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Abstract: The main purpose of this research is to scrutinize the heat and mass transfer in the Casson
hybrid nanofluid flow over an extending cylinder in the presence of a magnetic dipole and double
stratification. The nanofluid contained chemically reactive hybrid nanoparticles (Ag, MgO) in
the conventional fluids (water). The effects of viscous dissipation, radiation, and concentration
stratification were taken into consideration. In the presence of gyrotactic microorganisms and the
Non-Ficks Model, the flow was induced. Incorporating microorganisms into a hybrid nanofluid
flow is thought to help stabilize the dispersed nanoparticles. For viscosity and thermal conductivity,
experimental relations with related dependence on nanoparticle concentration were used. To acquire
the nonlinear model from the boundary layer set of equations, suitable similarity transformations
were employed. The built-in function bvp4c of Matlab software was utilized to solve the transformed
equation numerically. The graphical results were obtained for temperature, velocity, concentration,
and microorganism distribution for various parameters. The numerical amounts of drag friction, heat
transport rate, and motile density number for different parameters are presented through tables. It is
seen that the fluid velocity is augmented by the increase of the curvature parameter, while a decrease
occurs in the fluid velocity with an increase in the magnetic and slips parameters. The comparison
of the present study with previously available studies is discussed, which shows a good agreement
with published results.

Keywords: magnetic dipole; Casson nanofluid; triple stratification; Ag-MgO/water hybrid nanofluid;
thermal radiation; gyrotactic microorganism

1. Introduction

A special type of nanofluid called a ferromagnetic nanofluid can be found in electri-
cal and mechanical devices such as shafts and rotating rods, speaker systems, computer
hard drives, and rotational X-ray tubes. Ferrofluids are also used in magnetocaloric
pumps, the purification of molten metals, temperature regulation of electrical devices,
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tumor treatment, lithographic design, nuclear reactor chilling, stepper motor dampers,
and shock absorbers in polishing procedures and grinding [1–5]. Ferrofluids are strongly
magnetized by an external magnetic field and have super magnetic properties. NASA
originally developed these fluids to control and stabilize fluid motion in space. These
liquids play an important role in electrochemical and chemical devices. The concept of
ferromagnetic fluids was suggested by Papell [6]. Kumar et al. [7] explored the two-
dimensional Maxwell nanofluid flow implanted with single-wall carbon nanotubes and
multiwall carbon nanotubes (SWCNT/MWCNT) across an extending sheet with the impact
of radiation and a magnetic dipole. The effect of a magnetic dipole and homogeneous
and heterogeneous reactions in a non-Newtonian ferrofluid past a stretchable cylinder
is described by Nadeem et al. [8]. Almaneea [9] numerically studied the improvement
of heat transport in a hybrid nanofluid flow when a magnetic dipole was placed atop a
sheet embedded in a porous medium. The magnetohydrodynamic (MHD) convective
flow of MoS2-SiO2/ethylene glycol (EG) composite nanofluid, via a rotating channel in the
vicinity of a magnetic dipole and thermal radiation, was evaluated by Mahato et al. [10].
Hayat et al. [11] investigated the ferromagnetic Maxwell nanofluid flow over a linearly
stretching sheet caused by a magnetic dipole. Ahmad et al. [12] discussed the heat
and mass transport of micropolar hybrid nanofluid flow induced by SWCNT/MWCNT.
Nadeem et al. [13] explored the mixed convective hybrid nanomaterial liquid flow with
Thomson and Troian slip conditions across a Riga surface. The flow and heat transport
analysis of bio-convective hybrid nanomaterial liquid, with stratification impacts over an
extending cylinder, was presented by Khan et al. [14].

