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Abstract: Based on the principle of stereology to describe void fabric, the fabric tensor is redefined
by the idea of normalization, and a novel quantitative description method for the orthotropic fabric
of granular materials is presented. The scan line is described by two independent angles in the
stereo space, and the projection of the scan line on three orthogonal planes is used to determine the
plane tensor. The second-order plane tensor can be described equivalently by two invariants, which
describe the degree and direction of anisotropy of the material, respectively. In the three-dimensional
orthogonal space, there are three measurable amplitude parameters on the three orthogonal planes.
Due to the normalized definition of tensor in this paper, there are only two independent variations
of the three amplitude parameters, and any two amplitude parameters can be used to derive the
three-dimensional orthotropic fabric tensor. Therefore, the same orthorhombic anisotropy structure
can be described by three fabrics, which enriches the theoretical description of orthotropy greatly. As
the geometric relationship of the stereoscopic space scan line changes, the three sets of orthotropic
fabrics degenerate into different forms of transversely isotropic and isotropic fabrics naturally and
have a clear physical meaning. The novel fabric tensor is quantitatively determined based on
mathematical probability and statistics. The discrete distribution of voids in space is projected as a
scalar measurable parameter on a plane. This parameter is related to the macroscopic constitutive
relationship directly and can be used to describe the effect of microscopic voids on the macroscopic
phenomenon of materials.

Keywords: sand; orthogonal anisotropy; void fabric; quantitative analysis

1. Introduction

The void ratio is one of the most important, earliest, and most widely used material
parameters for controlling the mechanical response of the soil. In critical state soil mechan-
ics, it is the only material physical parameter that describes the critical state. However, Li
and Dafalias [1], Zhao and Guo [2] and Abouzar et al. [3] have recently confirmed that
the critical state of soil was not unique due to the existence of fabric anisotropy, i.e., the
relationship between the void ratio of critical state and hydrostatic pressure was not unique,
which was a challenge to the uniqueness hypothesis for the critical state theory of soil me-
chanics. According to the anisotropic characteristics of soil meso-structure, Chow et al. [4]
studied the meso-structure of particles under one-dimensional consolidation conditions
and found that the particle structure had a horizontal arrangement trend, and the void
structure showed a similar orientation trend. Sun et al. [5] and Zheng et al. [6] found that
the void fabric tensor and particle sphericity, relative density, and coordination number
have a strong functional relationship through the image analysis of loose and dense sand
specimens. Hu et al. [7] presented a fabric tensor-based bounding surface model accounting
for the anisotropic behavior of granular materials. Zhang et al. [8] established the relations
between the macroscopic volumetric strain, shear strain, and void fabric combined with
the micromechanics theory, and linked with void fabric tensor. Zhao et al. [9] considered
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the effects of initial anisotropy, porosity, stress ratio, loading direction, and intermediate
principal stress ratio, and established the anisotropic evolution law for fabric. Although the
void fabric has a substantial impact on the mechanical properties of sand, the relative lag
in the development of mesoscopic testing technology, experiment and description theory
of void fabric has led to a lack of understanding of void fabric and has restricted the study
of the mechanical properties by the method of macro and micro combination.

The three main causes of the meso-fabric of sand are the anisotropic distribution of
contact normal particles, void space, and the arrangement of the nonspherical particles [10].
It is difficult to consider the three causes simultaneously because they have different
physical and geometric meanings and applications. Therefore, the different fabric theories
and their description methods have been formed. For example, Oda [10] and Tobita [11]
defined the fabric tensor by considering the arrangement direction of the long axes of sand
particles and the distribution of contact stress, which laid the foundation of the fabric theory
and has been widely applied. However, the determination of single-particle direction
and the direction of contact normal between particles has always puzzled scholars, who
believed that these two factors were hardly measured accurately [12,13]. Thus, there are
more qualitative studies than quantitative studies for fabric, which is the biggest obstacle
to be applied to soil constitutive relationships. In the author’s work of establishing strength
criterion [14], constitutive model [15] and potential theory [16] with fabric to describe
anisotropy, the fabric description has always been at the core of thinking. Comparatively
speaking, the description of void in three kinds of fabric is more intuitive and easier to
accept, but the bottleneck is the development of its theory and measurement technology.
Void fabric is a mathematical relationship describing the spatial distribution of voids in
soil and there are three main theories to describe void fabric. First, Oda [17] proposed
the 2D void fabric theory and its measurement method; then Bhatia and Soliman [18]
used it in an experimental study. This method was difficult to popularize because it
involved segmentation and image recognition, such as the center of gravity, boundary,
shape, arrangement, and movement of particles. Second, Bagi [19] proposed a dual
geometric system to describe the effects of particles and voids; however, the difficulty
in defining the 3D void space was its application. Based on Bagi’s study [19], Li and
Li [20] modified the theoretical expression of fabric. Using the modified expression, Fu
and Dafalias [21] obtained 2D linear relationships of a different fabric caused by discrete
element simulation. Nevertheless, there were still similar problems in the quantitative
determination of Oda’s fabrics [17]. Third, the void fabric was determined by the stereology
theory. Hilliard [22] first established the mathematical framework and determined the
void distribution in different planes and spaces with scan lines quantitatively. Later,
Kanatani [23–25] extended the Hilliard method to the form of Cartesian coordinate tensor,
and for the first time unified the Hilliard method to solve different problems into a unique
mathematical framework. Buffon transformed and derived the inverse transform of Buffon
transform that determined the fabric tensor with the scan line directly. Based on the work
of Kanatani [23–25], Kuo et al. [26] and Shiva et al. [27] conducted quantitative detection
of the void tensor for sand. Ghedia et al. [28] and Theocharis et al. [29] used scan lines to
quantify the void in granular materials. The results showed that the method can quantify
the anisotropy and 3D evolution of void fabric adequately. Through DEM analysis, it was
found that the method was adapted to the existing quantification methods of the void
fabric. All the above studies show the rationality of using scan lines to quantify the void
of granular materials, but there are relatively few theoretical and experimental results. To
sum up, the third theoretical basis is dependable, and the test analysis is simple.

