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Abstract: With the development of cities, urban congestion is nearly an unavoidable problem for
almost every large-scale city. Road planning is an effective means to alleviate urban congestion, which
is a classical non-deterministic polynomial time (NP) hard problem, and has become an important
research hotspot in recent years. A K-means clustering algorithm is an iterative clustering analysis
algorithm that has been regarded as an effective means to solve urban road planning problems
by scholars for the past several decades; however, it is very difficult to determine the number of
clusters and sensitively initialize the center cluster. In order to solve these problems, a novel K-means
clustering algorithm based on a noise algorithm is developed to capture urban hotspots in this
paper. The noise algorithm is employed to randomly enhance the attribution of data points and
output results of clustering by adding noise judgment in order to automatically obtain the number of
clusters for the given data and initialize the center cluster. Four unsupervised evaluation indexes,
namely, DB, PBM, SC, and SSE, are directly used to evaluate and analyze the clustering results, and
a nonparametric Wilcoxon statistical analysis method is employed to verify the distribution states
and differences between clustering results. Finally, five taxi GPS datasets from Aracaju (Brazil),
San Francisco (USA), Rome (Italy), Chongqing (China), and Beijing (China) are selected to test
and verify the effectiveness of the proposed noise K-means clustering algorithm by comparing the
algorithm with fuzzy C-means, K-means, and K-means plus approaches. The compared experiment
results show that the noise algorithm can reasonably obtain the number of clusters and initialize the
center cluster, and the proposed noise K-means clustering algorithm demonstrates better clustering
performance and accurately obtains clustering results, as well as effectively capturing urban hotspots.

Keywords: K-means clustering; noise algorithm; unsupervised evaluation; non-parametric Wilcoxon
statistical analysis; urban road planning; taxi GPS data

1. Introduction

Modern cities have become important engines and hubs to drive social development.
A city represents the most concentrated residence of people and the gathering place of
social resources. Both work and life are inseparable from urban support. In recent years,
there has been a “big city disease”, of which the most prominent phenomenon is urban
congestion, which has become a nearly unavoidable problem for almost every large-scale
city. Consequently, from the perspective of informatization and intelligence, people have
successively used information technology to put forward digital cities and smart cities from
the strategic level and have formulated construction schemes to meet the development
needs of different cities, hoping to solve the challenges faced in the process of urban
development and alleviating urban congestion. In particular, the application of the new
generation of cloud computing, big data, the Internet of Things, and artificial intelligence
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technology has made urban operation more intelligent and has gradually become a reality,
making rail transit and urban transportation more predictable and widely applied; however,
a city is a densely populated area with a high concentration of both living and vehicle
operation. The growth of the world’s civil vehicle sales from 2010 to 2020 is shown in
Figure 1.
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Moreover, population flow is directly related to time, and urban congestion is still
an important challenge for every city. The application of big data has served as a basic
strategic digital resource in smart cities. Many researchers have analyzed the trajectory
GPS data of transportation vehicles in order to mine the hidden information behind the
data to reflect the urban operation status and define temporal and spatial change rules [1],
in addition to use in traffic congestion status analysis [2–7], crowd movement distribu-
tion [8–10], traffic travel recommendation [11,12], and road planning [13,14], urban hotspot
discovery [15–18], and so on. Such research results are directly applied to the construction
of a smart city to elucidate more reasonable urban road planning and a more reasonable
dispersion of vehicle flow and human flow. Such research methods usually use machine
learning algorithms (such as cluster analysis and feature learning) to capture the vehicle
trajectory patterns, including the origins and destinations (OD) [19–21], stops and moves
(SM) [22,23], and moving objects (MO) [24,25] from the GPS data. Pongracic et al. [26]
proposed a midlatitude Klobuchar correction model to correct the Klobuchar model for
midlatitude users. Gu et al. [27] proposed a data-based methodology to estimate the traffic
congestion of road segments between bus stops in order to improve the travel time reliabil-
ity and quality of public transport services. Gao et al. [28] proposed a specific and accurate
definition of traffic congestion to quantify the level of traffic congestion and constructed
an image-based traffic congestion estimation framework based on a convolutional neural
network. Afrin and Yodo [29] proposed a Bayesian network based on speed- and volume-
related measures and a probabilistic congestion estimation approach. These models have
been used to explain and discover urban operation states, crowd migration hotspots, and
other urban operations.
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In order to learn the valuable information hidden behind the location data, a clustering
learning algorithm is a common and simple method that is used in many studies. Cluster
analysis, also known as group analysis, is not only a statistical analysis method to study
a classification problem (sample or index), but is also an important algorithm for data
mining. Cluster analysis is composed of several patterns. Usually, a pattern is a vector of
measurement or a point in multi-dimensional space. Cluster analysis is based on similarity.
Patterns in a cluster have more similarity than patterns that are not in the same cluster.
Clustering analysis algorithms can be divided into partition methods, hierarchical methods,
density-based methods, grid-based methods, and model-based methods. Among them,
K-means clustering is the simplest, most used, and computationally efficient clustering
algorithm, but it faces three major problems for any given dataset. As such, it is very
difficult to find the appropriate number of clusters, optimize clustering centers, and capture
global clustering results.

