzy Particle Swarm Optimization
FSDP Fast Search for Density Peaks
GA Genetic Algorithm
GABEEC Genetic Algorithm Based Energy-efficient Clusters
GADWT Genetic Algorithm Discrete Wavelength Transform

GAEEP
Genetic Algorithm Based Energy Efficient
adaptive clustering hierarchy Protocol

GAGR Genetic Algorithm with Gene Rearrangement
GAK Genetic K-Means Algorithm
GAS3 Genetic Algorithm with Species and Sexual Selection

GAS3KM
species and sexual selection using K-Means
species and sexual selection using K-Means

GA-SVR Genetic Algorithm based Support Vector Regression
GCUK Genetic Clustering for unknown K
GENCLUST Genetic Clustering
GENCLUST-F Genetic Clustering variant
GENCLUST-H Genetic Clustering variant
GGA Genetically Guided Algorithm
GKA Genetic K-Means Algorithm
GKM Genetic K-Means Membranes
GKMC Genetic K-Means Clustering
GM Gaussian Mixture
GN A modularity-based algorithm by Girvan and Newman
GP Genetic Programming
GPS Global Position System
GSI Geological Survey of Iran
GSO Glowworm Swarm Optimization
GSOKHM Glowworm Swarm Optimization
GTD Global Terrorist Dataset
GWDWT-FCM Grey Wolf-based Discrete Wavelength Transform with Fuzzy C-Means
GWO Grey wolf optimizer
GWO-K-Means Grey wolf optimizer K-means
HABC Hybrid Artificial Bee Colony
HBMO Honeybees Mating Optimization
HCSPSO Hybrid Cuckoo Search with Particle Swarm Optimization and K-Means
HESB Hybrid Enhanced Shuffled Bat Algorithm
HFCA Hybrid Fuzzy Clustering Algorithm
HHMA Hybrid Heuristic Mathematics Algorithm
HKA Harmony K-Means Algorithm
HS Harmony Search
HSA Harmony Search Algorithm
HSCDA Hybrid Self-adaptive Community Detection algorithms
HSCLUST Harmony Search clustering
HSKH Harmony Search K-Means Hybrid
HS-K-means Harmony Search K-Means
IABC Improved Artificial Bee Colony
IBCOCLUST Improved Bee Colony Optimization Clustering
ICA Imperialist Competitive Algorithm
ICAFKM Imperialist Competitive Algorithm with Fuzzy K Means
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ICAKHM Imperial Competitive Algorithm with K-Harmonic Mean
ICAKM Imperial Competitive Algorithm with K-Mean
ICGSO Image Clustering Glowworm Swarm Optimization

ICMPKHM
Improved Cuckoo Search with Modified Particle
Swarm Optimization and K-Harmonic Mean

ICS Improved Cuckoo Search
ICS-K-means Improved Cuckoo Search K-Means
ICV Intracluster Variation
IFCM Interactive Fuzzy C-Means
IGBHSK Global Best Harmony Search K-Means
IGNB Information Gain-Naïve Bayes
IIEFA Inward Intensified Exploration Firefly Algorithm
IPSO Improved Particle Swarm Optimization
IPSO-K-Means Improved Particle swarm Optimization with K-Means
IWO Invasive weed optimization
IWO-K-Means Invasive weed Optimization K-means
kABC K-Means Artificial Bee Colony
KBat Bat Algorithm with K-Means Clustering
KCPSO K-Means and Combinatorial Particle Swarm Optimization
K-FA K-Means Firefly Algorithm
KFCFA K-member Fuzzy Clustering and Firefly Algorithm
KFCM Kernel-based Fuzzy C-Mean Algorithm
KGA K-Means Genetic Algorithm
K-GWO Grey wolf optimizer with traditional K-Means
KHM K-Harmonic Means
K-HS Harmony K-Means Algorithm
KIBCLUST K-Means with Improved bee colony
KMBA K-Means Bat Algorithm
KMCLUST K-Means Modified Bee Colony K-means
K-Means FFO K-Means Fruit fly Optimization
KMeans-ALO K-Means with Ant Lion Optimization

K-Means-FFA-KELM
Kernel Extreme Learning Machine Model
coupled with K-means clustering and Firefly algorithm

KMGWO K-Means Grey wolf optimizer
K-MICA K-Means Modified Imperialist Competitive Algorithm
KMQGA Quantum-inspired Genetic Algorithm for K-Means Algorithm

KMVGA
K-Means clustering algorithm based
on Variable string length Genetic Algorithm