According to the theoretical description of the particle arrangement fabric and the
quantitative detection of the plane amplitude parameters, authors [30,31] presented a quan-
titative detection method of the plane parameters for the sand void fabric by stereology [32].
Based on this method, there was also a better effect on the quantitative determination of
rock fracture fabrics [33,34]. Hence, for the shortcomings of the existing void fabric theory
in the measurement process, the authors redefined the theoretical expression of the void
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fabric. On the basis of plane quantitative measurement for void fabric, the method was
extended to 3D space, and theoretical expressions of void fabric for different 3D fabric were
derived by using quantitative measurement parameters on three orthogonal planes, i.e., the
3D fabric expressions of orthotropic and transversely isotropic. In this paper, the physical
and geometric significance was analyzed in detail to popularize and apply quantitative
determination technology of void fabric.

2. Existing Theories of the Void Fabric Tensors

The distribution equation of void space is determined based on the principle of
stereology. The equation is determined by the average porosity (scalar) and the symmetric
fabric tensor that trace is 0 [35]. Tobita [35] used the REV (Representative Element Volume)
method to detect the void fabric distribution quantitatively. As shown in Figure 1, the first
step is to select a sample space with enough particles to perform mathematical statistics.
The second step is to determine a measurement sphere. Finally, the length L in the sphere
is the scan line, and the length of the scan line truncated by the void is the measured void
length. By rotating the scan line throughout the sphere, the void distribution in the sphere
is measured. Therefore, the void distribution in spherical coordinates is ll(α,β) = ∑li(α,β),
and the ratio of scan lines to void is as follows:

LL(α, β) =
ll(α, β)

L
=

ll(α, β)

2R
(1)

where LL(α, β) is the porosity of the scan line. L is the length of the scan line. R is the radius.
α and β are independent integral variables of the integral interval.
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Then, the average porosity in a unit sphere is as follows:

nm =
1

4π

∫ 2π

0

∫ π

0
LL(α, β) sin αdαdβ (2)

where nm is the average porosity per unit measured through the m-th scan line. Equation
(2) expresses in the Cartesian coordinate system as follows:

nm =

∫ ∫
Syz lxdydz +

∫ ∫
Szx lydzdx +

∫ ∫
Sxy lzdxdy

8π
(3)

where lx, ly, and lz are the distribution functions of the void density on the corresponding co-
ordinate plane, respectively. syz, szx, and sxy are the integral intervals on the corresponding
plane, respectively.

The void distribution equation is expressed as average porosity and a symmetric
fabric tensor that’s trace is 0 [23–25] and reads:

N(
→
n ) = nm(1 + Nijninj + Nijklninjnknl + · · · ) (4)



Appl. Sci. 2021, 11, 11158 4 of 17

where N
(→

n
)

is the average void distribution function,
→
n is the unit vector, Ni1i2 ...in is a

void tensor that’s trace is 0 and is reads:

Ni1i2 ...in =
2n + 1

2n

(
2n
n

)
Ωi1i2 ...in (5)

where Ωi1i2 ...in is the tensor defined by Kanatani [23–25] and reads:

Ωi1i2 ...in =
1

4πnm

∫
Ω

ni1i2 ...in ninLL(α, β)d
→
n (6)

The key of Equation (4) to describe the void distribution is how to measure nm
and Ni1i2 ...in .