A nanofluid is made by combining tiny nanoparticles, such as metallic and non-
metallic alloys or carbon nanotubes, with conventional fluids such as oils, water, or ethy-
lene glycol. These fluids have improved thermal conductivity qualities and a higher heat
transfer rate. With the growth of nanotechnology, a new type of liquid that is capable of
supplying high heat transference for a variety of manufacturing industries is needed. With
this in mind, a new type of liquid known as a hybrid nanofluid was created. A hybrid
nanofluid is a type of nanofluid created by scattering many types of nanoparticles in the
same base fluid. When compared to regular nanofluids and base fluids, hybrid nanofluids
have superior thermal properties. Refrigeration, generator cooling, the automobile industry,
electronic cooling, air conditioning, heat exchangers, biomedical applications, and nuclear
system cooling are applications of these fluids. Numerous studies into the features of
hybrid nanoliquid have been carried out as a result of these important applications. In the
presence of a chemical reaction, Alshomrani and Ramzan [15] explored the influence of
a ferromagnetic dipole in the flow of a hybrid nanoliquid through a stretching cylinder.
Ahmad and Nadeem [16] presented the hybrid Casson nanoliquid flow across a lubricated
surface approaching a stagnation point with entropy generation using a simplified mathe-
matical model. Under the impact of thermal radiation, Maskeen et al. [17] demonstrated
the heat transport and flow properties of an (Al2O3–Cu/H2O) hybrid nanoliquid across an
extending cylinder. Abbas et al. [18] numerically studied the flow of a hybrid nanofluid
with an inclined MHD stagnation point flow through a moving stretched cylinder. In this
study, he extends the Xue model and Yamada-Ota model for hybrid nanofluid. Using
the Runge-Kutta (RKF 4) numerical approach, Gholinia et al. [19] investigated the steady
boundary layer laminar flow of CNTs/(C2H6O2–H2O) nanomaterial hybrid fluid on a
porous stretched cylinder with the influence of a magnetic force. In a hybrid nanofluid
flow, Waini et al. [20] investigated the stagnation point flow towards a stretching/shrinking
cylinder. Alumina (Al2O3) and copper (Cu) were used as hybrid nanoparticles in this study,
with water as the base fluid.

Stratification is a critical feature of heat and mass transmission that has been researched
by a number of scientists. Temperature differences, concentration differences, or liquids
with varying densities cause stratification to appear in flow fields. When both heat and mass
transport occurs at the same time, double stratification occurs. Some types of stratification
include the thermal stratification of reservoirs and seas, estuaries, and ground water
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reservoirs, the salinity stratification in rivers, and the heterogeneous mixtures in the
atmosphere, oceans, and manufacturing and industrial food processes. In the presence of
gravity, density differences play an important role in the dynamics and in the mixing of
heterogeneous fluids. Thermal stratification in reservoirs, for example, can restrict oxygen
mixing to the bottom water, causing it to become anoxic as a result of biological activity.
In ponds and lakes, stratification is very significant because it regulates the changes in
temperature and concentrations of hydrogen and oxygen in such conditions, which might
affect the pace of growth of diverse organisms. As a result, Chen and Eichhorn [21] used
the local non-similarity method to solve the governing equations for natural convective
flow over a surface in a thermally stratified medium. Using the implicit finite difference
method, Ishak et al. [22] investigated a mixed convection boundary layer flow near a
vertical surface contained in a stable stratified medium. Mukhopadhyay et al. [23] used the
Lie group transformation approach to explore the role of thermal stratification on mass and
heat transport via a porous vertical stretch sheet. Nadeem et al. [24] conducted research on
Maxwell fluid boundary layer heat and flow transport across an exponentially extending
surface with thermal stratifications.

The remarkable evaluation of Ag-MgO/Water hybrid nanomaterial liquid flow with
triple stratification and a magnetic dipole over a stretched cylinder is an essential focus of
the current study. Further, the influence of viscous dissipation, thermal radiation, general-
ized Fick’s law, and partial slip are incorporated. The novelty of the current investigation
is the analysis of the Ag-MgO/Water chemically reactive Casson hybrid nanofluid with
stratification and a magnetic dipole effect induced by a stretching cylinder. To the best of
our knowledge, no previous study has investigated these effects. The numerical solution
of the present analysis was integrated through the bvp4c function from MATLAB. The
impacts of various parameters are presented through graphs, and quantification of Nusselt
number, skin friction, and microorganism number are shown through tables. The existence
of the present analysis is seen through previously published results.