For the past several decades, many researchers have proposed some new ideas and
methods. An improved K-means algorithm based on density (canopy K-means) has been
proposed to solve the problem of determining the most suitable number of clusters and
the best initial seeds [30]. An evolutionary K-means (EKM) method, based on combining
K-means and a genetic algorithm, has been proposed to select parameters automatically
through the evolution of partitions for solving the initiation problem of K-means [31]. The
K-means++ algorithm has been proposed to quickly capture a better clustering center to
find the sensitivity of the clustering process for the clustering center [32]. Fuzzy C-means
(FCM) has been proposed to solve the problem of clustering edge data attribution [33–36].
An intelligent optimization algorithm with a K-means algorithm has been proposed to
effectively solve the global optimization of clustering and the sensitivity of clustering
center effectively [37,38]. In addition, some researchers have also proposed some improved
methods for K-means algorithms and new application scenarios. For example, the depth
representation extracted by depth learning technology has been proposed to improve the
clustering performance of K-means clustering [39]. A competing cluster center approach
has been proposed to maximize the benefits of cluster centers [40]. Ma and Zhou [41]
proposed a novel sharing-based niche genetic algorithm with an initial population based
on hybrid K-means clustering in order to obtain the best chromosome and perform K-
means clustering. Sun et al. [42] proposed a framework to differentiate between these two
types of methods with the following procedure.

These K-means clustering algorithms have adequately realized clustering and have
obtained clustering results in actual engineering applications; however, some shortcomings
still exist, such as a low processing efficiency, difficulty in determining the number of clus-
ters, sensitively initializing the cluster center, and so on. In order to solve these problems, a
novel K-means clustering algorithm based on a noise algorithm, namely, a noise K-means
clustering algorithm, is developed here in order to improve the processing efficiency of
automatic clustering and avoid both excessive manual configuration of parameter uncer-
tainty and clustering results falling into local optimums in this paper. The noise algorithm
is employed to randomly enhance the attribution of data points and output the results of
clustering by adding noise judgment in order to automatically obtain the number of clusters
for the given data and initialize the center cluster. Four unsupervised evaluation indexes
of DB, PBM, SC, and SSE, and the nonparametric Wilcoxon statistical analysis method are
employed to evaluate and analyze the clustering results and verify the distribution states
and differences. Finally, five taxi GPS datasets, including Beijing, Chongqing, San Francisco,
Rome and Aracaju, are selected to test and verify the effectiveness of the proposed noise
K-means clustering algorithm in comparison with fuzzy C-means, K-means, and K-means
plus approaches.
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The innovations and main contributions of this paper are described as follows.

• A novel noise K-means clustering algorithm based on a noise algorithm is developed
to capture urban hotspots.

• The noise algorithm is employed to randomly enhance the attribution of data points
and output results of clustering by adding noise judgment to automatically obtain the
number of clusters and initialize the center cluster.

• Four unsupervised evaluation indexes of DB, PBM, SC, and SSE are directly used to
evaluate and analyze the clustering result.

• A non-parametric Wilcoxon statistical analysis method is employed to verify the
distribution state and difference of clustering results.

• Comprehensive experiments are designed and executed to prove the effectiveness of
the proposed noise K-means clustering algorithm with five sets of taxi GPS data.

2. Noise K-Means Clustering Algorithm
2.1. The Idea of the Noise K-Means Clustering Algorithm

A K-means clustering algorithm is an iterative clustering analysis algorithm that has
been regarded as an effective means to solve urban road planning problems by scholars for
the past several decades. The algorithm has been widely used in the fields of document
classification, customer classification, ride data analysis, criminal network analysis, the
detailed analysis of call records, and so on. It is very difficult to determine the number of
clusters and sensitively initialize the cluster center. Noise can be used to simulate noise
phenomena in nature. Because of its continuity, if an axis in two-dimensional noise is taken
as the time axis, the result is a continuously changing one-dimensional function. As such,
in order to solve the existing problems of the K-means clustering algorithm and make use
of the merits of the noise algorithm, a novel noise-based K-means clustering algorithm
is proposed to obtain a better clustering center and capture urban hotspots in this paper.
The proposed noise-based K-means clustering algorithm consists of three parts. Firstly, the
noise algorithm is employed to randomly enhance the attribution of data points and the
output result of clustering by adding noise judgment in order to automatically obtain the
number of clusters of the given data and initialize the cluster center. Secondly, the K-means
clustering algorithm is employed to optimize the clustering center generated. It is fused
with noise algorithm to form a novel noise-based K-means clustering algorithm. Finally, the
proposed noise-based K-means clustering algorithm is used to obtain the clustering results
for the given data and capture an excellent clustering center, i.e., and urban hotspot. Four
unsupervised evaluation indexes of DB, PBM, SC, and SSE are directly used to evaluate and
analyze the clustering results, and nonparametric Wilcoxon statistical analysis is employed
to verify the distribution states and differences between clustering results.