3. Novel Void Fabric Tensors Definitions

Based on the description theory of void tensors in the principle of stereology and the
theoretical research results of existing void tensors, a novel test method for fabric tensor is
presented in this paper.

3.1. Definition of Void Fabric

The void fabric describes the distribution form of the three orthogonal planes where
the value of trace is equal to 1. Thus, according to the characteristic and combining with
normalized ideas, the equation of the void fabric tensor is defined and reads:

Mi1i2 ...in =

∫
Ω ni1i2 ...in ninLL(α, β)d

→
n∫

Ω LL(α, β)d
→
n

(7)

where Mi1i2 ...in is the void fabric tensor, which is used for the microscopic quantitative
detection of the void tensor directly.

The tensor determined by Equation (7) accurately describes the variation of void space
distribution in theory. However, in practice, the second-order fabric tensor has been able to
describe the variation of void distribution. Hence, the influence of higher-order tensors is
ignored. Equation (7) describes the second-order tensor as follows.

Mij =

∫
LL(αm, βm)ninjd

→
n∫

LL(αm, βm)d
→
n

(8)

where Mij is the second-order symmetric fabric tensor. αm and βm are the description angles
of the m-th scan line. ninj is the direction component of the second-order fabric tensor.

According to Equation (5), a tensor that’s trace is 0 is obtained directly and reads:

Nij =
15
2
(Mij −

1
3

δij) (9)

where Nij is the symmetric fabric tensor that’s trace is 0 describing the void distribution. δij
is the Kronecker tensor.

According to Equation (4), the void distribution equation of the second-order tensor is
as follows.

N(
→
n ) = nm(1 + Nijninj) (10)

where nm is the form described by Equation (2).
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From Equation (8), the description method in this paper improved the fabric definition.
According to the definition of measurement voids, the measurement process is expressed
as the following equation by series.

Mij =

N−1
∑

m=0

LL(αm ,βm)ninj
N

N−1
∑

m=0

LL(αm ,βm)
N

=

N−1
∑

m=0
LL(αm, βm)ninj

N−1
∑

m=0
LL(αm, βm)

(11)

From Figure 2, the components of the unit vector
→
n in the three orthogonal direc-

tions are n1 = cos α, n2 = sin α sin β, and n3 = sin α cos β, i.e., the tensor defined by
Equation (11) is the following equation.

Mij =

 M11 M12 M13
M21 M22 M23
M31 M32 M33

 (12)

From Equations (11) and (12), the trace of the novel void tensor Mij is equal to 1, so the
trace of the tensor described in Equation (9) is equal to 0, which provides great convenience
for the derivation of the void distribution equation and the determination of the test tensor.
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3.2. A Novel Definition of 2D Void Fabric

As shown in the unit test sphere in Figure 1, the spatial distribution of voids cannot
be obtained directly by spatial scan line but can be obtained by plane image analysis
of void distribution and then can be carried out reasonably in 3D modeling. The void
projection distribution on three orthogonal planes is obtained by plane image analysis, and
the detailed quantitative method is shown in the reference [35]. Then the void projection
described in Figure 1 on the three orthogonal planes is measured by the actual image,
i.e., the fabric tensor on the three orthogonal planes x1-x3, x1-x2, and x2-x3. According to
Equation (12), the tensor on the plane x1-x3 is the following equation.

M1−3
ij =

[
M11 M13
M31 M33

]
(13)
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From Equation (11), Nij is the partial tensor of Mij, then N1−3
ij is described equivalently

by the second invariant and component angle of M1−3
ij , and reads:

b1 =
√

J2 =

√√√√√√
 N−1

∑
m=0

LL(αm ,βm)(cos2 αm−sin2 αm cos2 βm)
N−1
∑

m=0
LL(αm ,βm)

2

+

 N−1
∑

m=0
LL(αm ,βm) sin 2αm cos βm

N−1
∑

m=0
LL(αm ,βm)

2

θ1 = 1
2 arctan 2M13

M11−M33

 (14)

where b1 is the void amplitude parameter and is the second invariant of the void tensor
in plane x1-x3, which is a scalar and describes the anisotropic degree. θ1 is the angle
between the major direction of the void fabric and the direction of the coordinate axis,
which describes the plane direction of the void fabric anisotropic degree.