2. Mathematical Modelling

Here, we consider a 2D laminar, incompressible, and radiative Casson hybrid nano-
material liquid flow on a stretching cylinder in the presence of the slip and microorganism
effects. The energy and mass concentration equation has been analyzed by the influence
of viscous dissipation and modified Fick’s law. Moreover, the stratification boundary
conditions are implemented on the surface and away from the surface. A magnetic dipole
is considered with a magnetic field in the direction of x. The coordinates axes are x and
r, R is the radius of the cylinder, and Uw is the stretching velocity. The flow pattern is
seen in Figure 1. The ambient temperature, concentration, and microorganism density are
denoted by T∞, C∞, and N∞, respectively, and at the wall they are stated by Tw, Cw, and
Nw, respectively.

Using the above-mentioned supposition and boundary layer approximation theory,
the flow equations are developed as [25–27],
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where µ0M ∂H
∂x represents the ferromagnetic force per unit volume.

The associated boundary conditions are,

v = 0, u = Uw + w1νhn f

(
1 +

1
β

)
∂u
∂r

, T = T0 +
bx
l

, C = C0 +
dx
l

, N = N0 +
ax
l

, at r = R, (6)

u→ 0, T → T∞(x) = T0 +
cx
l

, C → C∞(x) = C0 +
ex
l

, N → N∞ = N0 +
a1x

l
, as r → ∞. (7)

In the above equations, u and v are the velocity components in the directions of
x− and r−, respectively. Additionally, the µhn f is the dynamic viscosity of the hybrid
nanofluid, ρhn f is the density of the hybrid nanofluid, αhn f is the thermal diffusivity of
the hybrid nanofluid, k∗ is the mean absorption coefficient, (DB)hn f is the mass diffusivity
of the nanofluid, (Dm)hn f is the microorganism diffusivity of the nanofluid, w1 is the slip
factor, λc is the concentration relaxation time, νhn f is the kinematic viscosity of the hybrid
nanofluid, and Wc is the maximum cell swimming speed. Additionally, a, b, c, d, e, and a1
signify the positive constants. Table 1 represents the thermophysical properties of the base
fluid and nanoparticles.
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Table 1. The thermophysical properties of the base fluid and nanoparticles [27].

Physical Properties Base Fluid Nanoparticle

Water Ag MgO

Cp(J/kgK) 4179 235 955

ρ(kg/m3) 997.1 10,500 3560

k(W/mK) 0.62 429 45
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The hypothetical relation is characterized as follows,
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; 0 ≤ φ1 ≤ 0.03. (12)

2.1. Magnetic Dipole

The scalar potential of the magnetic dipole is stated as,

Ω =
xl

2π(x2 + (r + c)2)
, (13)

In Equation (13), l specifies the magnetic strength. The horizontal and vertical part of
the magnetic field in x− and r− directions are defined as,

∂H
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, (14)
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2 . (15)

The absolute magnetic field and magnetic body force is stated as,
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(
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)2
. (16)

where the components in the square root are defined as,

∂H
∂x

=
−2x

2π(r + c)4 , (17)

∂H
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=
1

2π

(
−2

(r + b)3 +
4x

(r + c)5

)
. (18)

The intensity of the magnetic field became stronger and formed a linear relationship
between temperature and magnetic variation:

M = K∗(T − T∞). (19)

For the discussion of the ferrodynamic interaction, we may suppose that the magnetic
field is applied in a non-homogenous way, and fluid temperature must be less than the
Curie temperature.
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2.2. Similarity Transformation

The similarity variables are stated as,

η =
(

Uw
lν f

)1/2( r2−R2

2R

)
, u = Uw f ′(η), v = −

(
ν f U0

l

)1/2
R
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Tw−T0
,

g(η) = C−C∞
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, h(η) = N−N∞
Nw−N∞

,
(20)

Equation (1) is identically satisfied and other Equations (2)–(7) yield,

(1 + 1/β)
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The concerned boundary condition becomes,

f (0) = 0, f ′(0) = 1 + (1 + 1/β) s
A1

f ′′ (0), θ(0) = 1− S1, g(0) = 1− S2, h(0) = 1− S3,
f ′(∞)→ 0, θ(∞)→ 0, g(∞)→ 0, h(∞)→ 0.