2.2. The Flow of the Noise K-Means Clustering Algorithm

The flow of the proposed noise K-means clustering algorithm is shown in Figure 2.
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2.3. The Realization of the Noise-Based K-Means Clustering Algorithm

The detailed steps of the noise-based K-means clustering algorithm are described
as follows.

Step 1. Set the clustering number K
According to [43–46], it is generally believed that the clustering number of a K-means

algorithm is between 2 and
√

N, where N represents the number of GPS data points. In
this paper, more clusters are required to describe the distribution of urban hotspots. The
GPS data points are intensive data, so the clustering number was set as [

√
N

2 ,
√

N].
Step 2. Optimize the clustering number K using binary inversion
The clustering number K is converted from decimal to binary (the binary digits is

rounded by
√

N). Then, one digit of the binary number is randomly flipped to generate a
new binary number. Finally, the binary number is converted to a decimal and a new K is
obtained. The binary inversion of the solution is shown in Figure 3.
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Step 3. Optimize the clustering center
Since the location of the center point of the clustering is not fixed under the same

number of clustering K values, in order to obtain a better initial distribution of the center
point, the sum of squares for frror (SSE) is used to evaluate and find the optimal center of
the clustering.

SSE =

K

∑
i=1

N

∑
j=1

(
Xij − Xi

)2 (1)

where K represents the number of clusters, N represents the number of taxi GPS data points
in clustering, and

(
Xij − Xi

)2 represents the error sum of squares for each GPS data point.
Step 4. Output optimized clustering center and capture urban hotspots
According to the found optimal center of the clustering, it is set as the clustering center

of the noise-based K-means clustering algorithm (Algorithm 1), which is used to solve the
urban road planning problem in order to obtain the clustering results for the given taxi
GPS data and thus capture an excellent center cluster, i.e., urban hotspots.

It can see that the complexity of the noise-based K-means clustering algorithm is
related to the number of data points in each dataset. It is not directly related to the number
of other noises and iteration times of the algorithm. As such, its time complexity is O

(
n2).
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Algorithm 1. Noise-Based K-Means Clustering Algorithm

Input: Taxi GPS dataset and the number of taxi GPS data points, noise radius rate (which can also be
generated randomly), the number of clustering iterations, and the clustering termination condition.
Output: Clustering results and new clustering center
1: Initialize the noise radius rate. Record the number of solutions (NS) of the current taxi GPS data.
2: Obtain the current optimal solution data points interval restart =

√
itermax × NS, and takes integers.

//itermax represents the maximum number of iterations
3: Record the basic number of noises NB. Determine the noise reduction rate in the iteration
process: decrease = rmax−rmin

itermax
NB −1

.

//rmax, rmin represents the maximum and minimum values of the noise radius respectively.

4: Select an integer between [
√

N
2 ,
√

N] as the initial solution randomly, then evaluate it with SSE
and denote it as the optimal solution.
5: Set the maximum of noise value rate. Determine whether the new solution generated by binary

inversion is out of range [
√

N
2 ,
√

N].
6: Generate a new random number within the noise radius range to produce Noise.
7: Select the current solution as the optimal solution when the difference between the current
solution and the optimal solution is greater than Noise.
8: Set rate = 0 when the current iteration times is a multiple of 4NS. Set the optimal solution as
new solution when the current iteration number is a multiple of restart. Set rate = rate-decrease
when the current iteration times is a multiple of NS.
9: Record the optimal solution and judge whether the iteration and the noise radius are completed.
10: Output the number of clusters and the initialization center of the given taxi GPS dataset.
11: Calculate the distance between the data point and the center point. Attribute the data points
to the nearest cluster center according to the distance of the data points. Assign the data point
average of each cluster as the new clustering center.
12: Calculate the SSE. Determine the termination condition of clustering.
13: Output the clustering result, which is the urban hotspots.