K-NM-PSO K-Means Nelder–Mead Particle Swarm Optimization
KNNIR K-Nearest Neighbors for Information Retrieval
KPA K-means with Flower pollination algorithm
KPSO K-means with Particle Swarm Optimization
KSRPSO K-Means selective regeneration Particle Swarm Optimization
LEACH Low-Energy Adaptive Clustering Hierarchy
MABC-K Modified Artificial Bee Colony
MAE Mean Absolute Error
MAX-SAT Maximum satisfiability problem
MBCO Modified Bee Colony K-means
MC Membrane Computing
MCSO Modified Cockroach Swarm Optimization
MEQPSO Multi-Elitist Quantum-behaved Particle Swarm Optimization
MFA Modified Firefly Algorithm
MFOA Modified Fruit Fly Optimization Algorithm
MfPSO Modified Particle Swarm Optimization
MICA Modified Imperialist Competitive Algorithm
MKCLUST Modified Bee Colony K-means Clustering
MKF-Cuckoo Multiple Kernel-Based Fuzzy C-Means with Cuckoo Search
MN Multimodal Nonseparable function
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MOA Meta-heuristic Optimization Algorithm
MPKM Modified Point symmetry-based K-Means
MSE Mean Square Error
MTSP Multiple Traveling Salesman Problem
NaFA Firefly Algorithm with neighborhood attraction
NGA Niche Genetic Algorithm
NGKA Niching Genetic K-means Algorithm
NM-PSO Nelder–Mead simplex search with Particle Swarm Optimization
NNGA Novel Niching Genetic Algorithm
Noiseclust Noise clustering
NR-ELM Neighborhood-based ratio (NR) and Extreme Learning Machine (ELM)
NSE Nash-Sutcliffe Efficiency
NSL-KDD NSL Knowledge Discovery and Data Mining
PAM Partitioning Around Medoids
PCA Principal component analysis
PCA-GAKM Principal Component Analysis with Genetic Algorithm and K-means
PCAK Principal Component Analysis K-means
PCA-SOM Principal Component Analysis and Self-Organizing Map
PCAWK Principal component analysis
PGAClust Parallel Genetic Algorithm Clustering
PGKA Prototypes-embedded Genetic K-means Algorithm
P-HS Progressive Harmony Search
P-HS-K Progressive Harmony Search with K-means
PIMA Indian diabetic dataset
PNSR Peak Signal to Noise Ratio
PR Precision-Recall
PSC-RCE Particle Swarm Clustering with Rapid Centroid Estimation
PSDWT-FCM Particle Swarm based Discrete Wavelength Transform with Fuzzy C-Means
PSNR Peak Signal-to-Noise Ratio
PSO Particle Swarm Optimization
PSO-ACO Particle Swarm Optimization and Ant Colony Optimization
PSO-FCM Particle Swarm Optimization with Fuzzy C-Means
PSOFKM Particle Swarm Optimization with Fuzzy K-means
PSOK Particle Swarm Optimization with K-Means based clustering
PSOKHM Particle Swarm Optimization with K-Harmonic Mean
PSO-KM PSO-based K-Means clustering algorithm

PSOLF-KHM
Particle Swarm Optimization with Levy
Flight and K-Harmonic Mean Algorithm

PSOM Particle Swarm optimization with mutation operation
PSO-SA Particle Swarm Optimization with Simulated Annealing
PSO-SVR Particle Swarm Optimization based Support Vector Regression
PTM Pattern Taxonomy Mining
QALO-K Quantum Ant Lion Optimizer with K-Means
rCMA-ES restart Covariance Matrix Adaptation Evolution Strategy
RMSE Root Mean Square Error
ROC Receive Operating Characteristics
RSC Relevant Set Correlation clustering model

RVPSO-K
K-Means cluster algorithm based on Improved velocity
of Particle Swarm Optimization cluster algorithm

RWFOA Fruit Fly Optimization based on Stochastic Inertia Weight
SA Simulated Annealing
SaNSDE Self-adaptive Differential Evolution with Neighborhood Search
SAR Synthetic Aperture Radar
SCA Sine-Cosine Algorithm
SCAK-Means Sine-Cosine Algorithm with K-means
SD Standard Deviation
SDM Sexual Determination Method
SDME Second Derivative-like Measure of Enhancements
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SDN Software defined Network
SDS Stochastic Diffusion Search
SFLA-CQ Shuffled frog leaping algorithm for Color quantization
SHADE Success-History based Adaptive Differential Evolution
SI Scatter Index
SI Silhouette Index
SIM dataset Simulated dataset
SMEER Secure multi-tier energy-efficient routing protocol
SOM Self-Organizing Feature Maps
SOM+K Self-Organizing Feature Maps neural networks with K-Means
SRPSO Selective Regeneration Particle Swarm Optimization
SSB Sum of Square Between
SSE Sum of Square Error
SSIM Structural Similarity
SS-KMeans Scattering search K-Means
SSO Social Spider Optimization
SSOKC Social Spider Optimization with K-Means Clustering
SSW Sum of Square within
SVC Support Vector Clustering
SVM+GA Support Vector Machine with Genetic Algorithm
SVMIR Support Vector Machine for Information Retrieval
TCSC Thyristor Controlled Series Compensator
TKMC Traditional K-means Clustering
TP True Positivity Rate
TPR True Positivity Rate
TREC Text Retrieval Conference dataset
TS Tabu Search

TSMPSO
Two-Stage diversity mechanism
in Multiobjective Particle Swarm Optimization

TSP-LIB-1600 dataset for Travelling Salesman Problem
TSP-LIB-3038 dataset for Travelling Salesman Problem
UCC U-Control Chart
UCI University of California Irvine
UN Unimodal Nonseparable function
UPFC Unified Power Flow Controller
US Unimodal Separable function
VGA Variable string length Genetic Algorithm
VSGSO-D K-means Variable Step-size glowworm swarm optimization
VSSFA Variable Step size firefly Algorithm
WDBC Wisconsin Diagnostic Breast Cancer
WHDA-FCM Wolf hunting based dragonfly with Fuzzy C-Means
WK-Means Weight-based K-Means
WOA Whale Optimization Algorithm
WOA-BAT Whale Optimization Algorithm with Bat Algorithm
WSN Wireless Sensor Networks

References
1. Ezugwu, A.E. Nature-inspired metaheuristic techniques for automatic clustering: A survey and performance study. SN Appl. Sci.