(25)

.
The developed parameters are the curvature parameter, the Casson fluid parame-

ter, the ferromagnetic parameter, the Eckert number, the radiation parameter, the free
stream parameter, the Prandtl number, the viscous dissipation parameter, the concentra-
tion relaxation parameter, the Schmidth number, the bio-convection Lewis number, the
Peclet number, the velocity slip parameter, the thermal stratification parameter, the solutal
stratification parameter, the bio-convection constant, and the microorganism stratification
parameter, which are symbolized by α, β, M, Ec, Rd, ε, Pr, λ, γc, Sc, Lb, Pe, s, S1, S2, δ,
and S3 , respectively. These parameters are mathematically defined as,

Pr =
ν f
α f
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.

(26)

The physical quantities of interest in this study are the skin friction, the local Nusselt
number, the Sherwood number, and the microorganism number, which are defined by,

C f =
2τw

ρ f uw2 , Nux =
xqw

k f (Tw − T0)
, Shx =

xqm

DB(Cw − C0)
, Nnx =

xqn

Dm(nw − n∞)
. (27)

The nondimensional forms of physical quantities are,

C f Rex
1/2 = 1

A1
(1 + 1/β) f ′′ (0), NuxRex

−1/2 = − khn f
k f

θ′(0),

ShxRex
−1/2 = −g′(0), NnxRex

−1/2 = −h′(0).
(28)

3. Result and Discussion

In this section, the graphical and tabulated discussion of the two-dimensional radiative
Casson fluid flow with viscous dissipation and modified Fick’s law with stratification
boundary conditions on the cylindrical surface is presented. The flow model solution is
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obtained with the help of the MATLAB built-in function Bvp4c. The comparison table of
the current problem with data published by Nadeem et al. [1] and Bidin and Nazar [2] is
presented in Table 2. It is shown that a stronger value of the Prandtl number improves the
temperature gradient. Table 3 shows the variation in the skin friction coefficient, and the
rates of heat transfer, mass transfer, and microorganism transfer against M, α, and φ1. It is
quite interesting to see that the skin friction coefficient improves for the improved values
of M, while heat, mass, and microorganism transfer rates decline for the stronger values
of M. Further, α and φ1 show increasing behavior against the skin friction, and the heat,
mass, and microorganism transfer rates. The effect of Lb, Pe, α, and δ on the microorganism
transfer rate by the influence of Ag and MgO is found in Table 4. It is noted that a larger
estimation of Lb, Pe, α, and δ improves the microorganism transfer rate for both of the
nanoparticles.

Table 2. Comparisons of θ′(0) for distinct values of Pr.

Pr −θ
′
(0)

Nadeem et al. [8] Alshomrani and Ramzan [15] Present Result

1.0 0.9547 0.95470 0.95471
2.0 1.4714 1.47141 1.4715
3.0 1.8961 1.89610 1.8963

Table 3. The variation of different parameters against the C f Rex
1/2, NuxRex

−1/2, ShxRex
−1/2, and

NnxRex
−1/2, when β→ ∞ .

M α φ1 CfRex
1/2 NuxRex

−1/2 ShxRex
−1/2 NnxRex

−1/2

0 0.1 0.01 0.958818 1.492516 2.574228 3.713916
0.2 0.1 0.01 1.029294 1.474742 2.572837 3.709770
0.5 0.1 0.01 1.124172 1.450624 2.571115 3.704244
1.0 0.1 0.01 1.261317 1.415448 2.568901 3.696367
0.1 0 0.01 0.961867 1.460633 2.545416 3.689184
0.1 0.2 0.01 1.027016 1.506223 2.600975 3.734012
0.1 0.5 0.01 1.118963 1.574077 2.679962 3.798488
0.1 1.0 0.01 1.261287 1.683913 2.801901 3.899355
0.1 0.1 0 0.906481 1.412151 2.556308 3.704989
0.1 0.1 0.002 0.932978 1.428515 2.560091 3.706845
0.1 0.1 0.01 0.994889 1.483435 2.573505 3.711790
0.1 0.1 0.02 1.144799 1.553458 2.587765 3.719461

Table 4. Variation of different parameters against the microorganism transfer rate.