3. Clustering Process of the Noise K-Means Clustering Algorithm
3.1. Obtain the Clustering Number K Value and the Initial Center

The noise algorithm is used to obtain the clustering number K value and the initial
center point in the given optimization objectives (such as SSE). The advantages and dis-
advantages of the optimal solution and the current solution are judged to join the noise,
so that the data point attribution and clustering attribution output results have certain
randomness. Moreover, the optimal solution is found from the current optimal solution at
a certain interval of iterations, or the optimal solution is found by using “noise-free” at a
certain interval of iterations. Finally, different combinations of maximum and minimum
noise radius are set in terms of dataset in the algorithm: [−rate, rate] = [1, 0.9, 0.8, 0.7,
0.6,0.5, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 1, 0.9, 0.8, 0.7, 0.6,
0.5; 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3,
0.4, 0.4, 0.4, 0.4, 0.4, 0.4]/100.

3.2. Optimize Clustering Center

The K-means plus algorithm proposed by Arthur [32] is used to solve the sensitivity
of K-means clustering center, which the computational complexity is O(log K). In order
to obtain a better clustering number and clustering center, a K-means algorithm may be
integrated with a noise algorithm to optimize the clustering center of the noise.

3.3. Obtain Clustering Result and Capture Excellent Cluster Center

K-means clustering is an unsupervised partition clustering algorithm. It takes distance
as the standard of similarity measurement between data objects. That is, if the distance
between data objects is smaller, their similarity is higher, and they are more likely to gather
in the same class cluster. In this paper, Euclidean distance is used to calculate the distance
between data objects and SSE is used to evaluate the clustering results.
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4. Experiment Results and Analysis
4.1. Urban Taxi GPS Data

In order to verify the effectiveness of the proposed noise K-means clustering algo-
rithm, five taxi GPS datasets at home and abroad are used as shown in Table 1. Taxi GPS
data mainly refer to the vehicle position, direction, and speed information that is regu-
larly recorded by the vehicle via the on-board global positioning system during travel.
At present, many taxi GPS datasets exist for many cities across the world. The cities in
this study, i.e., Aracaju (Brazil), San Francisco (USA), Rome (Italy), Chongqing (China),
and Beijing (China), are representative cities for different continents and countries and
are large-scale cities. The DB index [47], PBM index [48], SC (silhouette coefficient) [49]
and SSE (sum of squares for error) are directly used to evaluate and analyze the clustering
results. These evaluation methods are directly related to the number of clusters. Among
them, DB index is mainly used to evaluate the performance of the noise K-means clustering
algorithm. If the value of DB index is smaller, the similarity between clusters is lower
and the clustering result is better. The PBM index is still used to evaluate the quality of
clustering structure, where it describes clustering results and object attribution by defining
quality. If the value of the PBM index is higher, the clustering effect is better. SC evaluates
the clustering results by clustering the cohesion and separation. If the value of SC is greater,
the clustering effect is better. SSE is used to evaluate the error probability distribution state
and object attribution clustering. If the value of SSE is smaller, the clustering effect is better.
The evaluation results and excellent procedures directly affect the effectiveness of urban
hotspot discovery.

In Table 1, the GPS points are distributed in city areas and some are hotspots; however,
it is very difficult to capture the hotspots from GPS datasets.

Table 1. Taxi GPS datasets.

Taxi GPS Dataset Latitude and Longitude Region Number of GPS Data Points

Aracaju (Brazil) 0.14 × 0.16 16,513
San Francisco (USA) [39] 0.10 × 0.10 21,826

Rome (Italy) [39] 0.35 × 0.50 20,254
Chongqing (China) [1] 0.60 × 0.36 19,149

Beijing (China) [40] 0.90 × 0.90 17,387

4.2. Experimental Environment and Parameter Setting

The experimental environment based on VMware featured the following: Intel Xeon
E5-2658, dominant frequency 2 × 2.10 GHz with 8G RAM, Windows 2008 server, and the
algorithm was coded in MATLAB 2016b. MATLAB is a commercial mathematical software
produced by American MathWorks company(USA) which includes row matrix operation,
drawing functions and data, implementing algorithms, creating user interfaces, connecting
programs of other programming languages, and so on. It is used in data analysis, wireless
communication, deep learning, image processing and computer vision, signal processing,
robotics, control systems, and other fields. In our experiment, the alternative values were
tested and modified for some functions to obtain the most reasonable initial values of
these parameters. These selected values of the parameters take on the optimal solution
and the most reasonable running time to efficiently complete the solving problem. The
parameter settings of the FCM, K-means, K-means plus, and noise K-means are shown
in Table 2. The number of clustering iterations was 200, and each algorithm ran 20 times
independently. Generally, the evaluation results will be directly affected when the smaller
clustering number of the comparison algorithm is set. FCM selected the clustering center
according to the fuzzy parameters. K-means and K-means plus selected clustering center
randomly. Noise-based K-means could obtain the clustering number and the initialization
of the clustering center automatically. At the same time, the clustering numbers of noise-
based K-means and FCM, K-means, and K-means plus were the same, and the clustering
evaluation results of the corresponding clustering algorithm were also similar.
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Table 2. The clustering numbers of the taxi GPS data.