2020, 2, 273. [CrossRef]
2. MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. Am. J. Hum. Genet. 1969, 21, 407–408.
3. Kapil, S.; Chawla, M.; Ansari, M.D. On K-Means Data Clustering Algorithm with Genetic Algorithm. In Proceedings of the

2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, India, 22–24 December 2016;
pp. 202–206.

4. Ezugwu, A.E.-S.; Agbaje, M.B.; Aljojo, N.; Els, R.; Chiroma, H.; Elaziz, M.A. A Comparative Performance Study of Hybrid Firefly
Algorithms for Automatic Data Clustering. IEEE Access 2020, 8, 121089–121118. [CrossRef]

5. Ezugwu, A.E.; Shukla, A.K.; Agbaje, M.B.; Oyelade, O.N.; José-García, A.; Agushaka, J.O. Automatic clustering algorithms: A
systematic review and bibliometric analysis of relevant literature. Neural Comput. Appl. 2020, 33, 6247–6306. [CrossRef]

http://doi.org/10.1007/s42452-020-2073-0
http://doi.org/10.1109/ACCESS.2020.3006173
http://doi.org/10.1007/s00521-020-05395-4


Appl. Sci. 2021, 11, 11246 54 of 61

6. José-García, A.; Gómez-Flores, W. Automatic clustering using nature-inspired metaheuristics: A survey. Appl. Soft Comput. 2016,
41, 192–213. [CrossRef]

7. Hruschka, E.; Campello, R.J.G.B.; Freitas, A.A.; de Carvalho, A. A Survey of Evolutionary Algorithms for Clustering. IEEE Trans.
Syst. Man Cybern. Part C Appl. Rev. 2009, 39, 133–155. [CrossRef]

8. Ezugwu, A.E.; Shukla, A.K.; Nath, R.; Akinyelu, A.A.; Agushaka, J.O.; Chiroma, H.; Muhuri, P.K. Metaheuristics: A comprehen-
sive overview and classification along with bibliometric analysis. Artif. Intell. Rev. 2021, 54, 4237–4316. [CrossRef]

9. Rana, S.; Jasola, S.; Kumar, R. A review on particle swarm optimization algorithms and their applications to data clustering. Artif.
Intell. Rev. 2010, 35, 211–222. [CrossRef]

10. Nanda, S.J.; Panda, G. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol. Comput. 2014,
16, 1–18. [CrossRef]

11. Alam, S.; Dobbie, G.; Koh, Y.S.; Riddle, P.; Rehman, S.U. Research on particle swarm optimization based clustering: A systematic
review of literature and techniques. Swarm Evol. Comput. 2014, 17, 1–13. [CrossRef]

12. Mane, S.U.; Gaikwad, P.G. Nature Inspired Techniques for Data Clustering. In Proceedings of the 2014 International Conference
on Circuits, Systems, Communication and Information Technology Applications (CSCITA), Mumbai, India, 4–5 April 2014;
pp. 419–424.

13. Falkenauer, E. Genetic Algorithms and Grouping Problems; John Wiley & Sons, Inc.: London, UK, 1998.
14. Cowgill, M.; Harvey, R.; Watson, L. A genetic algorithm approach to cluster analysis. Comput. Math. Appl. 1999, 37, 99–108.

[CrossRef]
15. Okwu, M.O.; Tartibu, L.K. Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and

Applications; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 927.
16. Malik, K.; Tayal, A. Comparison of Nature Inspired Metaheuristic Algorithms. Int. J. Electron. Electr. Eng. 2014, 7, 799–802.
17. Engelbrecht, A.P. Computational Intelligence: An Introduction; John Wiley & Sons: London, UK, 2007.
18. Agbaje, M.B.; Ezugwu, A.E.; Els, R. Automatic Data Clustering Using Hybrid Firefly Particle Swarm Optimization Algorithm.

IEEE Access 2019, 7, 184963–184984. [CrossRef]
19. Rajakumar, R.; Dhavachelvan, P.; Vengattaraman, T. A Survey on Nature Inspired Meta-Heuristic Algorithms with its Domain

Specifications. In Proceedings of the 2016 International Conference on Communication and Electronics Systems (ICCES),
Coimbatore, India, 21–26 October 2016; pp. 1–6.

20. Ezugwu, A.E. Advanced discrete firefly algorithm with adaptive mutation–based neighborhood search for scheduling unrelated
parallel machines with sequence–dependent setup times. Int. J. Intell. Syst. 2021, 1–42. [CrossRef]

21. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
22. Sivanandam, S.N.; Deepa, S.N. Genetic algorithms. In Introduction to Genetic Algorithms; Springer: Berlin/Heidelberg, Germany,

2008; pp. 15–37.
23. Krishna, K.; Murty, M.N. Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B 1999, 29, 433–439. [CrossRef]

[PubMed]
24. Bandyopadhyay, S.; Maulik, U. An evolutionary technique based on K-means algorithm for optimal clustering in RN. Inf. Sci.