Similarly, the invariants and directions in the planes x1-x2 and x2-x3 are the following
equations.

b2 =
√

J2 =

√√√√√√
 N−1

∑
m=0

LL(αm ,βm)(cos2 αm−sin2 αm sin2 βm)
N−1
∑

m=0
LL(αm ,βm)

2

+

 N−1
∑

m=0
LL(αm ,βm) sin 2αm sin βm

N−1
∑

m=0
LL(αm ,βm)

2

θ2 = 1
2 arctan 2M12

M11−M22

 (15)

b3 =
√

J2 =

√√√√√√
 N−1

∑
m=0

LL(αm ,βm) sin2 αm cos 2βm

N−1
∑

m=0
LL(αm ,βm)


2

+

 N−1
∑

m=0
LL(αm ,βm) sin2 αm sin 2βm

N−1
∑

m=0
LL(αm ,βm)


2

θ3 = 1
2 arctan 2M23

M22−M33

 (16)

where b2 and b3 are the void amplitude parameters on planes of x1-x2 and x2-x3, which
describes the anisotropic degree. θ2 and θ3 are the angles of the two corresponding planes.

According to Equation (12), the distribution of the void tensor on three orthogonal
planes is described by its invariant.

Ni(n2D
m , θm) = n2D

m (1 + bi cos 2(θm − θi)) (17)

where θm is the angle of the unit vector in the plane coordinate system. n2D
m is the average

porosity of the plane, which is determined directly by image analysis. bi (i = 1,2,3) are the
void amplitude parameters defined in Equations (14)–(16), respectively. θi (i = 1,2,3) are the
angle invariants defined by the corresponding equation. Due to Mkk = 1, the values of all
three amplitude parameters are between 0 and 1. When bi = 0, the voids are distributed
evenly and the specimen is isotropic. When bi = 1, the voids are distributed ideally in a
fixed direction. θi represents the anisotropic direction of the void distribution.

4. Novel Void Fabric Tensors Definitions

According to the novel fabric definition of the normalized ideas, i.e., Mkk = 1, there are
only two independent variables in the amplitude parameters of b1, b2, and b3. Hence, as
long as the amplitude parameters on any two orthogonal planes are measured in theory,
the fabric tensor is determined uniquely. Then it is deduced that any two amplitude
parameters are used to describe the void fabric tensor.
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4.1. Orthotropic Void Fabrics

The void amplitude parameter (b1, b2 and b3) obtained by Equations (14)–(16) in 2D
space is not equal to the principal value (M1, M2 and M3) in 3D space, but proportional to
it. Therefore, the following void fabric equation is established and reads:

Mij =

 M1 0 0
0 M2 0
0 0 M3

 (18)

According to Mkk = 1 and any two parameters from b1, b2, and b3, the orthotropic
fabric tensor is obtained, and the detailed derivative process is shown in reference [31].
The three equations of orthotropic fabric tensor are as follows:

M1 = (1+b1)(1+b2)
3+b1+b2−b1b2

M2 = (1+b1)(1−b2)
3+b1+b2−b1b2

M3 = (1−b1)(1+b2)
3+b1+b2−b1b2

 (19)

M1 = (1+b1)(1−b3)
3−b1−b3−b1b3

M2 = (1−b1)(1+b3)
3−b1−b3−b1b3

M3 = (1−b1)(1−b3)
3−b1−b3−b1b3

 (20)

M1 = (1+b2)(1+b3)
3−b2+b3+b2b3

M2 = (1−b2)(1+b3)
3−b2+b3+b2b3

M3 = (1+b2)(1−b3)
3−b2+b3+b2b3

 (21)

Equation (19) is the three principal value parameters M1, M2 and M3 of the orthotropic
void fabric tensor, which are calculated by the void amplitude parameters b1 and b2 of
the surface x1-x3 and surface x1-x2. Similarly, Equation (20) is the three principal value
parameters M1, M2 and M3 of the orthotropic void fabric tensor, which are calculated by the
void amplitude parameters b1 and b3 of the surface x1-x3 and surface x2-x3. Equation (21)
is the three principal value parameters M1, M2 and M3 of the orthotropic void fabric tensor,
which are calculated by the void amplitude parameters b2 and b3 of the surface x1-x2 and
surface x2-x3.

Therefore, as long as any two void invariants of the three orthogonal planes are obtained
through experiments, the orthogonal anisotropic fabric is determined by Equation (18).
Equations (19)–(21) not only provided more options for the theoretical description of Mij
but also provided more flexible methods for the orthotropic experimental measurement of
void fabric for sand.

4.2. Transversely Isotropic Void Fabrics

In this paper, the definition of orthotropic void fabric is based on the measurement
method of stereology, which describes the orthotropic distribution of voids. When the
scan line distribution meets certain geometric conditions, it is simplified into the form of
transversely isotropy and isotropy naturally.