Taxi GPS Dataset The Clustering Number of
FCM, K-Means, K-Means Plus

The Clustering Number of
Noise K-Means

Aracaju (Brazil) 120 125
San Francisco (USA) 140 144

Rome (Italy) 135 137
Chongqing (China) 130 134

Beijing (China) 125 128

4.3. Experimental Results and Comparison Analysis

The comparison results of the maximum, average and minimum values of noise K-
means, FCM, K-means and K-means plus under the evaluation of SC, BM index, DB index
and SSE for the taxi GPS data are shown in Tables 3–6.

As can be seen from Tables 3–6, the proposed noise K-means clustering algorithm
is used to obtain the clustering number of a given GPS dataset, which can improve the
clustering effect effectively and much easier to find urban hotspots. It can also obtain the
better clustering evaluation results, capture the urban hotspots, which can more effectively
reflect the urban operating state through different clustering evaluation methods in the
given GPS dataset. As can be seen from Table 3 for SC, the noise-based K-means clustering
algorithm has a better performance, which indicates that it can better capture excellent
clustering centers (urban hotspots). As can be seen from Table 4 for PBM index, the
clustering results of noise K-means and K-means plus performed better in the taxis GPS
data. As can be seen from Table 5 for DB index, K-means, noise K-means and K-means
plus all performed well in the taxis GPS data, and there is little difference in the overall
evaluation value. As can be seen from Table 6 for SSE, the noise K-means performs very
well in 5 taxi GPS datasets, that because SSE is the optimization target in the clustering
process of each clustering algorithm.

Table 3. Comparison results of SC evaluation values.

Taxi GPS Dataset Algorithms Maximum Average Minimum

Aracaju (Brazil)

Noise K-means 0.96083 0.95944 0.95703
FCM 0.94635 0.94416 0.94285

K-means 0.95827 0.95577 0.95355
K-means plus 0.96004 0.95784 0.95586

San Francisco (USA)

Noise K-means 0.9369 0.93522 0.93314
FCM 0.92914 0.92689 0.92494

K-means 0.93389 0.93124 0.9287
K-means plus 0.93502 0.93403 0.93219

Rome (Italy)

Noise K-means 0.9295 0.9275 0.9231
FCM 0.91112 0.90662 0.90296

K-means 0.9277 0.92535 0.92255
K-means plus 0.92871 0.92672 0.92334

Chongqing (China)

Noise K-means 0.93896 0.93689 0.93457
FCM 0.91979 0.91682 0.91311

K-means 0.93673 0.93565 0.93424
K-means plus 0.93708 0.9354 0.93195

Beijing (China)

Noise K-means 0.91192 0.90933 0.90561
FCM 0.91979 0.91682 0.91311

K-means 0.91125 0.91012 0.90853
K-means plus 0.90963 0.90842 0.90668
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Table 4. Comparison results of PBM index evaluation values.

Taxi GPS Dataset Algorithms Maximum Average Minimum

Aracaju (Brazil)

Noise K-means 0.03201 0.03108 0.02999
FCM 0.01319 0.01286 0.01259

K-means 0.03049 0.02827 0.02681
K-means plus 0.03229 0.0308 0.02912

San Francisco (USA)

Noise K-means 0.01218 0.01172 0.01136
FCM 0.01034 0.00958 0.00886

K-means 0.01132 0.01041 0.00985
K-means plus 0.01278 0.01193 0.01114

Rome (Italy)

Noise K-means 0.0236 0.022548 0.022006
FCM 0.011832 0.010484 0.009661

K-means 0.020837 0.019411 0.017145
K-means plus 0.023151 0.022623 0.021651

Chongqing (China)

Noise K-means 0.0627 0.05794 0.05468
FCM 0.03976 0.03731 0.03568

K-means 0.06013 0.0542 0.05118
K-means plus 0.06133 0.05753 0.0532

Beijing (China)

Noise K-means 0.06086 0.0598 0.05833
FCM 0.03976 0.03731 0.03568

K-means 0.06157 0.05877 0.05694
K-means plus 0.06011 0.06036 0.05914

Table 5. Comparison results of DB index evaluation values.

