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Abstract: Image recognition has been applied to many fields, but it is relatively rarely applied
to medical images. Recent significant deep learning progress for image recognition has raised
strong research interest in medical image recognition. First of all, we found the prediction result
using the VGG16 model on failed pneumonia X-ray images. Thus, this paper proposes IVGG13
(Improved Visual Geometry Group-13), a modified VGG16 model for classification pneumonia X-rays
images. Open-source thoracic X-ray images acquired from the Kaggle platform were employed for
pneumonia recognition, but only a few data were obtained, and datasets were unbalanced after
classification, either of which can result in extremely poor recognition from trained neural network
models. Therefore, we applied augmentation pre-processing to compensate for low data volume and
poorly balanced datasets. The original datasets without data augmentation were trained using the
proposed and some well-known convolutional neural networks, such as LeNet AlexNet, GoogLeNet
and VGG16. In the experimental results, the recognition rates and other evaluation criteria, such
as precision, recall and f-measure, were evaluated for each model. This process was repeated
for augmented and balanced datasets, with greatly improved metrics such as precision, recall
and F1-measure. The proposed IVGG13 model produced superior outcomes with the F1-measure
compared with the current best practice convolutional neural networks for medical image recognition,
confirming data augmentation effectively improved model accuracy.

Keywords: thoracic X-ray; deep learning; data augmentation; convolutional neural network; LeNet;
AlexNet; GoogLeNet; VGGNet; Keras

1. Introduction

Most recent deep learning breakthroughs are related to convolutional neural networks
(CNNs), which are also the main developing area for deep neural networks (DNNs).
Modern CNN approaches can be more accurate than humans for image recognition.
The ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [1] is a highly represen-
tative academic competition for machine vision solutions based on image data provided
by ImageNet. The main dataset comprises more than 14 million marked images, with
a smaller subset sampled for the yearly ILSVRC. The best ILSVRC result prior to 2012
achieved a 26% error rate. However, a CNN model based on AlexNet [2] reduced the error
rate to 16.4% in 2012, winning the championship. Subsequent studies have used various
CNN approaches, some going on to become major and well-known CNN architectures.

Many current products use deep learning technologies, most of which relate to image
recognition. Recent hardware breakthroughs and significant improvements have brought a
strong focus onto deep learning, with CNN models becoming the most popular approaches
for image recognition, image segmentation [3–5] and object recognition. Image recognition
refers to the process where a machine is trained using CNNs to extract important features
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from large image datasets, combine them into a feature map and perform recognition by
connecting neurons. The approach has been successfully applied to various areas, such
as handwriting recognition [6–8], face recognition [9–11], automatic driving vehicles [12],
video surveillance [13] and medical image recognition [14–17].

With the development of computer technology applied to the medical field, whether
through basic medical applications, disease treatments, clinical trials or new drug therapies,
all such applications involve data acquisition, management and analysis. Therefore, deter-
mining how modern medical information can be used to provide the required data is an
important key to modern medical research. Medical services mainly include telemedicine,
information provided through internet applications and digitization of medical informa-
tion. In this way, we more accurately and quickly confirm a patient’s physical condition and
determine how best to treat a patient, thereby improving the quality of medical care. Smart
healthcare can help us to establish an effective clinical decision support system to improve
work efficiency and the quality of diagnosis and treatment. This is of particular importance
in the aging population in society, which has many medical problems. In addition, the
COVID-19 [18–22] outbreak in 2020 greatly increased the demand for medical informa-
tion processing. Therefore, medical information is combined with quantitative medical
research; in addition, assistance in diagnosis from an objective perspective is a trend at
present. The development of big data systems has also enabled the systematic acquisition
and integration of medical images [23–27]. Furthermore, traditional image processing
algorithms have gradually been replaced by deep learning algorithms.

