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Abstract: A Deep-Q-Network (DQN) controls a virtual agent as the level of a player using only
screenshots as inputs. Replay memory selects a limited number of experience replays according to
an arbitrary batch size and updates them using the associated Q-function. Hence, relatively fewer
experience replays of different states are utilized when the number of states is fixed and the state
of the randomly selected transitions becomes identical or similar. The DQN may not be applicable
in some environments where it is necessary to perform the learning process using more experience
replays than is required by the limited batch size. In addition, because it is unknown whether each
action can be executed, a problem of an increasing amount of repetitive learning occurs as more
non-executable actions are selected. In this study, an enhanced DQN framework is proposed to
resolve the batch size problem and reduce the learning time of a DQN in an environment with
numerous non-executable actions. In the proposed framework, non-executable actions are filtered
to reduce the number of selectable actions to identify the optimal action for the current state. The
proposed method was validated in Gomoku, a strategy board game, in which the application of a
traditional DQN would be difficult.

Keywords: Gomoku; game artificial intelligence; replay memory; Deep-Q-Network; reinforcement
learning

1. Introduction

The development of artificial intelligence technology has paved the way for varied
improvements to virtual agents in virtual environments through active research [1]. Par-
ticularly, virtual agents are controlled in games by following predefined rules [2,3]. For
example, the behavior tree (BT) algorithm defines each rule in a node and treats the entire
set of rules as a tree to allow a virtual agent to consider a variety of rules [2]. Studies have
been conducted on the genetic algorithm, via a combination of predefined rules, to reflect
the rules of the most dominant genes in line with a changing environment [3,4]. When
an agent is controlled based on rules, its performance generally depends on the level of
segmentation of the corresponding rules.

DeepMind proposed the Deep-Q-Network (DQN), which combines a deep neural
network (DNN) with Q-Learning [5]. The DQN controls Atari at the level of a game
player; consequently, the DQN has demonstrated the potential to clear a game as a game
player even if it receives only screenshots as inputs and controls the game based on them.
However, two problems arise in the DQN. First, a limited number of the experience replays
only recorded in replay memory are randomly selected and used; the DQN defines the
concept of replay memory to learn the DNN through rewards [6]. Replay memory stores
past gameplay experiences, allowing the DQN to avoid the local optimization problem
of playing games in only one direction [7]; however, replay memory selects a limited
number of experience replays according to an arbitrary batch size and updates them with
the associated Q-function. Hence, relatively fewer experience replays of different states
are used when the states of the randomly selected transitions become identical or similar.
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It is recommended that the batch size is maximized to address the issue of the limited
batch size in the DQN, and the most recently acquired experiences are selected in replay
memory and used first [8]. The DQN may not be applicable in some environments where
it is necessary to perform the learning process using more varied experience replays than
is required by the limited batch size. In such cases, the Monte Carlo Tree Search (MCTS)
algorithm can be used in the development [9], but its application becomes difficult in a
more complex environment that would increase the complexity of the tree [10]. When
the batch size of replay memory is limited, it is necessary to select experience replays in a
manner that increases the learning effectiveness.

Second, there is a learning time issue due to non-executable actions. Among all Q-
values of the current state, the action with the highest Q-value is selected as the final action
in the traditional DQN. Because the traditional DQN is a model-free algorithm with an
unknown execution of action, a problem of an increasing amount of repetitive learning
occurs as more non-executable actions are selected. A method is required to distinguish
and select executable actions based on the environment data corresponding to a smaller
cost of acquiring the environment data to distinguish non-executable actions, rather than a
smaller cost incurred by longer learning time.