Taxi GPS Dataset Algorithms Maximum Average Minimum

Aracaju (Brazil)

Noise K-means 0.08366 0.07992 0.07423
FCM 0.17978 0.15106 0.13756

K-means 0.08817 0.07815 0.06961
K-means plus 0.0858 0.78368 0.06975

San Francisco (USA)

Noise K-means 0.09342 0.09039 0.08518
FCM 0.15793 0.1459 0.12684

K-means 0.10198 0.08553 0.08055
K-means plus 0.09755 0.09082 0.08518

Rome (Italy)

Noise K-means 0.16462 0.10853 0.09498
FCM 0.17961 0.15236 0.13591

K-means 0.09967 0.09159 0.08619
K-means plus 0.16606 0.10897 0.09622

Chongqing (China)

Noise K-means 0.11173 0.10038 0.09182
FCM 0.17093 0.14996 0.13769

K-means 0.10028 0.09 0.0847
K-means plus 0.11207 0.10867 0.0922

Beijing (China)

Noise K-means 0.10447 0.09777 0.09215
FCM 0.17093 0.14996 0.13769

K-means 0.0925 0.08668 0.08281
K-means plus 0.10459 0.09799 0.09305

The average running time for each algorithm when running 20 times is shown in
Table 7.

As can be seen from Table 7, the average iteration time of the noise K-means clustering
algorithm is longer, because the noise algorithm needs to capture the clustering number of
a given dataset and initialize the clustering center. The noise K-means clustering algorithm
can obtain the better clustering number of a given GPS data, and much easier to find
urban hotspots. It can also obtain the better clustering evaluation results, capture the
urban hotspots.
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Table 6. Comparison results of SSE evaluation values.

Taxi GPS Dataset Algorithms Maximum Average Minimum

Aracaju (Brazil)

Noise K-means 19.3463 18.1769 17.4351
FCM 28.7974 28.0926 27.3564

K-means 21.4902 20.4493 18.193
K-means plus 19.957 19.0552 17.4351

San Francisco (USA)

Noise K-means 34.8698 33.8601 33.1321
FCM 41.1925 40.0136 38.6125

K-means 39.1769 37.2797 35.5356
K-means plus 35.6768 34.6172 34.0928

Rome (Italy)

Noise K-means 54.1587 52.2404 50.6664
FCM 86.4097 82.9769 77.1727

K-means 64.186 59.7377 56.1926
K-means plus 54.7747 52.7017 51.1269

Chongqing (China)

Noise K-means 102.901 99.4066 95.5405
FCM 151.343 144.9 135.923

K-means 109.436 104.691 101.017
K-means plus 108.112 101.987 99.5079

Beijing (China)

Noise K-means 151.343 144.9 135.923
FCM 224.152 214.794 209.467

K-means 223.885 220.258 216.065
K-means plus 220.629 218.108 216.092

Table 7. Comparison of the average running time (s).

Taxi GPS Dataset Clustering Algorithm Average Running Time (s)

Aracaju (Brazil)

Noise K-means 8.03867
FCM 21.7398

K-means 2.3773
K-means plus 2.7005

San Francisco (USA)

Noise K-means 10.86496
FCM 32.4686

K-means 3.232
K-means plus 3.3807

Rome (Italy)

Noise K-means 9.87741
FCM 29.5736

K-means 3.1264
K-means plus 3.1248

Chongqing (China)

Noise K-means 9.65121
FCM 26.9652

K-means 2.9121
K-means plus 2.9302

Beijing (China)

Noise K-means 8.34432
FCM 26.9652

K-means 2.6924
K-means plus 2.5276

The SSE convergence curves for the FCM, K-means, K-means plus, and noise-based
K-means methods are shown in Figures 4–8.
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As can be seen from Figures 4–8, all comparative clustering algorithms, except for
FCM, could complete the convergence by iterating about 10 times, which shows that
the proposed noise-based K-means clustering algorithm is feasible and suitable for basic
partition clustering algorithms.