In Equations (14) and (15), when βm = π/4, then b1 = b2, i.e., the void parameters in
the two directions are equal. At this point, the material shows as transversely isotropic,
and Equation (19) is simplified into 3D fabric and reads:

Mij =
1

3− b

 1 + b 0 0
0 1− b 0
0 0 1− b

 (22)
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where:

b =

√√√√√√√√


N−1
∑

m=0
LL(αm, βm)(cos2 αm − 1

2 sin2 αm)

N−1
∑

m=0
LL(αm, βm)


2

+
1
2


N−1
∑

m=0
LL(αm, βm) sin 2αm

N−1
∑

m=0
LL(αm, βm)


2

(23)

where b is the amplitude parameter of the transversely isotropic void tensor, and its
theoretical value range is [0,1], which is obtained by solving the invariant of the planar
void fabric tensor from any one of the two homogeneous planes. b1 = b2 = b indicates that
the void tensor invariants of the two planes are equal. Equation (22) is used to describe the
transversely isotropy of the voids in the sand by an amplitude parameter. The physical
geometric meaning of transversely isotropy is legible.

According to Equations (9) and (22), Nij is obtained and reads:

Nij =
5

3− b

 2b 0 0
0 −b 0
0 0 −b

 (24)

The average porosity nm in Equation (9) is easy to determine. Thus, when Nij is
determined, the distribution of transversely isotropic void space is determined.

Similarly, when αm = π/2 in Equation (14) and βm = 0 in Equation (16), then b1 = b3
and Equation (20) is simplified into the form of transversely isotropy and reads:

Mij =
1

3 + b

 1 + b 0 0
0 1 + b 0
0 0 1− b

 (25)

where b is the following:

b =

√√√√√√√√


N−1
∑

m=0
LL(αm, βm) cos 2αm

N−1
∑

m=0
LL(αm, βm)


2

+


N−1
∑

m=0
LL(αm, βm) sin 2αm

N−1
∑

m=0
LL(αm, βm)


2

(26)

where b is the parameter of transversely isotropic fabric. The variable of Equation (14) after
degenerating is βm. The variable of Equation (16) after degenerating is αm. For convenience,
the variable αm is used here.

When βm = π/2 in Equation (15) and αm = 0 in Equation (16), then b2 = b3. Equation (19)
is simplified into the following equation.

Mij =
1

3 + b2

 (1 + b)2 0 0
0 1− b2 0
0 0 (1− b)2

 (27)

where the equation of b is the same as the form of Equation (26), but the variable βm is
different. Although the amplitude parameter is simplified into a transversely isotropic
form, the simplified fabric tensor (Equation (27)) is orthotropic.

To sum up, when the orthotropic void fabrics are simplified into transversely isotropy,
Equation (22) is applied to the detection and application of transversely isotropy void
fabric directly. Although Equation (25) has some contradictions in the degradation process,
it is consistent with the description results of the existing void fabric. Hence, under cer-
tain conditions, Equation (25) still has certainly applicable scope. Equation (27) is still in
the orthotropic form after degradation and cannot describe transversely isotropic materi-
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als. However, whether it is used as an amplitude parameter to describe the orthotropic
properties of materials under certain simplified conditions remains to be studied.

5. Image Analysis of Void Fabric
5.1. Analysis Procedure and Method

According to the theoretical determination method of void tensor presented in this
paper, an image analysis program is compiled with Matlab, and the program frame diagram
is presented in Figure 3, which shows the whole process of fabric determination. Since
the major purpose of this study is to determine the orthotropy of the void tensor, cube
specimens are required for specimen collection and preparation.
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Figure 3. The general procedures to determine void fabric tensor in an image analyzer.

The calculation program in Figure 3 is composed of two parts. The first part is the
Matlab program of image processing, which aims to reduce the interference of environ-
mental factors and to obtain a clear binary image for image analysis. The second part is
the Matlab program of image analysis, which is the most critical part of the process. To
obtain the probability statistic law of the void distribution in three orthogonal directions,
the program has to perform statistical analysis on the void distribution of multiple pictures
from different orthogonal directions, and there are two cyclic programs to accomplish this
task. Finally, the void distribution extracted by image analysis is used to calculate the void
amplitude parameters, direction, and spatial distribution of the void plane.

5.2. Parallel Scan Line Analysis Method

According to the principle of stereology, the scan line is the key to the test of void
fabric. The void is the sum of all pixels with a value 0 in a binary image. Porosity is the
ratio of the voids to the total pixels of the scan line, this definition is different from the soil
mechanics, while their spatial distribution is the same and can be interchangeable.