2002, 146, 221–237. [CrossRef]
25. Cheng, S.S.; Chao, Y.H.; Wang, H.M.; Fu, H.C. A prototypes-embedded genetic k-means algorithm. In Proceedings of the 18th

International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 2, pp. 724–727.
26. Laszlo, M.; Mukherjee, S. A genetic algorithm using hyper-quadtrees for low-dimensional k-means clustering. IEEE Trans. Pattern

Anal. Mach. Intell. 2006, 28, 533–543. [CrossRef] [PubMed]
27. Laszlo, M.; Mukherjee, S. A genetic algorithm that exchanges neighboring centers for k-means clustering. Pattern Recognit. Lett.

2007, 28, 2359–2366. [CrossRef]
28. Dai, W.; Jiao, C.; He, T. Research of K-Means Clustering Method based on Parallel Genetic Algorithm. In Proceedings of the

Third International Conference on Intelligent Information Hiding and Multimedia Signal. Processing (IIH-MSP 2007), Kaohsiung,
Taiwan, 26–28 November 2007; Volume 2, pp. 158–161.

29. Chang, D.-X.; Zhang, X.-D.; Zheng, C.-W. A genetic algorithm with gene rearrangement for K-means clustering. Pattern Recognit.
2009, 42, 1210–1222. [CrossRef]

30. Sheng, W.; Tucker, A.; Liu, X. A niching genetic k-means algorithm and its applications to gene expression data. Soft Comput.
2008, 14, 9–19. [CrossRef]

31. Xiao, J.; Yan, Y.; Zhang, J.; Tang, Y. A quantum-inspired genetic algorithm for k-means clustering. Expert Syst. Appl. 2010, 37,
4966–4973. [CrossRef]

32. Rahman, M.A.; Islam, M.Z. A hybrid clustering technique combining a novel genetic algorithm with K-Means. Knowl.-Based Syst.
2014, 71, 345–365. [CrossRef]

33. Sinha, A.; Jana, P.K. A Hybrid MapReduce-based k-Means Clustering using Genetic Algorithm for Distributed Datasets. J.
Supercomput. 2018, 74, 1562–1579. [CrossRef]

34. Islam, M.Z.; Estivill-Castro, V.; Rahman, M.A.; Bossomaier, T. Combining K-Means and a genetic algorithm through a novel
arrangement of genetic operators for high quality clustering. Expert Syst. Appl. 2018, 91, 402–417. [CrossRef]

http://doi.org/10.1016/j.asoc.2015.12.001
http://doi.org/10.1109/TSMCC.2008.2007252
http://doi.org/10.1007/s10462-020-09952-0
http://doi.org/10.1007/s10462-010-9191-9
http://doi.org/10.1016/j.swevo.2013.11.003
http://doi.org/10.1016/j.swevo.2014.02.001
http://doi.org/10.1016/S0898-1221(99)00090-5
http://doi.org/10.1109/ACCESS.2019.2960925
http://doi.org/10.1002/int.22733
http://doi.org/10.1038/scientificamerican0792-66
http://doi.org/10.1109/3477.764879
http://www.ncbi.nlm.nih.gov/pubmed/18252317
http://doi.org/10.1016/S0020-0255(02)00208-6
http://doi.org/10.1109/TPAMI.2006.66
http://www.ncbi.nlm.nih.gov/pubmed/16566503
http://doi.org/10.1016/j.patrec.2007.08.006
http://doi.org/10.1016/j.patcog.2008.11.006
http://doi.org/10.1007/s00500-008-0386-9
http://doi.org/10.1016/j.eswa.2009.12.017
http://doi.org/10.1016/j.knosys.2014.08.011
http://doi.org/10.1007/s11227-017-2182-8
http://doi.org/10.1016/j.eswa.2017.09.005


Appl. Sci. 2021, 11, 11246 55 of 61

35. Zhang, H.; Zhou, X. A Novel Clustering Algorithm Combining Niche Genetic Algorithm with Canopy and K-Means. In
Proceedings of the 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 26–28 May
2018; pp. 26–32.

36. Mustafi, D.; Sahoo, G. A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initializa-
tion of the k-means algorithm with applications in text clustering. Soft Comput. 2019, 23, 6361–6378. [CrossRef]

37. El-Shorbagy, M.A.; Ayoub, A.Y.; Mousa, A.A.; El-Desoky, I.M. An enhanced genetic algorithm with new mutation for cluster
analysis. Comput. Stat. 2019, 34, 1355–1392. [CrossRef]

38. Ghezelbash, R.; Maghsoudi, A.; Carranza, E.J.M. Optimization of geochemical anomaly detection using a novel genetic K-means
clustering (GKMC) algorithm. Comput. Geosci. 2019, 134, 104335. [CrossRef]

39. Kuo, R.; An, Y.; Wang, H.; Chung, W. Integration of self-organizing feature maps neural network and genetic K-means algorithm
for market segmentation. Expert Syst. Appl. 2006, 30, 313–324. [CrossRef]

40. Li, X.; Zhang, L.; Li, Y.; Wang, Z. An Improved k-Means Clustering Algorithm Combined with the Genetic Algorithm. In
Proceedings of the 6th International Conference on Digital Content, Multimedia Technology and Its Applications, Seoul, Korea,
16–18 August 2010; pp. 121–124.

41. Karegowda, A.G.; Vidya, T.; Jayaram, M.A.; Manjunath, A.S. Improving Performance of k-Means Clustering by Initializing Cluster
Centers using Genetic Algorithm and Entropy based Fuzzy Clustering for Categorization of Diabetic Patients. In Proceedings of
International Conference on Advances in Computing; Springer: New Delhi, India, 2013; pp. 899–904.