In this study, an enhanced DQN framework is proposed to resolve the batch size
problem and reduce the learning time of a DQN in an environment with numerous non-
executable actions. First, the replay update approach is suggested. When a new transition
is recorded in replay memory, the state most similar to a new state of the transition is
found in replay memory with the approximate nearest neighbor (ANN) algorithm, and the
corresponding target value is updated. This allows all experience replays stored in replay
memory to be used, rather than using only the recorded experience replays randomly
selected by the batch size, as in the traditional DQN. Second, the action selection method of
the DQN is improved. In the proposed enhanced DQN framework, executable actions are
filtered to reduce and identify the number of selectable and optimal actions for the current
state. In a traditional DQN, the amount of unnecessary, repetitive learning increases with
the number of non-executable actions. In contrast, the proposed enhanced DQN framework
reduces the amount of learning by identifying whether an action is executable and also
decreasing the overall number of selectable actions. The proposed method was validated in
Gomoku, in which the application of the traditional DQN would be difficult. As the game
progresses in Gomoku, the number of locations available for placing stones decreases and
so does the number of executable actions. The proposed method was applied to the white
stones, whereas the genetic algorithm-based Gomoku AI was applied to the black stones.

The rest of this paper is organized as follows. Section 2 describes related works on
game AI model and reinforcement learning model. Section 3 describes an enhanced DQN
action framework. In Section 4, the experiments that were conducted using the proposed
method on representative complex environment, Gomoku, are described. Finally, Section 5
concludes summarizing our main approaches and future research directions.

2. Related Works

In virtual environments, optimal action should be taken in games to provide users
with fun and interest within a limited environment that does not violate the rules of the
games. Often used as a game AI model, a genetic algorithm is an evolved algorithm that is
also used as a Gomoku AI model, [3]. Shah et al. created a Gomoku AI model by applying
a genetic algorithm [4]. Although a tree-based Gomoku AI can be created, a bottleneck may
occur with an increasing depth of the tree [11], which causes the tree search to fail. Wang.
et al. resolved this bottleneck issue resulting from a large depth of search by applying the
genetic algorithm [12].

Owing to the recent development of game engines, developers can access tree search-
based algorithms and easily create game AI [13]. For example, BT provides a method to
structure the rules of an agent’s actions [14]. BT is widely used in computer games and
robotics because it allows efficient programming and structuring of the complex rules
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of modular and reactive AI models. Allis et al. developed a Gomoku AI model called
Victoria [15] using Threat-Space Search [16] and Proof-Number Search [17]. If Victoria
moves a stone first, it always leads to a win. Cao et al. used an algorithm combining Upper
Confidence Bounds applied to Trees (UCT) [18] and Adaptive Dynamic Programming
(ADP) [19] and introduced a Gomoku AI model that could solve the problem of search
depth defects more accurately than using a single UCT [20].

Because the performance of the algorithm combing convolutional neural networks
(CNNs) [21] and Monte Carlo Tree Search (MCTS) [9] has been demonstrated by Deep-
Mind’s AlphaGo, the application of this algorithm in a Gomoku AI model has also been
described. Li et al. created a DNN-based Gomoku AI model using MCTS and a CNN [9,22].
Yan et al. described the Gomoku AI model using a hard-coded convolution-based Gomoku
evaluation function [23]. Shao et al. described a Gomoku AI model that predicts the
position of the next stone with an accuracy of 42% through a DNN with various hyper-
parameters [24].

Recently, game AI models based on reinforcement learning have been developed to
clear games with minimum amounts of information required to control their progress. Oh
et al. used deep reinforcement learning to describe a 62% real-time fighting game AI model
against five professional gamers [25]. Tang et al. introduced a Gomoku AI model that
combines MCTS and ADP to eliminate the “short-sighted” defect of the neural network
evaluation function [26]. Zhao et al. designed a Gomoku AI model that is capable of
self-teaching based on a policy that penalizes the last action of the ADP and the loser
while rewarding that of the winner [27]. Gu et al. introduced a reinforcement learning
algorithm that provides a CNN-based next best action by combining one-hot encoding-
based vectors [28]. The proposed model combines one-hot encoding-based vectors by
clustering them in an ANN by similar sentence. The application of the proposed model in
Gomoku AI results in a win after 525 games when the ANN distance is 5. Furthermore, the
amount of learning data is reduced by 12%. The ANN is also used in this study to cluster
Q-values by similar state.