In the image analysis, the scan line and the image processing diagram of specimens
are operated with “&”, and the intersection image of the scan line and void is obtained,
then void data is extracted. Figure 4 shows the calculation results of image analysis with
parallel scan lines. Figure 4a is the diagram of the scan line (60◦). Figure 4b is the binary
image. Figure 4c is the result measured by the 60◦ scan line and Figure 4d is the result
measured by the 30◦ scan line. The number of scan lines is 180.The scan line is drawn
by AutoCAD. Figure 4c,d show that the calculated image will better describe the void
distribution.



Appl. Sci. 2021, 11, 11158 10 of 17

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17 
 

parallel scan lines. Figure 4a is the diagram of the scan line (60°). Figure 4b is the binary 
image. Figure 4c is the result measured by the 60° scan line and Figure 4d is the result 
measured by the 30° scan line. The number of scan lines is 180.The scan line is drawn by 
AutoCAD. Figure 4c,d show that the calculated image will better describe the void distri-
bution. 

  
(a) (b) 

  
(c) (d) 

Figure 4. The procedures to determine voids with the parallel scan line. (a) The diagram of the scan 
line (60°). (b) Binary images. (c) Analysis of image (60°). (d) Analysis of image (30°). 

Before test verification, the influence of scan line density and angle needs to be ana-
lyzed. Two examples are designed for the same image. One is to analyze the image with 
different scan line densities and the same angle. The other is to analyze the image with 
different scan lines at the same density and different angles. Figure 5 shows the influence 
of scan line density on test results, and the relationship between porosity and scan line 
density is obtained by increasing the number of scan lines with a fixed angle of the scan 
line. The images adopt three orthogonal planes of sand specimens from Kuo et al. [26]. 

 
Figure 5. Scan line density vs. porosity. 

 

0 50 100 150 200 250
0.34

0.35

0.36

0.37

0.38

0.39

0.40

Po
ro

si
ty

Number of scan line

 x1-x2

 x1-x3

 x2-x3
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Before test verification, the influence of scan line density and angle needs to be
analyzed. Two examples are designed for the same image. One is to analyze the image
with different scan line densities and the same angle. The other is to analyze the image with
different scan lines at the same density and different angles. Figure 5 shows the influence
of scan line density on test results, and the relationship between porosity and scan line
density is obtained by increasing the number of scan lines with a fixed angle of the scan
line. The images adopt three orthogonal planes of sand specimens from Kuo et al. [26].
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Figure 5. Scan line density vs. porosity.

As is presented in Figure 5, the fewer the number of test lines, the greater the impact
on the porosity. However, as the number of scan lines increases, the fluctuation tends
to be stable and nearly constant. When the number of scan lines is more than 100, the
porosity fluctuation is ignored. Therefore 230 scan lines were used in this test. Figure 6
shows the relationship between the angle of parallel scan lines and porosity. The angle of
the scan lines varied from 0◦ to 180◦ with an angle interval of 10◦. Figure 6a shows that
the porosity varies little with the angle of the scan line and is close to a constant value.
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Figure 6b intuitively shows that the plane porosity measured by parallel scan lines is an
invariant, which cannot reflect the plane distribution of voids.
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To sum up, the average porosity fluctuated greatly when the number of scan lines
was small, but after reaching a certain number, the value tends to be constant. The average
porosity is a scalar, which is independent of the direction. Thus, parallel scan lines can
measure the average porosity, but cannot measure the distribution of voids.

5.3. Analysis Method with Annular Scan Line

To obtain the distribution of voids, an annular scan line has to be used. Figure 7a
shows the drawing of the annular scan line, which is a method used by some scholars
such as Kuo and Frost [26], i.e., RECs (representative element circles) method. The RECs
method is used to measure the planar distribution of sand voids with an annular scan line.
According to the results of reference [26], when R1 is greater than 35 pixels points and R2 is
less than 240 pixels points, stable void distribution is obtained. The size of the scan line
used in this test is as follows: R1 is equal to 40 pixels points, R2 is equal to 230 pixels points,
and the number of scan lines is 180. Figure 7b shows the specimen picture of Kuo et al. [26].
Figure 7c shows the distribution of the scan line. Figure 7d shows the image analysis effect
of 90 scan lines.
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6. Determination and Application Analysis of Void Fabric

The experimental determination involves the acquisition method and image process-
ing of the orthogonal fabric image from the sand specimens, identification technology, and
quantitative analysis technology. This test aims to present a fabric equation that can be ap-
plied to macroscopic constitutive equations directly. For the methods of image acquisition
of sand specimens, please refer to the author’s article [32].