42. Eshlaghy, A.T.; Razi, F.F. A hybrid grey-based k-means and genetic algorithm for project selection. Int. J. Bus. Inf. Syst. 2015, 18,
141. [CrossRef]

43. Lu, Z.; Zhang, K.; He, J.; Niu, Y. Applying k-Means Clustering and Genetic Algorithm for Solving MTSP. In International Conference
on Bio-Inspired Computing: Theories and Applications; Springer: Singapore, 2016; pp. 278–284.

44. Barekatain, B.; Dehghani, S.; Pourzaferani, M. An Energy-Aware Routing Protocol for Wireless Sensor Networks Based on New
Combination of Genetic Algorithm & k-means. Procedia Comput. Sci. 2015, 72, 552–560.

45. Zhou, X.; Gu, J.; Shen, S.; Ma, H.; Miao, F.; Zhang, H.; Gong, H. An Automatic K-Means Clustering Algorithm of GPS Data
Combining a Novel Niche Genetic Algorithm with Noise and Density. ISPRS Int. J. Geo-Inf. 2017, 6, 392. [CrossRef]

46. Mohammadrezapour, O.; Kisi, O.; Pourahmad, F. Fuzzy c-means and K-means clustering with genetic algorithm for identification
of homogeneous regions of groundwater quality. Neural Comput. Appl. 2018, 32, 3763–3775. [CrossRef]

47. Esmin, A.A.A.; Coelho, R.A.; Matwin, S. A review on particle swarm optimization algorithm and its variants to clustering
high-dimensional data. Artif. Intell. Rev. 2013, 44, 23–45. [CrossRef]

48. Niu, B.; Duan, Q.; Liu, J.; Tan, L.; Liu, Y. A population-based clustering technique using particle swarm optimization and k-means.
Nat. Comput. 2016, 16, 45–59. [CrossRef]

49. Van der Merwe, D.W.; Engelbrecht, A.P. Data Clustering using Particle Swarm Optimization. In Proceedings of the 2003 Congress
on Evolutionary Computation, CEC’03, Canberra, Australia, 8–12 December 2003; Volume 1, pp. 215–220.

50. Omran, M.G.H.; Salman, A.; Engelbrecht, A.P. Dynamic clustering using particle swarm optimization with application in image
segmentation. Pattern Anal. Appl. 2005, 8, 332–344. [CrossRef]

51. Alam, S.; Dobbie, G.; Riddle, P. An Evolutionary Particle Swarm Optimization Algorithm for Data Clustering. In Proceedings of
the 2008 IEEE Swarm Intelligence Symposium, St. Louis, MO, USA, 21–23 September 2008; pp. 1–7.

52. Kao, I.W.; Tsai, C.Y.; Wang, Y.C. An effective particle swarm optimization method for data clustering. In Proceedings of the
2007 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 2 December 2007;
pp. 548–552.

53. Niknam, T.; Amiri, B. An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl. Soft Comput. 2010,
10, 183–197. [CrossRef]

54. Thangaraj, R.; Pant, M.; Abraham, A.; Bouvry, P. Particle swarm optimization: Hybridization perspectives and experimental
illustrations. Appl. Math. Comput. 2011, 217, 5208–5226. [CrossRef]

55. Chuang, L.-Y.; Hsiao, C.-J.; Yang, C.-H. Chaotic particle swarm optimization for data clustering. Expert Syst. Appl. 2011, 38,
14555–14563. [CrossRef]

56. Chen, C.-Y.; Ye, F. Particle Swarm Optimization Algorithm and its Application to Clustering Analysis. In Proceedings of the 17th
Conference on Electrical Power Distribution, Tehran, Iran, 2–3 May 2012; pp. 789–794.

57. Yuwono, M.; Su, S.W.; Moulton, B.D.; Nguyen, H.T. Data clustering using variants of rapid centroid estimation. IEEE Trans. Evol.
Comput. 2013, 18, 366–377. [CrossRef]

58. Omran, M.; Engelbrecht, A.P.; Salman, A. Particle swarm optimization method for image clustering. Int. J. Pattern Recognit. Artif.
Intell. 2005, 19, 297–321. [CrossRef]

59. Chen, J.; Zhang, H. Research on Application of Clustering Algorithm based on PSO for the Web Usage Pattern. In Proceedings of
the 2007 International Conference on Wireless Communications, Networking and Mobile Computing, Honolulu, HI, USA, 21–25
September 2007; pp. 3705–3708.

60. Kao, Y.-T.; Zahara, E.; Kao, I.-W. A hybridized approach to data clustering. Expert Syst. Appl. 2008, 34, 1754–1762. [CrossRef]
61. Kao, Y.; Lee, S.Y. Combining K-Means and Particle Swarm Optimization for Dynamic Data Clustering Problems. In Proceedings

of the 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 20–22 November
2009; Volume 1, pp. 757–761.