A model-free algorithm indicates the next state of AI in terms of probability when
it executes an action in a certain state [29]. Lopez et al. introduced a KNN-td algorithm
that combines the K-nearest Neighbor (KNN) algorithm [30] with Temporal Difference
(TD) [31,32].

In Q-learning, which is another model-free algorithm, a Q-function is used to calculate
the action appropriate for the current state [33]. A Q-table is used to update the action-
values of each state in Q-learning; however, it is difficult to use the Q-table when there are
numerous states or different types of corresponding actions [34]. Sung, Y. et al. proposed
the Reward Propagation Method (RPM) to reduce the time required for Q-learning without
reducing the size of the state [35]. To address this limitation of the Q-table, Deep-Mind’s
Volodymyr et al. implemented a neural network in a DQN algorithm and applied the
algorithm to seven Atari 2600 games with complex states to achieve the capability to play
at a professional level [5].

Replay memory that stores past game experiences is used in DQNs. Von Pilchau et al.
proposed the Interpolated Experience Replay and applied it in the FrozenLake game.
Compared to the traditional DQN, very fast learning speeds and high learning outcomes
were achieved [36]. Schaul et al. developed a framework that prioritizes past game
experiences in replay memory. This produce better performance in 41 out of 49 Atari games
in comparison to the traditional DQN [37].

To address the limitation of replay memory in the traditional DQN, an experience
replay selection approach is generally introduced to produce the optimal learning outcome;
however, an optimal action cannot be chosen from experience replays that have not been
selected in the replay memory according to the batch size. In this study, a method is pro-
posed to resolve the batch size limitation by applying the ANN algorithm when recording
experience replays in replay memory and to reduce the actions to be selected, thus limiting
the amount of learning in an environment where a massive non-executable action occurs.
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3. Action Selection and Replay Update for Non-Executable Massive Actions

In this study, an enhanced DQN model is proposed to select the optimal actions while
resolving the problems associated with the batch size of replay memory and the amount
of DNN learning in an environment with multiple non-executable and executable actions.
The proposed method allows an agent to make optimal decisions based on the DQN, even
in an environment with a high number of non-executable actions.

3.1. Framework Overview

An agent learns by interacting with the environment. In the environment, the state st
is sent to the agent. The received action at is executed, and the state st+1 and the reward rt
are sent. The agent consists of the DQN Action Estimator, action filter, and replay memory
updater as shown in Figure 1. In the DQN Action Estimator, the Q-values of the current
state st are estimated, similarly to the traditional DQN algorithm. In the action filter, the
optimal action among the Q-values estimated through the DNN is determined by taking
into account the state st. Specifically, the Q-values of the non-executable actions among
the selectable actions in the state st are set to −∞ such that they are not considered during
the selection of the action at. The action at determined in the action filter is sent to the
environment. In the replay memory updater, an ANN algorithm is used to determine
whether there is a state most similar to the state st among those of the experience replays
stored in the replay memory. The target values are updated based on this, and the Q-
function is updated based on the states and target values stored in the replay memory.
Specifically, the target is generated and updated based on st, st+1, Q(st, a), and rt and is
stored in replay memory D.

Figure 1. Proposed enhanced DQN framework.

Because the action estimator and action filter are performed together in the traditional
DQN, and the action with the largest Q-value is selected among those that are predefined,
it is possible to select an action that cannot be executed in practice; however, actions
that cannot be executed in practice are excluded through the action filter in the proposed
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method, which reduces the number of action selections, and ultimately, the amount of
learning. Table 1 shows the procedure of the Agent Process in the proposed DQN. Replay
memory D is initialized as an empty set. The st, st+1, and reward rt are received in the
environment, and the action at is repeatedly executed.

Table 1. Pseudocode of Agent Process.