6.1. The Fabric of Orthogonal Plane Determined by Experiment

Experimental images are selected from reference [26]. Kuo et al. [26] used SEM
(Scanning Electron Microscope) to collect images of sand in three orthogonal planes from
solidifying sand specimens. The image processing technology is used to obtain a clear
picture of the void distribution, and then the image analysis technology is used to extract
the void information. The distribution of voids is obtained by annular scan line, of which
the number is 180. The inner diameter R1 is 40 pixels and the outer diameter R2 is 230 pixels.
The calculation results are presented in Figure 8b.
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Figure 9 shows the image analysis results of void distribution and the simulation
results in this paper. The polar diameter is the amplitude parameter, and the polar angle is
the rotation angle per 1◦ of the plane scan line on the test surface. βm = 0◦, βm = 45◦, and



Appl. Sci. 2021, 11, 11158 13 of 17

βm = 90◦ in the legend represents the amplitude parameters measured by 0◦, 45◦ and 90◦

spatial scan lines, respectively. The discrete points in Figure 9 are the measured data from
image analysis, which shows the anisotropy with different degrees. For the measured value
(b1, b2, and b3) of each plane (plane x1-x3, x1-x2, and x2-x3,) in the figure, the simulated data
of three geometric conditions are given, i.e., the plane void distribution is measured when
the angle of the spatial scan line is βm = 0◦, βm = 45◦, and βm = 90◦, respectively. The crucial
data to be calculated are as follows: the average porosity n0 and amplitude parameter b
varied with βm = 0◦, 45◦, 90◦. In Figure 9a, n0 = 0.365, b1 = 0.012, 0.053 and 0.169, θm =92.9◦.
In Figure 9b, n0 = 0.308, b2 = 0.128, 0.067 and 0.008, respectively, and the direction θm is
−4◦. In Figure 9c, n0 = 0.348, b3 = 0.249, and θm = 0◦, −45◦, 0◦, respectively. βm defined
in this paper is another independent variable that is a possible description of the spatial
distribution of voids. When βm = 0◦ in Figure 9a, βm = 45◦ in Figure 9b and βm = 90◦ in
Figure 9c, the calculation of the horizontal plane tensor is not affected, i.e., the plane tensor
is simplified into the form proposed by Kanatani [23]. Under such conditions, the method
defined in this paper will better simulate the planar void experiment and determine the
distribution. Under other conditions, the void distribution is affected by the measured
value of voids and βm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17 
 

= 90° in the legend represents the amplitude parameters measured by 0°, 45° and 90° spatial scan 
lines, respectively. The discrete points in Figure 9 are the measured data from image anal-
ysis, which shows the anisotropy with different degrees. For the measured value (b1, b2, 
and b3) of each plane (plane x1-x3, x1-x2, and x2-x3,) in the figure, the simulated data of three 
geometric conditions are given, i.e., the plane void distribution is measured when the an-
gle of the spatial scan line is βm = 0°, βm = 45°, and βm = 90°, respectively. The crucial data 
to be calculated are as follows: the average porosity n0 and amplitude parameter b varied 
with βm = 0°, 45°, 90°. In Figure 9a, n0 = 0.365, b1 = 0.012, 0.053 and 0.169, θm =92.9°. In Figure 
9b, n0 = 0.308, b2 = 0.128, 0.067 and 0.008, respectively, and the direction θm is −4°. In Figure 
9c, n0 = 0.348, b3 = 0.249, and θm = 0°, −45°, 0°, respectively. βm defined in this paper is 
another independent variable that is a possible description of the spatial distribution of 
voids. When βm = 0° in Figure 9a, βm = 45° in Figure 9b and βm = 90° in Figure 9c, the calcu-
lation of the horizontal plane tensor is not affected, i.e., the plane tensor is simplified into 
the form proposed by Kanatani [23]. Under such conditions, the method defined in this 
paper will better simulate the planar void experiment and determine the distribution. Un-
der other conditions, the void distribution is affected by the measured value of voids and 
βm. 

 
(a) 

  
(b) (c) 

Figure 9. Rose diagrams of amplitude parameters. (a) Results of b1. (b) Results of b2. (c) Results of b3. 

 

0

30

60
90

120

150

180

210

240
270

300

330

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

A
m

pl
itu

de
 P

ar
am

et
er

s 
b 1

 test value
 β =0°
 β =45°
 β =90°

 

0

30

60
90

120

150

180

210

240
270

300

330

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

A
m

pl
itu

de
 P

ar
am

et
er

s 
b 2

  test value
  β = 0°
  β = 45°
  β = 90°

 

0

30

60
90

120

150

180

210

240
270

300

330

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

A
m

pl
itu

de
 P

ar
am

et
er

s 
b 3

 test value
 β =0°
 β =45°
 β =90°

Figure 9. Rose diagrams of amplitude parameters. (a) Results of b1. (b) Results of b2. (c) Results of b3.