Recent deep learning and machine learning developments mean that traditional
image processing method performance for image recognition is no longer comparable
to that of neural network (NN)-based approaches. Consequently, many studies have
proposed optimized deep learning algorithms to improve image recognition accuracy for
various recognition scenarios. CNN is the most prominent approach for image recognition,
improving recognition accuracy by increasing hidden layer depths and effectively acquiring
more characteristic parameters. Successful image recognition applications include face,
object, and license plate recognition, but medical image recognition is less common due
to difficulties acquiring medical images and poor understanding regarding how diseases
appear in the various images. Therefore, physician assistance is usually essential for
medical image recognition to diagnose and label focal areas or lesions before proceeding to
model training. This study used open-source thoracic X-ray images from the Kaggle data
science community, which were already categorized and labeled by professional physicians.
Recognition systems were pre-trained using LeNet [28], AlexNet [2], GoogLeNet [29]
and VGG16 [30] images, but trained VGG16 model classification exhibited poor image
classification accuracy in the test results. Therefore, this paper proposes IVGG13 to solve
the problem of applying VGG16 to medical image recognition. Several other well-known
CNNs were also trained on the same datasets, and the outcomes were compared with
the proposed IVGG13 approach. The proposed IVGG13 model outperformed all other
CNN models considered. We also applied data augmentation to increase the raw dataset
and improve the data balance, hence improving the model recognition rate. It is essential
to consider hardware requirements for CNN training and deployment. The number of
network control parameters increases rapidly with increasing network layer depth, which
imposes higher requirements on hardware and increases overhead and computing costs.
Therefore, this paper investigated methods to reduce network depth and parameter count
without affecting recognition accuracy. The proposed IVGG13 incorporates these learnings,
and it has strong potential for practical medical image recognition systems.

The remainder of this paper is organized as follows. The related works are described
in Section 2. The research methodology is stated in Section 3. The performance evaluation is
outlined in Section 4. Finally, conclusions and suggestions for future research are provided
in Section 5.
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2. Materials and Methods
2.1. Deep Learning Model

The deep learning concept originated in 2006 and subsequently attracted sustained strong
research and industrial interest. Many world-leading artificial intelligence (AI) companies have
participated in the ILSVRC competition since its inception. Initial competition occurred between
machine learning and support vector machine technologies. However, the first deep learning
framework that won the championship in 2012 triggered rapid deep learning developments and
the emergence of now well-known deep learning models, such as AlexNet [2], VGGNet [30]
and GoogLeNet [29]. The following sections provide a brief introduction.

2.1.1. LeNet

Figure 1 exhibits the LeNet architecture, also known as LeNet5 [28], which was the
first CNN architecture for deep learning. LeNet was originally proposed by LeCun [28],
who subsequently helped develop the more general CNN approaches and initially used
it to recognize handwritten characters. Early models did not employ GPUs for training
and were restricted to CPUs alone; hence, training was very slow compared with modern
systems. The LeNet design incorporated convolutions, pooling and parameter sharing to
extract features and effectively reduce computational overheads and complete classification
and recognition through fully connected layers.
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2.1.2. AlexNet

AlexNet was the first CNN used in the LSVRC competition, proposed by Krizhevsky et al.
2012 [2], which won the competition with significantly improved accuracy compared with all
previous models, including the one that took second place that year. AlexNet has three main
features:

(1) Employs the ReLU non-linear activation function to solve the vanishing gradient prob-
lem more effectively than sigmoid and tanh activation functions used in other NNs;

(2) Adds dropout and data augmentation in the network layer to prevent overfitting; and
(3) Employs multiple parallel GPUs to accelerate computational throughput during training.

As shown in Figure 2, AlexNet architecture is similar to LeNet. The network archi-
tecture is divided into two layers since training is done on two GPUs due to memory
restrictions, and data dropout or augmentation is added to prevent overfitting.
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2.1.3. VGGNet

VGGNet is a CNN jointly developed by the Visual Geometry Group at the University
of Oxford and Google DeepMind [30]. As shown in Figure 3, VGGNet architecture can
be considered an extended AlexNet, characterized by 3 × 3 convolutional kernels and
2 × 2 pooling layers, and the network architecture can be deepened by using smaller
convolutional layers to enhance feature learning. The two most common current VGGNet
versions are VGGNet-16 and VGGNet-19 [30].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 21 
 

 
Figure 3. VGGNet network architecture. 

2.1.4. GoogLeNet 
The earliest GoogLeNet version, Inception V1, won the ILSVRC competition with 

higher accuracy than VGGNet in 2014 [29]. Figure 4 displays a typical GoogLeNet 
architecture. Inception architecture was subsequently derived to deepen and widen the 
network by using receptive vision fields with different convolutional kernel sizes to 
improve network accuracy. 