PROCEDURE Agent_Process

BEGIN
SET D←∅
FOR each episode

FOR each time
SET st ← CALL State_Receiver
SET Q(st, a)← CALL Action_Estimator with st
SET at←CALL Action_Filter with st, Q(st, a)
SET st+1, rt ←CALL Action_Executer with at
CALL Replay_Memory_Updater with D, st, st+1, at, rt

END FOR
END FOR

END

3.2. Action Filter

In the traditional DQN, argmaxaQ(st, a) is defined as the action at to be executed
at time t. In this study, the action filter prevents an agent from selecting non-executable
actions by considering the state st of all actions that can be selected by the agent and
identifying non-executable actions. Table 2 shows the procedure of the action filter process.
The action filter determines whether an action can be executed in the state st and sets the
mask M(st, a) of the non-executable location to −∞ depending on the transition of the
state. An action that results in the largest sum between Q(st, a) and M(st, a) at the state st
is set as the action at.

Table 2. Pseudocode of action filter.

PROCEDURE Action_Filter

INPUT: st, Q(st, a)
OUTPUT: at

BEGIN
Initialize M(st, a) by 0
∀a SET M(st, a)← −∞ , where a is not executable at st
SET at←argmax

a
(Q(st, a) + M(st, a))

END

All Q-values within the replay memory updater are dependent on each other, rather
than independent, because they are clustered into similar states through the ANN algo-
rithm. Hence, the action with the maximum (Q(st, a) + M(st, a)) becomes the final action
at at st, with all other actions that cannot be executed filtered by the action filter.

3.3. Replay Memory Updater

Because the replay memory randomly extracts the states and target values of the
experience replays by the batch size and updates with the Q-function, the following
problems occur. First, different target values can be recorded for similar or identical
states. Consequently, the Q-function update may be error-prone when the batch size
becomes larger. Second, there are cases where the action with the highest Q-value cannot
be executed. Particularly, in an environment where a massive non-executable action occurs,
the experience replay of such an action that cannot be executed in practice is recorded in the
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replay memory. Therefore, if the batch size is limited, the experience replay corresponding
to an executable action cannot be selected relatively in replay memory.

The proposed DQN-based reinforcement learning model shares a single target value
by clustering similar, dependent states using the ANN algorithm. This provides space for
additional dissimilar experience plays to be recorded in the replay memory. Moreover,
because target values are updated for similar states, the Q-values of the actions output
from the Q-function that learns these target values are similar and dependent to each other.
Regarding the image classification research field, a CNN demonstrates higher performance
than other traditional machine learning algorithms [38] and can be used to cluster similar
states; however, the use of a CNN requires relatively more computation and memory than
an ANN, and ANN learning must be repeated. This can lead to forgetting problems [39],
causing a significant loss in performance. In addition, similarity generally cannot be
measured in a CNN. For this reason, the proposed method uses an ANN algorithm, instead
of a CNN.

Table 3 shows the procedure of the updated replay memory process with ANN. To
identify similar states with the ANN, the maximum allowable difference in similarity
is defined as the distance δ. The proposed DQN-based reinforcement learning model
compares the individual states recorded in replay memory D to the state st using the ANN
to find and process the most similar state. Similarity is calculated in terms of a Euclidean
distance. When the similarity is greater than the distance δ or corresponds to the first
experience replay, a new state is assumed, and a new target value yt is calculated for DQN
learning. When the similarity is smaller than δ and a similar state exists in replay memory
D, yi is updated. Action ai is not updated because the ultimately selected action ai may be
different each time through the action filter even when the state is similar. If ai is updated,
the Q-value of the Q-function will be different each time. Because the purpose of the action
filter is to find the optimal action by referring to the current state, ai is not updated to avoid
affecting the current state in the Q-function update. Once the update of replay memory is
complete, the Q-function is updated.

Table 3. Pseudocode of replay memory updater.