4.4. Visual Presentation of Urban Hotspots

In order to more intuitively display the capture of urban hotspots by clustering
algorithm, a visual presentation in Amap system is used in this paper. That is, the captured
cluster center location information is input into the map system through Amap API in order
to realize the visual presentation of the captured urban hotspots. The obtained experiment
results for the Aracaju (Brazil), San Francisco (USA), Rome (Italy), Chongqing (China), and
Beijing (China) are shown in Figures 9–12.
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As can be seen from Figures 9–12, the spatial distributions of urban hotspots have been
captured by the FCM, K-means and K-means plus clustering algorithms for the given taxi
GPS data of Aracaju (Brazil), San Francisco (USA), Rome (Italy), Chongqing (China) and
Beijing (China) is different. The aggregation degree of taxi operation varies significantly
between different cities. From the city hotspot marking results of the taxis GPS data in
the five cities obtained by FCM in Figure 9, it can be seen that the clustering effect is not
ideal and that there are serious dispersion and local optimum phenomena. For example,
the clustering results of San Francisco (USA) demonstrate local optimum phenomena and
multiple hotspots are close together, which results in an uneven distribution of urban
hotspots and deviation from urban hotspots. Thus, a potentially planned road cannot
benefit many people with this approach. From the city hotspot marking results of the
taxis GPS data in five cities obtained by K-means clustering in Figure 10, it can be seen
that the clustering centers and numbers of clusters are not very reasonable and do not
show optimal results. There are multiple local optimum phenomena, such as the serious
phenomenon that multiple hotspots are close together in Rome (Italy) and Beijing (China).
The phenomenon occurs such that some marker points are not clustered, so that a planned
road cannot benefit a large number of people. As can be seen from the city hotspot marking
results of the taxis GPS data in five cities obtained by K-means plus clustering in Figure 11,
the obtained clustering effect is better than that obtained with FCM and K-means clustering.
The clustering centers and number of clusters in most cities are optimal, but there is a local
optimal phenomenon in Rome (Italy), which shows multiple hotspots together. A road
planned with this approach could benefit many people. As can be seen from the city hotspot
marking results of the taxis GPS data in five cities obtained by the noise-based K-means
clustering in Figure 12, the obtained clustering effect is better than that obtained with FCM,
K-means, and K-means plus clustering. The clustering centers and numbers of clusters for
all five cities are the best here, and there are no groups of hotspots that are close together.
The information reflected by these urban hotspots denotes shopping points, parks, stations,
amusement areas, and other public places, which means that consequently planned roads
benefit all people. In summary, the compared experiment results show that the noise-based
K-means algorithm can reasonably obtain the number of clusters and initialize the cluster
center, and the proposed algorithm shows better clustering performance and accurately
obtains clustering results, in addition to effectively capturing urban hotspots.

5. Statistical Analysis of Wilcoxon

A Wilcoxon rank sum test is a non-parametric null hypothesis statistical testing
method [50] that is often used to test the significant difference and distribution state of a
clustering training process. When statistical validation is performed, it is usually composed
of p, h and stats, in which p represents the results u and v of a clustering evaluation. p is the
continuous distribution of data samples, which is used to test u and v under the non-null
hypothesis (noise-based K-means vs. FCM, noise-based K-means vs. K-means, noise-based
K-means vs. K-means plus). As p→0, the difference between u and v becomes more
obvious. h is the logical value for testing 0 or 1, h = 1 means reject the null hypothesis, and
h = 0 means reject the null hypothesis at α (for example, α = 0.05, α is the significance level
parameter, value range: 0 < α < 1). That is, h = 1 means that the difference between u and v
is significant, while h = 0 means that the difference between u and v is not significant. Stats
consists of two statistics, zval and ranksum. zval represents a normal distribution estimate of
p, while ranksum represents a statistic [51]. The statistical analysis results of the Wilcoxon
rank sum testing are shown in Tables 8–10.
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Table 8. Statistical analysis results of Wilcoxon testing for noise-based K-means vs. FCM.

Taxi GPS
Dataset

Clustering Result
Evaluation Method

Noise-Based K-Means Versus FCM

k p h
Stats

Zval Ranksum

Aracaju
(Brazil)

SC

120

6.79561 × 10−8 1 5.3965 610
SSE 6.79561 × 10−8 1 −5.3965 210
DBI 6.79561 × 10−8 1 −5.3965 210
PBM 6.79561 × 10−8 1 5.3965 610

San Francisco
(USA)

SC

140

6.79561 × 10−8 1 5.3965 610
SSE 6.79561 × 10−8 1 −5.3965 210
DBI 6.79561 × 10−8 1 −5.3965 210
PBM 6.79561 × 10−8 1 5.3965 610

Roma
(Italy)

SC

135

6.79561 × 10−8 1 5.3965 610
SSE 6.79561 × 10−8 1 −5.3965 210
DBI 6.79561 × 10−8 1 −5.3965 227
PBM 6.79561 × 10−8 1 5.3965 610

Chongqing
(China)

SC

130

6.79561 × 10−8 1 5.3965 610
SSE 6.79561 × 10−8 1 −5.3965 210
DBI 6.79561 × 10−8 1 −5.3965 210
PBM 6.79561 × 10−8 1 5.3965 610

Beijing
(China)

SC

125

6.79561 × 10−8 1 5.3965 610
SSE 6.79561 × 10−8 1 −5.3965 210
DBI 6.79561 × 10−8 1 −5.3965 210
PBM 6.79561 × 10−8 1 5.3965 610

Table 9. Statistical analysis results of Wilcoxon testing for noise-based K-means vs. K-means.