 
Figure 4. Typical GoogLeNet network architecture [29]. 

Figure 5 demonstrates that inception architecture contains convolutional 1 × 1, 3 × 3, 
and 5 × 5 kernels with maximum pooling 3 × 3 stacking. Different convolutional kernels 
sizes are used for feature extraction and connection to increase network width and 
enhance adaptability to different sizes. The 3 × 3 and 5 × 5 convolutional kernels are 
preceded by 1 × 1 convolutional kernels for dimensionality and parameter size reduction, 

Figure 3. VGGNet network architecture.

2.1.4. GoogLeNet

The earliest GoogLeNet version, Inception V1, won the ILSVRC competition with
higher accuracy than VGGNet in 2014 [29]. Figure 4 displays a typical GoogLeNet ar-
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chitecture. Inception architecture was subsequently derived to deepen and widen the
network by using receptive vision fields with different convolutional kernel sizes to im-
prove network accuracy.
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Figure 5 demonstrates that inception architecture contains convolutional 1 × 1, 3 × 3,
and 5 × 5 kernels with maximum pooling 3 × 3 stacking. Different convolutional kernels
sizes are used for feature extraction and connection to increase network width and enhance
adaptability to different sizes. The 3 × 3 and 5 × 5 convolutional kernels are preceded by
1 × 1 convolutional kernels for dimensionality and parameter size reduction, reducing
computing volume and correcting nonlinear functions. Finally, a 1 × 1 convolution is
added after 3 × 3 maximum pooling.
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3. Research Methods

This section discusses various study approaches. Section 3.1 introduces the source and
classification for image datasets used in this study; Section 3.2 describes data augmentation
pre-processing to solve unbalanced or small dataset problems; and Section 3.3 presents the
proposed IVGG13 model.

Figure 6 shows the flow chart of data pre-processing and Figure 7 exhibits the proposed
CNN training process. LeNet, AlexNet, GoogLeNet, VGG16 and IVGG13 models were
trained with the original datasets without data augmentation and then evaluated and
compared. The models were subsequently trained with augmented datasets and again
evaluated and compared.
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3.1. Training Datasets

We used an open-source dataset provided by the Kaggle data science competition plat-
form for training (https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
accessed on 25 March 2018) [31]. The dataset comprised thoracic cavity images from child
patients (1 to 5 years old) from the Guangzhou Women and Children’s Medical Center,
China. These images were classified by two expert physicians and separated into training,
test and validation sets. Figure 8 displays the dataset structure, with training sets including
1341 and 3875, test sets 234 and 390, validation set 8, and eight normal and pneumonia
images, respectively. Figures 9 and 10 show examples of normal and pneumonia thoracic
cavity X-ray images, respectively.

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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3.2. Data Augmentation

The study dataset included unbalanced positive and negative samples, with signif-
icantly fewer normal images than pneumonia images in both training and test sets and
relatively low data volume. This could lead to poor post-training validation and overfitting.
Therefore, we applied data augmentation on the original datasets, creating new images
by horizontal flipping, rotating, scaling size and ratio, and changing brightness and color



Appl. Sci. 2021, 11, 11185 8 of 19

temperature for the original images to compensate for the lack of data volume. Data
augmentation increased the training set from 5216 to 22,146 images, and the test set from
624 to 1000 images. Furthermore, some images were transferred from the training to test
set for data balance and to ensure images in the test set were predominantly originals.
Figures 11 and 12 show examples of original and augmented images, respectively.
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3.3. IVGG13

This study proposes IVGG13—an improved VGG16 that reduces the VGGNet network
depth—as shown in both Table 1 and Figure 13. The proposed network architecture
reduces the number of parameters by reducing the network depth compared to the original
VGG16 to avoid both under- and overfitting problems during training. The original
VGG16 convolutional architecture was retained by performing feature extraction using
two consecutive small convolutional kernels rather than a single large one. This maintains
VGG16 perceptual effects while reducing the number of parameters, which not only reduces
the training time but also maintains the network layer depth.

Table 1. Proposed IVGG13 network model.