http://doi.org/10.1007/s00500-018-3289-4
http://doi.org/10.1007/s00180-019-00871-5
http://doi.org/10.1016/j.cageo.2019.104335
http://doi.org/10.1016/j.eswa.2005.07.036
http://doi.org/10.1504/IJBIS.2015.067262
http://doi.org/10.3390/ijgi6120392
http://doi.org/10.1007/s00521-018-3768-7
http://doi.org/10.1007/s10462-013-9400-4
http://doi.org/10.1007/s11047-016-9542-9
http://doi.org/10.1007/s10044-005-0015-5
http://doi.org/10.1016/j.asoc.2009.07.001
http://doi.org/10.1016/j.amc.2010.12.053
http://doi.org/10.1016/j.eswa.2011.05.027
http://doi.org/10.1109/TEVC.2013.2281545
http://doi.org/10.1142/S0218001405004083
http://doi.org/10.1016/j.eswa.2007.01.028


Appl. Sci. 2021, 11, 11246 56 of 61

62. Yang, F.; Sun, T.; Zhang, C. An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm
Optimization. Expert Syst. Appl. 2009, 36, 9847–9852. [CrossRef]

63. Tsai, C.-Y.; Kao, I.-W. Particle swarm optimization with selective particle regeneration for data clustering. Expert Syst. Appl. 2011,
38, 6565–6576. [CrossRef]

64. Prabha, K.A.; Visalakshi, N.K. Improved Particle Swarm Optimization based k-Means Clustering. In Proceedings of the 2014
International Conference on Intelligent Computing Applications, Coimbatore, India, 6–7 March 2014; pp. 59–63.

65. Emami, H.; Derakhshan, F. Integrating Fuzzy K-Means, Particle Swarm Optimization, and Imperialist Competitive Algorithm for
Data Clustering. Arab. J. Sci. Eng. 2015, 40, 3545–3554. [CrossRef]

66. Nayak, S.; Panda, C.; Xalxo, Z.; Behera, H.S. An Integrated Clustering Framework Using Optimized K-means with Firefly and
Canopies. In Computational Intelligence in Data Mining-Volume 2; Springer: New Delhi, India, 2015; pp. 333–343.

67. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
68. Ratanavilisagul, C. A Novel Modified Particle Swarm Optimization Algorithm with Mutation for Data Clustering Problem. In

Proceedings of the 5th International Conference on Computational Intelligence and Applications (ICCIA), Beijing, China, 19–21
June 2020; pp. 55–59.

69. Paul, S.; De, S.; Dey, S. A Novel Approach of Data Clustering Using An Improved Particle Swarm Optimization Based K–Means
Clustering Algorithm. In Proceedings of the 2020 IEEE International Conference on Electronics, Computing and Communication
Technologies (CONECCT), Virtual, 2–4 July 2020; pp. 1–6.

70. Jie, Y.; Yibo, S. The Study for Data Mining of Distribution Network Based on Particle Swarm Optimization with Clustering
Algorithm Method. In Proceedings of the 2019 4th International Conference on Power and Renewable Energy (ICPRE), Chengdu,
China, 21–23 September 2019; pp. 81–85.

71. Chen, X.; Miao, P.; Bu, Q. Image Segmentation Algorithm Based on Particle Swarm Optimization with K-means Optimization. In
Proceedings of the 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China,
12–14 July 2019; pp. 156–159.

72. Yang, X.S. Firefly Algorithms for Multimodal Optimization. In Proceedings of the International Symposium on Stochastic
Algorithms, Sapporo, Japan, 26–28 October 2009; pp. 169–178.

73. Xie, H.; Zhang, L.; Lim, C.P.; Yu, Y.; Liu, C.; Liu, H.; Walters, J. Improving K-means clustering with enhanced Firefly Algorithms.
Appl. Soft Comput. 2019, 84, 105763. [CrossRef]

74. Hassanzadeh, T.; Meybodi, M.R. A New Hybrid Approach for Data Clustering using Firefly Algorithm and K-Means. In
Proceedings of the 16th CSI c (AISP 2012), Fars, Iran, 2–3 May 2012; pp. 007–011.

75. Mathew, J.; Vijayakumar, R. Scalable Parallel Clustering Approach for Large Data using Parallel K Means and Firefly Algorithms.
In Proceedings of the 2014 International Conference on High. Performance Computing and Applications (ICHPCA), Bhubaneswar,
India, 22–24 December 2014; pp. 1–8.

76. Nayak, J.; Kanungo, D.P.; Naik, B.; Behera, H.S. Evolutionary Improved Swarm-based Hybrid K-Means Algorithm for Cluster
Analysis. In Proceedings of the Second International Conference on Computer and Communication Technologies; Springer: New Delhi,
India, 2017; Volume 556, pp. 343–352.

77. Behera, H.S.; Nayak, J.; Nanda, M.; Nayak, K. A novel hybrid approach for real world data clustering algorithm based on fuzzy
C-means and firefly algorithm. Int. J. Fuzzy Comput. Model. 2015, 1, 431. [CrossRef]

78. Nayak, J.; Naik, B.; Behera, H.S. Cluster Analysis Using Firefly-Based K-means Algorithm: A Combined Approach. In Com-
putational Intelligence in Data Mining. Advances in Intelligent Systems and Computing; Behera, H., Mohapatra, D., Eds.; Springer:
Singapore, 2017; Volume 556.

79. Jitpakdee, P.; Aimmanee, P.; Uyyanonvara, B. A hybrid approach for color image quantization using k-means and firefly
algorithms. World Acad. Sci. Eng. Technol. 2013, 77, 138–145.