PROCEDURE Replay_Memory_Updater_with_ANN

Input: st, st+1, at, rt
BEGIN

IF D is ∅
SET yt←Q(st, a)·(1− α)+(rt + γmax

a′
Q(st+1, a′)) ·α

SET D ← D ∪ {[st , at, rt, yt, st+1]}
ELSE

# The Starting of ANN
SET d← min(s− st) where s is from D
SET i← argmin

i
(si − st) where si is from D

IF d > δ
SET yt←Q(st, a)·(1− α)+(rt + γmax

a′
Q(st+1, a′)) ·α

SET D ← D ∪ {[st , at, rt, yt, st+1]}
ELSE

SET yi←yi ·(1− α)+(rt + γmax
a′

Q(st+1, a′)) ·α
END IF
# The End of ANN

END IF

SET l ← 1
|D|

|D|
∑
j=1

(
yj −Q

(
sj, aj

))2
where yj, sj, aj f rom D

Update QFunction using the gradient descent algorithm by minimizing the loss l
END
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4. Experiments

Experiments were performed by applying the proposed DQN algorithm using re-
play memory with an ANN to Gomoku games. Section 4.1 describes the learning and
development environments, whereas Sections 4.2 and 4.3 present the performance verifi-
cation of the proposed enhanced DQN-Framework-based Gomoku AI without an action
filter. Sections 4.4 and 4.5 present the performance verification of the proposed enhanced
DQN-Framework-based Gomoku AI with an action filter.

4.1. Experimental Environment

We verified the performance through various methods to confirm the performance
of the Gomoku system proposed herein. We performed experiments with “the number of
wins without an action filter,” “the number of batch sizes of replay memory without an
action filter,” “the number of wins with an action filter,” and “the number of batch sizes of
replay memory with an action filter” on the Gomoku game. In this study, the experiment
was developed with C/C++, Python 3.0, and TensorFlow. A CPU with an I-7 processor,
16GB RAM, and a GTX-1050 GPU were used in the experimental environment.

In this study, a 7 × 7 board is used in the Gomoku games. The neural network
of the proposed DQN consists of three hidden layers. Each hidden layer consists of
49,128,516 neurons. The output and input layers were designed to have 49 neurons, which
corresponds to the total number of intersections on the board.

In the experiments, 1000 Gomoku games were iterated for each experimental case.
We calculated the winning rate by grouping 1000 experimental data into ten categories.
A Gomoku board is utilized as a DQN’s environment. States are described by the status
of the Gomoku board. Each game was forced to start at the (4, 4) position. The proposed
enhanced DQN framework was applied to the white stones (DQN’s Agent). The genetic
algorithm was applied to the black stones. If black stones form the first five-in-a-row, it will
be considered as a win for the black stones. Therefore, the goal of white stones is to prevent
black stones from forming a five-in-a-row. If white stones form the first five-in-a-row
or fill up all 49 cells such that the game can no longer proceed, it will be a win for the
white stones.

4.2. Number of Winning Games without Action Filter

This section describes the results of the Gomoku game experiment without an action
filter applied to the proposed enhanced DQN framework. Because the next-best-action
function is unavailable without the action filter, reinforcement learning will be performed
until another action is selected, if there is a stone in the current state.

Table 4 shows the reward policy for the DQN without an action filter. In Gomoku, the
pattern of play changes consistently depending on the position of the stones each player
has placed. Consequently, if a stone could not be placed because there was another stone
already placed, a reward of −0.5 would be applied until a different action was selected.
Additionally, if the player made the incorrect final action and the opponent won, a reward
of −1 would be applied. If the player made the correct final action and won, a reward of
+1 would be applied.

Table 4. Reward policy without action filter applied.