Layer (Type) Output Shape Param

conv2d_1 (conv2D) (None, 128, 128, 32) 896
conv2d_2 (conv2D) (None, 128, 128, 32) 9248

max_Pooling2d_1 (MaxPooling2) (None, 64, 64, 32) 0
conv2d_3 (conv2D) (None, 64, 64, 32) 9248
conv2d_4 (conv2D) (None, 64, 64, 32) 9248

max_Pooling2d_2 (MaxPooling2) (None, 32, 32, 32) 0
conv2d_5 (conv2D) (None, 32, 32, 64) 18,496
conv2d_6 (conv2D) (None, 32, 32, 64) 36,928

max_Pooling2d_3 (MaxPooling2) (None, 16, 16, 64) 0
conv2d_7 (conv2D) (None, 16, 16, 128) 73,856
conv2d_8 (conv2D) (None, 16, 16, 128) 147,584

max_Pooling2d_4 (MaxPooling2) (None, 8, 8, 128) 0
conv2d_9 (conv2D) (None, 8, 8, 64) 73,792

conv2d_10 (conv2D) (None, 8, 8, 64) 36,928
max_Pooling2d_5 (MaxPooling2) (None, 4, 4, 64) 0

flatten_1 (Flatten) (None, 1024) 0
dense_1 (Dense) (None, 1024) 1,049,600

dropout_1 (Dropout) (None, 1024) 0
dense_2 (Dense) (None, 1024) 1,049,600

dropout_2 (Dropout) (None, 1024) 0
dense_3 (Dense) (None, 2) 2050

Total params: 2,517,474
Trainable params: 2,517,474

Non-trainable params: 0

Figure 13 highlights the similarities and differences between the IVGG13 and VGG16
network architectures.

First, the input image size was changed to 128× 128, and the hidden layer was divided
into five blocks, with each block containing two convolutional layers and a pooling layer.
Thirty-two 3 × 3 convolutional kernels were randomly generated in each convolutional
layer for feature extraction, and the image size was reduced by the pooling layer. Convolu-
tional kernels in blocks 3–5 were the same size (3 × 3), but 64, 128 and 64 kernels in each
block, respectively. Reducing convolutional kernels reduced the number of parameters
required compared with VGG16. The image size was then reduced by the pooling layer,
feature maps were converted to one dimension by the flattened layer and finally, three of
the fully connected layers concatenated output features into two classifications.



Appl. Sci. 2021, 11, 11185 10 of 19Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21 
 

  
(a) (b) 

Figure 13. (a) Proposed IVGG13 and (b) conventional VGG16 [30] network architectures. 

Figure 13 highlights the similarities and differences between the IVGG13 and VGG16 
network architectures. 

First, the input image size was changed to 128 × 128, and the hidden layer was 
divided into five blocks, with each block containing two convolutional layers and a 

Figure 13. (a) Proposed IVGG13 and (b) conventional VGG16 [30] network architectures.

4. Results

This section provides a concise and precise description of the experimental results,
their interpretation, as well as the experimental conclusions that can be drawn. Section 4.1
introduces the experimental environment of this article. Section 4.2 introduces and com-



Appl. Sci. 2021, 11, 11185 11 of 19

pares various CNNs; Sections 4.3 and 4.4 discuss model outcomes without and with data
pre-processing, respectively; and Section 4.5 discusses VGG16 problems highlighted by the
experimental results.

4.1. Experimental Environment

This study used a workstation with Windows 10, Intel Core i5-8500 @ 3.00 GHz CPU,
Nvidia GeForce RTX2070 8 G GPU, and 32.0 GB RAM. TensorFlow-GPU was employed
to train the CNN in Python 3.5.6 by Anaconda3, with Python Keras to build the network
architecture and training.

4.2. CNN Comparison
4.2.1. LeNet

Table 2 and Figure 14 display outcomes from LeNet network for MNIST handwriting
character recognition applied to train thoracic X-ray images. Sixteen 5 × 5 convolution
kernels were randomly generated from each 28 × 28 input image, and the first convolution
generated 16 (28× 28) images. Images then reduced to 14× 14 using reduction sampling in
the pooling layer. The second convolution converted the 16 images into 36 14 × 14 images
using 5 × 5 convolutional kernels. The image size was then further reduced to 7 × 7 by
reduction sampling in the pooling layer. Finally, the features were converted into one
dimension in the flattening layer, fully connected, and output as two categories.

Table 2. Network model for the LeNet implementation [28].