Appl. Sci. 2021, 11, 11158 14 of 17

According to the results of the void fabric on the orthogonal plane in Figure 9, the test
laws of different spatial scan lines for the same plane image are analyzed. Figure 10 shows
all possible spatial distributions with the different βm in three planes. It is concluded from
the figure that amplitude parameters on different planes have different effects on β. With
the variation of the spatial position of the scan line, the trend of b1 and b2 is reversed, while
b3 remains unchanged, which is consistent with the theoretical definition in this paper.
Since the trace of the void fabric is defined as 1, any two amplitude parameters measured
in Figure 10 can be used to describe the orthotropic of the void fabric. In Figure 10, when
βm = 45◦, then b1 = b2. The void distribution is used in Equation (22) to describe the
transversely isotropy of the void fabric. In this case, the value of the void fabric is unique.
Hence, the measured form of fabric tensor is also unique.
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6.2. Application of Orthogonal Fabric

When the amplitude parameters on the orthogonal plane are determined, the orthotropic
void tensor or transversely isotropic tensor of sand fabric is obtained by Equation (18). Ac-
cording to the definition of void fabric, fabric tensor describes the probability and statistical
law of the void spatial distribution. Therefore, the measured tensor is substituted directly
into the constitutive model to describe the effect of micro-voids on the macro-mechanics re-
sponse of the material. According to the measured values in Figure 9, b1 = 0.012, b2 = 0.128,
and substitute b1, b2 to Equation (19), the orthotropic fabric tensor of orthotropic materials
are as follows:

Mij =

 0.3637 0 0
0 0.2812 0
0 0 0.3551

 (28)

According to the measured value in Figure 9b and Equation (19), the transversely
isotropic fabric tensor of transversely isotropic materials is as follows, when b1 = b = 0.128.

Mij =

 0.3928 0 0
0 0.3036 0
0 0 0.3036

 (29)

Combined with the analysis results of Section 6.1, it can be seen that in the 3D orthog-
onal space, the value of a plane void fabric can be quantitatively and uniquely determined,
while the measured value of the other two planar fabrics is hardly determined uniquely.
However, the measurement values of the other two plane fabrics are difficult to determine
uniquely, so the orthotropic fabric is not unique. This also fully illustrates the complexity
of orthogonal spatial fabrics. For fabrics projected on the same plane, the spatial void
distribution is not unique. It also affects the application of orthogonal fabrics greatly.
However, under specific conditions or test lines, the fabric is unique. For example, under
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transversely isotropic conditions, the definition in this article shows that the fabric expres-
sions on two independent measurement surfaces are unique and can be directly applied to
macro-mechanical equations.

7. Conclusions

Based on the framework of the stereology to describe void fabric, a novel description
method of fabric tensor for sand was presented. This method uses the idea of normalization
to redefine the fabric tensor to ensure that the trace of the tensor is always one, which
facilitates the determination of the tensor greatly. The planar second-order void tensor was
described equivalently by the defined void amplitude parameter and component angle.
Both parameters are scalar, which describes the degree and direction of the material’s
macroscopic anisotropy. Among the three amplitude parameters defined on the orthogonal
plane, there are only two independent changes. Any two amplitude parameters can be
used to derive the orthotropic fabric tensor. With the change of the geometric relationship
of void distribution, orthotropy will degenerate into transversely isotropy and isotropy
naturally, and transversely isotropy can be described by only one amplitude parameter.

Two kinds of scan lines were used for image comparison analysis. Parallel scan line
analysis showed that the scan line density had a greater impact on the test results, the
density was small, the test fluctuations were large, and the measured value was constant
after the density reached a certain value. Parallel scan lines at different angles were used to
measure average porosity, but the distribution of planar voids could not be determined.
However, the annular scan line would better describe the spatial distribution of voids. The
SEM image analysis for sand showed that the method presented in this paper would better
describe the plane distribution. The novel method converted the void information into two
scalars to describe its plane distribution. Through the change of angle conditions in the
void space, it naturally degenerates into the traditional description form. The simulation
results verify the rationality of its description, so that the measured void tensor can be used
as a material parameter to be applied to the macro-mechanical equation of sand directly.

Compared with the existing methods such as Kanatani, the novel method in this
paper adopted normalized ideas and described the fabric with tensor invariants, which
made the quantitative determination easier and more flexible. The method derives from
the expressions of three different forms of orthotropic fabric tensor, which describe the
orthotropy and transversely isotropy of materials with different forms. Its measurement
methods are diverse and have a wide range of applications.
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