Lb Pe α δ
−h

′
(0)

Ag MgO

0.5 0.5 0.1 0.2 1.7591 1.7606
0.6 0.5 0.1 0.2 1.8422 1.8439
0.7 0.5 0.1 0.2 1.9210 1.9227
0.5 0.1 0.1 0.2 1.4693 1.4707
0.5 0.2 0.1 0.2 1.6329 1.6345
0.5 0.3 0.1 0.2 1.7987 1.8003
0.5 0.5 0.2 0.2 2.1662 2.1679
0.5 0.5 0.3 0.2 2.1962 2.1978
0.5 0.5 0.4 0.2 2.2262 2.2278
0.5 0.5 0.1 0.3 2.1996 2.2014
0.5 0.5 0.1 0.4 2.2631 2.2649
0.5 0.5 0.1 0.5 2.3267 2.3285
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3.1. Variation in Velocity Profile for Different Parameters

The variation in the velocity profile for the several parameters is depicted in Figures 2–6.
The results, indicated in Figure 2, are that the velocity profile shows a decreasing trend for
the improved values of the Casson fluid parameter, while a stronger estimation of α shows
the opposite trend on the velocity profile, which is lessening (see in Figure 3). The reason
behind this is that the stronger resistive force occurs between the molecules of the solid
surface at the wall by the escalation of the curvature parameter. Further, it is found that by
the expansion of α (the curvature parameter), the radius of the cylinder condenses, thereby
the low resistance is provided to the fluid motion, and hence, the fluid velocity rises. The
diversion in the velocity sketch against the various values of the magnetic parameter and
solid fraction parameter is found in Figures 4 and 5. It is clarified in Figure 4 that due to the
occurrence of the magnetic effect, the Lorentz force appears, which yields the retardation
effect whereby the fluid velocity declines. Further, the result of Figure 5 illustrates the
reducing behavior by the escalation of φ1. The influence of s (velocity slip parameter) on
the velocity profile is designated in Figure 6. The figure shows that declines in the fluid
velocity due to increasing values of s are related to boundary layer thickness. The reason
behind this is that the velocity near the cylindrical surface is not the same as the velocity
away from the surface, and, therefore, the fluid velocity diminishes.
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3.2. Variation in Temperature Sketch against Various Parameters

The outcomes of several parameters on the temperature profile are observed in
Figures 7–12. The diverse features of β (the Casson fluid parameter) and α (the curva-
ture parameter) on the temperature distribution are presented in Figures 7 and 8. It is
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represented in the figures that the temperature distribution improves with improved values
of β and α, consequently. Figures 9 and 10 demonstrate the behavior of M (the magnetic
parameter) and φ1 (the solid volume fraction parameter) on the temperature distribution.
It is clarified in the figures that increases in the fluid temperature coincided with increases
in the estimations of both of the parameters M and φ1. The various consequences of Rd
(the radiation parameter) and S1 (the stratification parameter) against the temperature of
the fluid are presented in Figures 11 and 12. It is worth mentioning, in the figures, that the
strong values of Rd and S1 increase the temperature and the corresponding boundary layer
thickness. Physically, the mean absorption coefficient is reduced for a stronger estimation
of the radiation parameter, which consequently expands the thermal distribution. Further-
more, as the reason behind the variations of temperature, the stratification between the
surface and away from the surface decreases, and ultimately, the temperature decreases.
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3.3. Variation in Concentration Sketch against Various Parameters

Figures 13–17 illustrate the effects of various emerging parameters on the concentra-
tion sketch. The variation in the g(η) sketch against the various estimation of α and γc (the
mass relaxation parameter) is portrayed in Figures 13 and 14. Figure 13 illustrates that
higher values of α boost the concentration sketch and the related thickness of the boundary
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layer. Further, it is designated that a stronger estimation of the mass relaxation parameter
declines as the concentration profile and the associated boundary layer become thicker
(see in Figure 14). It is interesting to note that the enhancement occurs in the concentration
sketch against the escalation of φ1, which is seen in Figure 15. Figure 16 represents the
effect of S2 (the concentration stratification) on the concentration distribution. It is visible
in the figure that the reduction occurs in the g(η) sketch and the associated boundary layer
thickness by the enhancement of S2. The characteristics of Sc (the Schmidth number) on the
concentration sketch is examined in Figure 17. It is sketched that the stronger estimation of
Sc declines as the nanoparticle concentration and corresponding boundary layer become
thinner. Physically, by the enhancement of Sc, mass diffusivity decays, and, as a result, the
concentration sketch declines.
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3.4. Variation in Microorganism Profile against Different Parameters