Layer (Type) Output Shape Param

conv2d_1 (conv2D) (None, 28, 28, 16) 1216
max_Pooling2d_1 (MaxPooling2) (None, 14, 14, 16) 0

conv2d_2 (conv2D) (None, 14, 14, 36) 14,436
max_Pooling2d_2 (MaxPooling2) (None, 7, 7, 36) 0

flatten_1 (Flatten) (None, 1764) 0
dense_1 (Dense) (None, 128) 225,920
dense_2 (Dense) (None, 2) 258

Total params: 241,830
Trainable params: 241,830
Non-trainable params: 0
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Figure 14. Network architecture for the LeNet MNIST handwriting character recognition
implementation [28].

4.2.2. AlexNet

Table 3 and Figure 15 exhibit the AlexNet architecture used to train thoracic X-ray
images, which comprise five convolutional and three fully connected layers, with 227 × 227
input images. The first convolutional layer included 48 (11 × 11) convolutional kernels to
produce 227 × 227 images, followed by local response normalization in the LRN layer to
reduce images to 55 × 55 using 3 × 3 max pooling. The second convolutional layer was
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similar to the first, but included 128 (5 × 5) convolution kernels. Subsequent LRN and max
pooling layers reduced image size to 13 × 13, with convolution layers 3–5 employing 192,
192 and 128 (3 × 3) kernels, respectively, producing 13 × 13 images. Images were reduced
to 6 × 6 using a max pooling layer, and features were converted to one dimension in the
flattening layer, fully connected, and output as two categories.

Table 3. AlexNet network model [2].

Layer (Type) Output Shape Param

conv2d_1 (conv2D) (None, 55, 55, 48) 17,472
max_Pooling2d_1 (MaxPooling2) (None, 27, 27, 48) 0

conv2d_2 (conv2D) (None, 27, 27, 128) 153,728
max_Pooling2d_2 (MaxPooling2) (None, 13, 13, 128) 0

conv2d_3 (conv2D) (None, 13, 13, 192) 221,376
conv2d_4 (conv2D) (None, 13, 13, 192) 331,968
conv2d_5 (conv2D) (None, 13, 13, 192) 221,312

max_Pooling2d_3 (MaxPooling2) (None, 6, 6, 128) 0
flatten_1 (Flatten) (None, 4608) 0
dense_1 (Dense) (None, 2048) 9,439,232

dropout_1(Dropout) (None, 2048) 0
dense_2 (Dense) (None, 2048) 4,196,352

dropout_2(Dropout) (None, 2048) 0
dense_3 (Dense) (None, 2) 4098

Total params: 14,585,538
Trainable params: 14,585,538

Non-trainable params: 0
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4.2.3. VGG16

Considering the selected workstation performance, we only used VGG16 CNN for
this study. First, we used the VGG16 model and applied it to pneumonia X-ray data for
training, but the prediction results failed. Table 4 and Figure 16 indicate that our VGG16
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architecture contains 13 convolutional and 3 fully connected layers, with 3 × 3 kernels for
the convolutional layers and 2 × 2 parameters for the pooling layers. VGG16 convolu-
tional and pooling layers are divided into blocks 1–5, where each block contains multiple
convolutional layers and a single pooling layer. The two convolutional layers in block 1
each use 16 kernels for feature extraction, with image size subsequently reduced in the
pooling layer. Subsequent blocks have similar architecture, except that blocks 1 and 2 use
two convolutional layers, whereas blocks 3–5 use three convolutional layers with different
kernel numbers in each layer to deepen the network and improve accuracy. Finally, three
fully connected layers concatenate and output features into two classifications.

Table 4. VGG16 network model [30].

Layer (Type) Output Shape Param

conv2d_1 (conv2D) (None, 224, 224, 16) 448
conv2d_2 (conv2D) (None, 224, 224, 16) 2320

max_Pooling2d_1 (MaxPooling2) (None, 112, 112, 16) 0
conv2d_3 (conv2D) (None, 112, 112, 32) 4640
conv2d_4 (conv2D) (None, 112, 112, 32) 9248

max_Pooling2d_2 (MaxPooling2) (None, 56, 56, 32) 0
conv2d_5 (conv2D) (None, 56, 56, 64) 18,496
conv2d_6 (conv2D) (None, 56, 56, 64) 36,928
conv2d_7 (conv2D) (None, 56, 56, 64) 36,928