Taxi GPS
Dataset

Clustering Result
Evaluation Method

Noise-Based K-Means Versus K-Means

k p h
Stats

Zval Ranksum

Aracaju
(Brazil)

SC

120

3.41557 × 10−7 1 5.0989 599
SSE 9.17277 × 10−8 1 −5.3424 212
DBI 9.09000 × 10−2 0 1.6906 473
PBM 1.06456 × 10−7 1 5.3153 607

San Francisco
(USA)

SC

140

1.06456 × 10−7 1 5.3153 607
SSE 6.79561 × 10−8 1 −5.3965 210
DBI 8.59744 × 10−6 1 4.4497 575
PBM 6.79561 × 10−8 1 5.3965 610

Roma
(Italy)

SC

135

1.60981 × 10−4 1 3.7735 550
SSE 6.79561 × 10−8 1 −5.3965 210
DBI 1.23463 × 10−7 1 5.2883 606
PBM 6.79561 × 10−8 1 5.3965 610

Chongqing
(China)

SC

130

4.32000 × 10−3 1 2.8538 516
SSE 6.91658 × 10−7 1 −4.9637 226
DBI 3.98735 × 10−6 1 4.6120 581
PBM 9.74797 × 10−6 1 4.4227 574

Beijing
(China)

SC

125

3.36910 × 10−1 0 −0.9603 374
SSE 6.61044 × 10−5 1 −3.9899 262
DBI 7.89803 × 10−8 1 5.3694 609
PBM 2.13000 × 10−3 1 3.0702 524
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Table 10. Statistical analysis results of Wilcoxon testing for noise-based K-means vs. K-means plus.

Taxi GPS
Dataset

Clustering Result
Evaluation Method

Noise-Based K-Means Versus K-Means Plus

k p h
Stats

Zval Ranksum

Aracaju
(Brazil)

SC

120

3.38194 × 10−4 1 3.5841 543
SSE 2.04071 × 10−5 1 −4.2604 252
DBI 1.80570 × 10−1 0 1.3390 460
PBM 3.79330 × 10−1 0 0.8791 443

San Francisco
(USA)

SC

140

1.60981 × 10−4 1 3.7735 550
SSE 2.59598 × 10−5 1 −4.2063 254
DBI 1.80570 × 10−1 0 1.3390 460
PBM 2.56300 × 10−2 1 −2.2316 327

Roma
(Italy)

SC

135

9.09100 × 10−2 0 1.6906 473
SSE 9.61900 × 10−2 0 −1.6636 348
DBI 5.31000 × 10−2 0 1.9341 482
PBM 3.36910 × 10−1 0 −0.9603 374

Chongqing
(China)

SC

130

1.34000 × 10−3 1 3.2054 529
SSE 9.20913 × 10−4 1 −3.3136 287
DBI 3.36910 × 10−1 0 0.9603 446
PBM 9.03110 × 10−1 0 0.1217 415

Beijing
(China)

SC

125

7.64300 × 10−2 0 1.7718 476
SSE 5.62903 × 10−4 1 −3.4489 282
DBI 4.73480 × 10−1 0 0.7168 437
PBM 3.79330 × 10−1 0 −0.8791 377

As can be seen from Tables 8–10, there are significant differences among noise-based
K-means, FCM, and K-means clustering, which indicates that they are distributed differ-
ently in space; however, the differences between noise-based K-means and K-means plus
clustering are not significant, especially in Roma (Italy), which rejects the significance level
and indicates that their spatial distribution is similar. Furthermore, as p→0 for each group,
it indicates that it is feasible and effective to automatically capture the cluster number and
initialize the center cluster by use of a noise algorithm, and the urban hotspots captured by
the noise-based K-means clustering algorithm more effectively represent reality.

6. Conclusions

In this paper, a novel noise-based K-means clustering algorithm has been proposed
to effectively solve the problems of difficulty in determining the clustering numbers and
the sensitivity of initializing the clustering center for a K-means clustering algorithm. The
noise-based K-means clustering algorithm has been applied to capture urban hotspots
in large cities from across the world. When the clustering operation was completed, the
clustering results were evaluated by the DB index, PBM index, SC, and SSE, and the
experimental results of each evaluation standard were statistically analyzed by Wilcoxon
rank sum testing to obtain the significant differences for the urban hotspot distribution
for each clustering algorithm. The proposed noise-based K-means clustering algorithm
obtained better optimal results for urban hotspots over the FCM, K-means, and K-means
plus methods. The method presented here can better serve a large number of people in
large cities. In addition, the proposed noise-based K-means clustering algorithm can also
be applied in the fields of the document classification, customer classification, ride data
analysis, criminal network analysis, the detailed analysis of call records, and so on.

There are also some shortcomings for the method presented here. On the one hand, the
amount of GPS data is too small to effectively reflect the distributions and the relationships
of urban hotspots. On the other hand, it is difficult to effectively avoid specific buildings in
the city, even if the optimal results of urban hotspots are used in urban road planning. As
such, these problems will be further solved in future work.
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