Figures 18–22 represent the consequences of the different parameters on the microor-
ganism density distribution. The effects of α and φ1 on the microorganism density sketch
are observed in Figures 18 and 19. It is clarified from the figure that the microorganism
density and the related boundary layer thickness show an enhancing trend for the higher
values of α and φ1. The effect of Lb (the bio-convection Lewis number) and Pe (the Peclet
number) on the microorganism sketch is represented in Figures 20 and 21. It is quite inter-
esting to note that the microorganism density profile improves for higher values of both Lb
and Pe. The reason behind this is that microorganism diffusivity declines with increasing
values of Lb, and, as a result, the density of nanoparticles and the related boundary layer
declines. Further, it is noted that non-negative values of Pe subvert the gyrotactic microor-
ganism thickness and higher Pe improves the movement of liquid particles; hence, slender
microorganisms can be seen. The salient feature of S3 (the microorganism stratification
parameter) on the h(η) sketch is described in Figure 22. It is shown in the figure that a
reduction occurs in the microorganism density of nanoparticles and the boundary layer
becomes thinner with the improvements of S3.
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4. Concluding Remarks

The consideration of two-dimensional radiative Casson fluid flow with a magnetic
dipole and microorganisms is presented in the article. The mass and heat transport
analyses are observed under the influence of viscous dissipation and generalized Fick’s
law. The stratification boundary conditions are implemented at the boundary of the
cylindrical surface and away from the boundary. The main result of the above observation
is as follows:

• The fluid velocity is augmented with the increase in the curvature parameter, while
a decrease occurs in the fluid velocity by the increase in the magnetic and slips
parameters.

• The fluid velocity decreases with increases in β and φ1.
• The temperature and concentration of the fluid are improved for strong values of the

curvature parameter.
• Stronger estimation of thermal and concentration stratification consequently decreases

the fluid concentration and temperature.
• The microorganism concentration declines for the microorganism stratification param-

eter, while showing an opposite trend for an increasing amount of the curvature parameter.
• The skin friction shows a declining trend for the improved values of M, but the heat

transfer rate shows increasing behavior.
• The heat and mass transfer rates show increasing trends for larger values of α and φ1.
• The microorganism transfer rate is improved for increasing values of Lb and Pe, but it

shows an opposite trend for the larger values of M.
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Nomenclature

u, v Velocity Components Greek Symbols
x, r Coordinate ρhn f , ρ f Density
M magnetization µhn f , µ f Dynamic viscosity
H magnetic field τxy Shear stress

T, Tw
Temperature,
and wall temperature

αhn f , α f
Modified thermal
diffusivity

Dm Diffusivity of microorganisms
(
ρCp

)
hn f ,(ρCp) f heat capacity

Pr Prandtl number k f , khn f Thermal conductivity

Cp Specific heat φ
Solid volume fraction
of a nanofluid

Uw Stretching velocity along x-direction η
Scaled boundary-layer
coordinate

DB Brownian diffusion coefficient Ω magnetic scalar potential
Ec Eckert number µ0 magnetic permeability

Cf surface drag force qw(x)
the surface heat flux of a
nanoliquid film
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Nux Nusselt number β Casson fluid parameter

Pe Bioconvection Péclet number λ
viscous dissipation
parameter

a, b, c, d, e Positive constants σ∗ Stefan–Boltzmann constant
s velocity slip parameter θ Dimensionless temperature
Sc Schmidt number δ Bioconvection constant
Wc Maximum cell swimming speed α Curvature parameter

Rex Local Rayleigh number λc
concentration
relaxation time

w1 Slip factor ε Curie temperature
l strength of magnetic field
K∗ pyromagnetic co-efficient
k∗ mean absorption coefficient
S1 Thermal stratification
S2 Solutal stratification
S3 microorganism stratification
Subscripts
w The boundary surface ∞ The ambient surface
hn f Hybrid nanofluid n f Nanofluid
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