max_Pooling2d_3 (MaxPooling2) (None, 28, 28, 64) 0
conv2d_8 (conv2D) (None, 28, 28, 128) 73,856
conv2d_9 (conv2D) (None, 28, 28, 128) 147,584

conv2d_10 (conv2D) (None, 28, 28, 128) 147,584
max_Pooling2d_4 (MaxPooling2) (None, 14, 14, 128) 0

conv2d_11 (conv2D) (None, 14, 14, 128) 147,584
conv2d_12 (conv2D) (None, 14, 14, 128) 147,584
conv2d_13 (conv2D) (None, 14, 14, 128) 147,584

max_Pooling2d_5 (MaxPooling2) (None, 7, 7, 128) 0
flatten_1 (Flatten) (None, 6272) 0
dense_1 (Dense) (None, 2048) 12,847,104

dropout_1(Dropout) (None, 2048) 0
dense_2 (Dense) (None, 2048) 4,196,352

dropout_2(Dropout) (None, 2048) 0
dense_3 (Dense) (None, 2) 4098

Total params: 17,968,338
Trainable params: 17,968,338

Non-trainable params: 0
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4.3. Results without Data Pre-Processing

This section discusses the recognition rates for LeNet, AlexNet, VGG16, GoogLeNet
and IVGG13 trained without data augmentation. The dataset before augmentation com-
prised 1349 and 3883, and 234 and 390 normal and pneumonia images in the training and
test sets, respectively. The training parameters included the learning rate = 0.001, maximum
epoch = 60 and batch size = 64.

Table 5 display the average confusion matrix outcomes over five repeated trainings
for each network, respectively.

Table 5. Each model confusion matrix on the test set.

Confusion Matrix on the Test Set

Model Name TP FP TN FN
LeNet 387 143 91 3

AlexNet 386 160 74 4
GoogLeNet 306 82 152 84

IVGG13 388 138 96 2

Figure 7 compares the overall network performance calculated using Equations (1)–(4).
A good prediction model requires not only high accuracy but also generalizability. Gener-
ally, the validation is initially high, because the validation data is primarily used to select
and modify the model; if the right validation data is selected at the beginning, the value of
validation will exceed the accuracy value of the training set. Conversely, if the wrong data
is selected, the parameters will be corrected and updated.

Evaluation metrics are usually derived from the confusion matrix (Tables 6 and 7) to
evaluate classification results, where true positive (TP) means both actual and predicted
results are pneumonia; true negative (TN) means both actual and predicted results are
normal; false positive (FP) means actual results are normal but predicted to be pneumonia;
and false negative (FN) means actual results are pneumonia but predicted to be normal.

Table 6. General confusion matrix.

Actual YES Actual NO

Predicted YES TP FP
Predicted NO FN TN

Table 7. Confusion matrix for medical judgment.

Actual Category

Pneumonia Normal

Predicted category Pneumonia True positive (TP) False positive (FP)

Normal False negative (FN) True negative (TN)

Table 8 compares the evaluation results for each model, where accuracy, precision,
recall and F-measure were calculated as shown in Equations (1)–(4). Precision is the
proportion of relevant instances among those retrieved, recall is the proportion of rele-
vant instances that were retrieved and the F1-measure is a special case of the F-measure
for β = 1, i.e., precision and recall are equally important. A larger F1 means improved
model effectiveness.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)
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Fβ −Measure =
(

1 + β2
) Precision× Recall
(β2 × Precision) + Recall

(4)

Table 8. Prediction results for each network model.

LeNet AlexNet GoogLeNet IVGG13

Training time 49 s 284 s 1270 s 231 s
Accuracy 76.6% 73.6% 73.3% 77.5%
Precision 73.0% 70.6% 78.8% 73.7%

Recall 99.2% 98.9% 78.4% 99.4%
F1-Measure 84.1% 82.4% 78.6% 84.6%

4.4. Results after Data Pre-Processing

We applied data augmentation to investigate the effects on model accuracy using
datasets containing 4000, 5000, 6000, 7000, 8000, 9000 and 10,000 randomly selected images
from the training set for each network model. Training parameters included learning
rate = 0.001, maximum epoch = 60 and batch size = 64.