80. Kuo, R.; Li, P. Taiwanese export trade forecasting using firefly algorithm based K-means algorithm and SVR with wavelet
transform. Comput. Ind. Eng. 2016, 99, 153–161. [CrossRef]

81. Kaur, A.; Pal, S.K.; Singh, A.P. Hybridization of K-Means and Firefly Algorithm for intrusion detection system. Int. J. Syst. Assur.
Eng. Manag. 2018, 9, 901–910. [CrossRef]

82. Langari, R.K.; Sardar, S.; Mousavi, S.A.A.; Radfar, R. Combined fuzzy clustering and firefly algorithm for privacy preserving in
social networks. Expert Syst. Appl. 2019, 141, 112968. [CrossRef]

83. HimaBindu, G.; Kumar, C.R.; Hemanand, C.; Krishna, N.R. Hybrid clustering algorithm to process big data using firefly
optimization mechanism. Mater. Today Proc. 2020. [CrossRef]

84. Wu, L.; Peng, Y.; Fan, J.; Wang, Y.; Huang, G. A novel kernel extreme learning machine model coupled with K-means clustering
and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation. Agric. Water Manag. 2020, 245,
106624. [CrossRef]

85. Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483.
[CrossRef]

86. Sood, M.; Bansal, S. K-medoids clustering technique using bat algorithm. Int. J. Appl. Inf. Syst. 2013, 5, 20–22. [CrossRef]
87. Tripathi, A.; Sharma, K.; Bala, M. Dynamic frequency based parallel k-bat algorithm for massive data clustering (DFBPKBA). Int.

J. Syst. Assur. Eng. Manag. 2017, 9, 866–874. [CrossRef]

http://doi.org/10.1016/j.eswa.2009.02.003
http://doi.org/10.1016/j.eswa.2010.11.082
http://doi.org/10.1007/s13369-015-1826-3
http://doi.org/10.1109/TIT.1982.1056489
http://doi.org/10.1016/j.asoc.2019.105763
http://doi.org/10.1504/IJFCM.2015.076274
http://doi.org/10.1016/j.cie.2016.07.012
http://doi.org/10.1007/s13198-017-0683-8
http://doi.org/10.1016/j.eswa.2019.112968
http://doi.org/10.1016/j.matpr.2020.10.273
http://doi.org/10.1016/j.agwat.2020.106624
http://doi.org/10.1108/02644401211235834
http://doi.org/10.5120/ijais13-450965
http://doi.org/10.1007/s13198-017-0665-x


Appl. Sci. 2021, 11, 11246 57 of 61

88. Pavez, L.; Altimiras, F.; Villavicencio, G. A K-means Bat Algorithm Applied to the Knapsack Problem. In Proceedings of the
Computational Methods in Systems and Software; Springer: Cham, Switzerland, 2020; pp. 612–621.

89. Gan, J.E.; Lai, W.K. Automated Grading of Edible Birds Nest Using Hybrid Bat Algorithm Clustering Based on K-Means. In
Proceedings of the 2019 IEEE International Conference on Automatic Control. and Intelligent Systems (I2CACIS), Kuala Lumpur,
Malaysia, 19 June 2019; pp. 73–78.

90. Chaudhary, R.; Banati, H. Hybrid enhanced shuffled bat algorithm for data clustering. Int. J. Adv. Intell. Paradig. 2020, 17, 323–341.
[CrossRef]

91. Yang, X.S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconventional
Computing and Natural Computation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249.

92. Jensi, R.; Jiji, G.W. Hybrid data clustering approach using k-means and flower pollination algorithm. arXiv 2015, arXiv:1505.03236.
93. Kumari, G.V.; Rao, G.S.; Rao, B.P. Flower pollination-based K-means algorithm for medical image compression. Int. J. Adv. Intell.

Paradig. 2021, 18, 171–192. [CrossRef]
94. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-tr06; Erciyes University, Engineering

Faculty, Computer Engineering Department: Kayseri, Turcia, 2005.
95. Armano, G.; Farmani, M.R. Clustering Analysis with Combination of Artificial Bee Colony Algorithm and k-Means Technique.

Int. J. Comput. Theory Eng. 2014, 6, 141–145. [CrossRef]
96. Tran, D.C.; Wu, Z.; Wang, Z.; Deng, C. A Novel Hybrid Data Clustering Algorithm Based on Artificial Bee Colony Algorithm and

K-Means. Chin. J. Electron. 2015, 24, 694–701. [CrossRef]
97. Bonab, M.B.; Hashim, S.Z.M.; Alsaedi, A.K.Z.; Hashim, U.R. Modified K-Means Combined with Artificial Bee Colony Algorithm

and Differential Evolution for Color Image Segmentation. In Computational Intelligence in Information Systems; Springer: Cham,
Switzerland, 2015; pp. 221–231.

98. Jin, Q.; Lin, N.; Zhang, Y. K-Means Clustering Algorithm Based on Chaotic Adaptive Artificial Bee Colony. Algorithms 2021, 14,
53. [CrossRef]

99. Dasu, M.V.; Reddy, P.V.N.; Reddy, S.C.M. Classification of Remote Sensing Images Based on K-Means Clustering and Artificial
Bee Colony Optimization. In Advances in Cybernetics, Cognition, and Machine Learning for Communication Technologies; Springer:
Singapore, 2020; pp. 57–65.