When the Opponent Wins
(Black Win)

When the Player Wins
(White Win)

When the Player Can’t
Place Stone

−1 reward +1 reward −0.5 reward
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Figure 2 shows the results of the experiment in which the traditional DQN was applied
to Gomoku games in this study. In the traditional DQN, the content from random past
plays—as many as the batch size—is remembered in the replay memory, and the Q-function
is executed through DNN learning. In Gomoku games, if the opponent is in the same
state but makes a different action, the replay memory will accumulate completely different
actions for the identical state. It is impossible to determine the optimal action in DNN
learning when completely different actions are recorded for the same state. As shown in
Figure 2, the batch size was varied from 5 to 25 in this experiment. If batch size is over 30,
it is impossible for DNN to learn optimal actions in the Gomoku game because of multiple
different executed actions in the same state.

Figure 2. Result of win rate for the Gomoku game in the traditional DQN. From (a–e) replay memory’s batch size is 5, 10,
15, 20, and 25.

The results of the experiment in Figure 2 show that the winning rate was low regardless
of the batch size. As demonstrated in the results, it was impossible to respond to all actions
of the opponent by learning randomly extracted past data. Moreover, it was unknown
whether the learning model could win the subsequent game after winning the current
game. This is because the opponent could also play the game in various ways, and it would
be very rare to have a state that is identical to the past game.

Figure 3 shows the results of the enhanced DQN framework without an action filter
applied. Instead of randomly extracting past data from the replay memory, the ANN
algorithm proposed in this study clusters similar states together. Through this, the batch
size of replay memory can be increased without a limit. In addition, because the same
target is updated between similar states, a single action can be set for those similar states.
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All the experimental results in Figure 3 indicate that the winning rate was higher compared
to the results in Figure 2. This implies that the experience replays clustered through the
ANN algorithm have been properly structured to facilitate DNN learning; however, a new
state arises every time the opponent makes a different action. As a result, the winning
rate in all of the experiments in Figure 3 is not maintained but rather alternates between
winning and losing. Figure 3a,e exhibit the most and least efficient results, respectively.
The greater the ANN distance, the wider the range of experience replays considered to be
similar. This results in a higher number of clustered experience replays, which is a poor
identification of the state.

Figure 3. Result of win rate for the Gomoku game in the proposed enhanced DQN framework without action filter applied.
From (a–e) replay memory’s distance of ANN is 1, 2, 3, 4, and 5.

4.3. Batch Sizes of Replay Memory without Action Filter

In this section, we confirm the number of experience replays stored in the replay
memory without an action filter applied in the proposed enhanced DQN framework. In the
existing replay memory, experience replays were selected based on the batch size specified
by the user to update the Q-function. However, in the enhanced DQN framework proposed
in this study, experience replays are accumulated for dissimilar states in replay memory,
and the batch size increases according to the state in the game.



Appl. Sci. 2021, 11, 11162 10 of 15

Figure 4 shows the batch sizes without an action filter applied in the proposed en-
hanced DQN framework. An ANN distance of 1 resulted in the largest batch size. On
the other hand, the batch size was the smallest with a large ANN distance. The result
in Figure 3a was the most efficient in Figure 3 because experience replays that had been
organized for dissimilar states were used. As shown in Figure 4, the proposed enhanced
DQN framework could resolve the batch size limitation of replay memory.

Figure 4. Replay memory batch size for the Gomoku game when proposed enhanced DQN frame-
work without action filter is applied. From replay memory ANN distance is 1–5 and replay memory
batch size reduced from 2433 to 378.

4.4. Number of Winning Games with Action Filter

This section provides the results of the Gomoku game experiment with an action filter
applied to the proposed enhanced DQN framework. Because the next best action is made
possible by the action filter, the presence or absence of a stone in the current state is not
considered for the reward. Table 5 shows the reward policy of the proposed enhanced
DQN framework with an action filter applied to decision making. If the player made the
incorrect final action and the opponent won, a reward of−1 would be applied. If the player
made the correct final action and won, a reward of +1 was applied.

Table 5. Reward policy with action filter applied.