Table 9 exhibits performance metrics calculated using Equations (1)–(4) for comparison
by using the different datasets. Table 10 compares the best evaluations for each model.
Although GoogleNet has higher accuracy and precision, the recall rate is much lower. It is
therefore important to use the F1-measure as the model evaluation standard. Both precision
and recall are equally important.

Table 9. Prediction results for IVGG13 model.

Dataset 4000 5000 6000 7000 8000 9000 10,000

Training time 188 s 231 s 279 s 336 s 375 s 448 s 476 s
Accuracy 87.7% 88.4% 89.1% 86.4% 86.5% 87.5% 86.8%
Precision 81.3% 82.2% 83.3% 79.4% 79.5% 80.8% 79.5%

Recall 97.8% 98.0% 97.8% 98.2% 98.4% 98.2% 99.0%
F1-Measure 88.8% 89.4% 90.0% 87.8% 87.9% 88.7% 88.2%

Table 10. Prediction results for each network model.

LeNet AlexNet GoogLeNet IVGG13

Training time 34 s 346 s 1995 s 279 s
Accuracy 86.8% 86.6% 89.5% 89.1%
Precision 80.0% 81.0% 89.3% 83.3%

Recall 98.1% 95.6% 89.6% 97.8%
F1-Measure 88.1% 87.7% 89.4% 90.0%

4.5. VGG16 Problems

The preceding analysis highlighted several VGG16 problems with extracting features
from medical image datasets. VGG16 was originally applied in the ILSVRC to recognize
1000 categories from 1 million images. Therefore, applying it to small datasets with
fewer training features led to significant underfitting [32]. It has always been difficult to
distinguish pneumonia presence or absence on thoracic X-ray images; image features are
too homogeneous, making it difficult for models to capture relevant features. Therefore,
training with deeper network layers often creates recognition errors.

Table 11 confirms the matrix for each dataset and that VGG16 also failed, even
after augmentation.
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Table 11. VGG16 confusion matrix for each dataset.

TP FP TN FN

4000 500 500 0 0
5000 500 500 0 0
6000 500 500 0 0
7000 500 500 0 0
8000 500 500 0 0
9000 500 500 0 0

10,000 500 500 0 0

5. Conclusions and Prospects
5.1. Conclusions

Since LeNet’s emergence, CNNs have continued progressing with many breakthroughs
and developments, and they provide great benefits for image recognition. Computational
hardware and capacity have also improved significantly, supporting DNN requirements
and extending their applicability. Therefore, developing deeper NNs to extract features
can effectively and continuously improve recognition accuracy and, hence, modern CNN
architectures commonly include many layers. First of all, we discovered the prediction
result of using the VGG16 model on failed pneumonia X-ray images. Thus, this paper
proposes IVGG13 (Improved Visual Geometry Group-13), a modified VGG16 model for
the classification pneumonia X-rays images. Therefore, this paper proposed IVGG13, a
modified CNN for medical image recognition by using open-source thoracic X-ray images
from the Kaggle platform for training. The iVGG13 recognition rate was compared with the
best current practice CNNs, which confirmed IVGG13′s superior performance in medical
image recognition and also highlighted VGG16 problems.

Data augmentation was employed to effectively increase data volume and balance
before training. Recognition accuracy without data augmentation ranged from 74% to 77%,
increasing to >85% after data augmentation, which confirmed that data augmentation can
effectively improve recognition accuracy.

The proposed IVGG13 model required less training time and resources compared
with the other considered CNNs. IVGG13 reduced layer depth with smaller convolu-
tional kernels and, hence, used significantly less network parameters; this greatly reduced
hardware requirements while achieving comparable or superior recognition accuracy
compared with the other models considered. An accuracy of ≈89% was achieved after
training with the augmented dataset, which is significantly superior to the other current
best practice models.

5.2. Future Research Directions

Outcomes from this study suggest the following future directions:

1. We expect the proposed IVGG13 to improve its model recognition rate to above 90%
after optimizing the network architecture or image processing methods, ensuring a
high recognition rate and stable system with good performance for future practical
application in medical clinical trials.

2. The proposed IVGG13 model with enhanced performance in X-ray image recog-
nition is expected to be used for the study of kidney stones issues, such as KUB
images classification.

3. The proposed IVGG13 model could be combined with object detection to effectively
provide physicians with accurate focal area detection during diagnosis to facilitate
early disease detection and prevention.
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