100. Huang, S.C. Color Image Quantization Based on the Artificial Bee Colony and Accelerated K-means Algorithms. Symmetry 2020,
12, 1222. [CrossRef]

101. Wang, X.; Yu, H.; Lin, Y.; Zhang, Z.; Gong, X. Dynamic Equivalent Modeling for Wind Farms with DFIGs Using the Artificial Bee
Colony With K-Means Algorithm. IEEE Access 2020, 8, 173723–173731. [CrossRef]

102. Cao, L.; Xue, D. Research on modified artificial bee colony clustering algorithm. In Proceedings of the 2015 International
Conference on Network and Information Systems for Computers, Wuhan, China, 13–25 January 2015; pp. 231–235.

103. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Soft. 2014, 69, 46–61. [CrossRef]
104. Katarya, R.; Verma, O.P. Recommender system with grey wolf optimizer and FCM. Neural Comput. Appl. 2016, 30, 1679–1687.

[CrossRef]
105. Korayem, L.; Khorsid, M.; Kassem, S. A Hybrid K-Means Metaheuristic Algorithm to Solve a Class of Vehicle Routing Problems.

Adv. Sci. Lett. 2015, 21, 3720–3722. [CrossRef]
106. Pambudi, E.A.; Badharudin, A.Y.; Wicaksono, A.P. Enhanced K-Means by Using Grey Wolf Optimizer for Brain MRI Segmentation.

ICTACT J. Soft Comput. 2021, 11, 2353–2358.
107. Mohammed, H.M.; Abdul, Z.K.; Rashid, T.A.; Alsadoon, A.; Bacanin, N. A new K-means gray wolf algorithm for engineering

problems. World J. Eng. 2021. [CrossRef]
108. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
109. Moorthy, R.S.; Pabitha, P. A Novel Resource Discovery Mechanism using Sine Cosine Optimization Algorithm in Cloud. In

Proceedings of the 4th International Conference on Intelligent Computing and Control. Systems (ICICCS), Madurai, India,
13–15 May 2020; pp. 742–746.

110. Yang, X.S.; Deb, S. Cuckoo Search via Lévy Flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.

111. Ye, S.; Huang, X.; Teng, Y.; Li, Y. K-Means Clustering Algorithm based on Improved Cuckoo Search Algorithm and its Application.
In Proceedings of the 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA), Shanghai, China, 9–12 March 2018;
pp. 422–426.

112. Saida, I.B.; Kamel, N.; Omar, B. A New Hybrid Algorithm for Document Clustering based on Cuckoo Search and K-Means. In
Recent Advances on Soft Computing and Data Mining; Springer: Cham, Swizterland, 2014; pp. 59–68.

113. Girsang, A.S.; Yunanto, A.; Aslamiah, A.H. A Hybrid Cuckoo Search and K-Means for Clustering Problem. In Proceedings of the
2017 International Conference on Electrical Engineering and Computer Science (ICECOS), Palembang, Indonesia, 22–23 August
2017; pp. 120–124.

114. Zeng, L.; Xie, X. Collaborative Filtering Recommendation Based On CS-Kmeans Optimization Clustering. In Proceedings of the
2019 4th International Conference on Intelligent Information Processing, Wuhan, China, 16–17 November 2019; pp. 334–340.

115. Tarkhaneh, O.; Isazadeh, A.; Khamnei, H.J. A new hybrid strategy for data clustering using cuckoo search based on Mantegna
levy distribution, PSO and k-means. Int. J. Comput. Appl. Technol. 2018, 58, 137–149. [CrossRef]

http://doi.org/10.1504/IJAIP.2020.109513
http://doi.org/10.1504/IJAIP.2021.112903
http://doi.org/10.7763/IJCTE.2014.V6.852
http://doi.org/10.1049/cje.2015.10.006
http://doi.org/10.3390/a14020053
http://doi.org/10.3390/sym12081222
http://doi.org/10.1109/ACCESS.2020.3024212
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1007/s00521-016-2817-3
http://doi.org/10.1166/asl.2015.6555
http://doi.org/10.1108/WJE-10-2020-0527
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1504/IJCAT.2018.094576


Appl. Sci. 2021, 11, 11246 58 of 61

116. Singh, S.P.; Solanki, S. A Movie Recommender System Using Modified Cuckoo Search. In Emerging Research in Electronics,
Computer Science and Technology; Springer: Singapore, 2019; pp. 471–482.

117. Arjmand, A.; Meshgini, S.; Afrouzian, R.; Farzamnia, A. Breast Tumor Segmentation Using K-Means Clustering and Cuckoo
Search Optimization. In Proceedings of the 9th International Conference on Computer and Knowledge Engineering (ICCKE),
Virtual, 24–25 October 2019; pp. 305–308.

118. García, J.; Yepes, V.; Martí, J.V. A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem.
Mathematics 2020, 8, 555. [CrossRef]

119. Binu, D.; Selvi, M.; George, A. MKF-Cuckoo: Hybridization of Cuckoo Search and Multiple Kernel-based Fuzzy C-means
Algorithm. AASRI Procedia 2013, 4, 243–249. [CrossRef]

120. Manju, V.N.; Fred, A.L. An efficient multi balanced cuckoo search K-means technique for segmentation and compression of
compound images. Multimed. Tools Appl. 2019, 78, 14897–14915. [CrossRef]

121. Deepa, M.; Sumitra, P. Intrusion Detection System Using K-Means Based on Cuckoo Search Optimization. IOP Conf. Ser. Mater.
Sci. Eng. 2020, 993, 012049. [CrossRef]

122. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]
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