When the Opponent Wins (Black Win) When the Player Wins (White Win)

−1 reward +1 reward

Figure 5 shows the results of the Gomoku games played with an action filter applied
to the decision making of the traditional DQN. In the traditional DQN, there is no next best
action available as similar states are not clustered together. Therefore, even when action
filter is applied, the experiment results are similar to those in Figure 2.
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Figure 5. Result of win rate for the Gomoku game in the traditional DQN with action filter applied. From (a–e) replay
memory’s batch size is 5, 10, 15, 20, and 25.

Figure 6 shows the results of the experiment in which an action filter is applied to
the decision making of the proposed enhanced DQN framework. For the targets that are
clustered by similar states through the ANN algorithm, the Q-values of the individual
actions are in a dependent relationship, rather than an independent one. Thus, if the action
with the current highest Q-value cannot be selected by the action filter, the action with the
second highest Q-value becomes the next best action in the current state. The experimental
results in Figure 6 show a significantly higher winning rate than those in Figures 2, 3 and 5.
As shown in Figure 6c, the winning rate in this experiment is the highest with an ANN
distance of 3 (green box); however, if the ANN distance is unnecessarily small, as seen
in Figure 6a, similar states cannot be properly clustered together. If the ANN distance is
larger than necessary, as in Figure 6e, the criterion for identifying similar states becomes
too broad and different states may be mistakenly considered to be similar and clustered
together, resulting in inaccurate identification of the state. The experiment in Figure 6
confirms that the winning rate cannot be maintained if the ANN distance is unnecessarily
large or small.
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Figure 6. Result of win rate for the Gomoku game in the proposed enhanced DQN framework with action filter applied.
From (a–e) replay memory’s distance of ANN is 1, 2, 3, 4, and 5.

4.5. Number of Batch Sizes of Replay Memory with Action Filter

In this section, we confirm the number of experience replays stored in replay memory
with an action filter applied in the proposed enhanced DQN framework. Because the
action filter is not applied in Section 4.3, the replay memory needs to be updated every
time a stone is placed in a position that already has a stone; however, the number of replay
memory updates can be reduced with the application of the action filter.

Figure 7 shows the batch sizes with an action filter applied to the decision making of
the proposed enhanced DQN framework. The results in Figure 7 are similar to those in
Figure 4; however, the amount of ANN learning is reduced by the ability to choose the
next best action with an action filter. While 1386 batch data were required in Figure 4c,
only 99 batch data were used to achieve a high winning rate in Figure 7c with an action
filter applied. This experiment demonstrates that the proposed enhanced DQN framework
and action filter allow an effective action to be selected in an environment that limits the
selection of actions.
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Figure 7. Number of replay memory’s batch size for the Gomoku game in proposed enhanced DQN
framework with action filter applied. From replay memory’s distance of ANN is from 1 to 5 and
replay memory’s batch size reduced from 790 to 2.

5. Conclusions

In this study, a DQN-based reinforcement learning algorithm is proposed to select the
next best action in an environment where the selection of actions is limited. In the proposed
enhanced DQN framework, an ANN algorithm was applied to the replay memory to cluster
experience replays by similar states such that they would no longer be in an independent
relationship but rather clustered in a dependent relationship. Consequently, the relationship
between the target values required to update the Q-function also became dependent. By
applying an action filter to the decision making of DQN, it was possible to select the next
best action that would consider the current state of a situation where a non-executable
action existed. The proposed enhanced DQN framework was applied to Gomoku games for
validation. On the one hand, when the action filter was not applicable, an ANN distance
of 1 achieved the highest efficiency, but the winning rate was not maintained because
it was impossible to respond to all actions of the opponent. On the other hand, when
the action filter was applicable, the winning rate could be maintained by responding to
all actions of the opponent when an ANN distance of 3 was achieved. Moreover, the
amount of DNN learning was significantly reduced. In the future, we plan to apply and
test the DQN algorithm proposed for other numerous virtual environments. We will also
address and investigate the problems associated with replay memory resulting from these
specific environments.
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