
applied
sciences

Article

Cube of Space Sampling for 3D Model Retrieval

Zong-Yao Chen 1, Chih-Fong Tsai 1 and Wei-Chao Lin 2,3,*

����������
�������

Citation: Chen, Z.-Y.; Tsai, C.-F.; Lin,

W.-C. Cube of Space Sampling for 3D

Model Retrieval. Appl. Sci. 2021, 11,

11142. https://doi.org/10.3390/

app112311142

Academic Editor: Kuo-Ching Ying

Received: 10 October 2021

Accepted: 17 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Management, National Central University, Taoyuan 320317, Taiwan;
gp01pc1@gmail.com (Z.-Y.C.); cftsai@mgt.ncu.edu.tw (C.-F.T.)

2 Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan
3 Department of Thoracic Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
* Correspondence: viclin@gap.cgu.edu.tw

Abstract: Since the number of 3D models is rapidly increasing, extracting better feature descriptors
to represent 3D models is very challenging for effective 3D model retrieval. There are some problems
in existing 3D model representation approaches. For example, many of them focus on the direct
extraction of features or transforming 3D models into 2D images for feature extraction, which cannot
effectively represent 3D models. In this paper, we propose a novel 3D model feature representation
method that is a kind of voxelization method. It is based on the space-based concept, namely CSS
(Cube of Space Sampling). The CSS method uses cube space 3D model sampling to extract global
and local features of 3D models. The experiments using the ESB dataset show that the proposed
method to extract the voxel-based features can provide better classification accuracy than SVM and
comparable retrieval results using the state-of-the-art 3D model feature representation method.

Keywords: 3D model; 3D object; content-based retrieval; re-sampling; collision detection; similarity
match

1. Introduction

In the last few years, 3D images and models have gradually extended to different
applications and become more popular, such as in Computer-Aided Design (CAD) [1],
molecular biology, virtual reality, video and computer games, movies etc. These appli-
cations usually require managing a large number of 3D models. In addition, since the
number of 3D models is rapidly increasing, there is an urgent need to effectively search
from 3D model databases. As a result, 3D model retrieval has become a very important
research issue.

In fact, in the field of Computer-Aided Design, a productive approach is to reuse
and modify similar existing models instead of always creating new ones [2]. Therefore,
for CAD datasets, accurate identification and retrieval of all components is necessary in
order to efficiently reuse existing designs [2]. According to Zhu et al. [2], there are two
basic types of approaches for the matching and retrieval of 3D CAD data: manufacturing
feature-based techniques and shape content-based techniques.

In image retrieval, images usually have to be processed in several steps before they
can be queried, including: segmentation; feature extraction; representation; and query
processing. Similarly, 3D models or objects also require several steps of processing before
retrieval. Figure 1 shows the process of 3D model retrieval [3].

However, although various approaches have been developed for content-based 3D
model classification, recognition and retrieval, none of them have achieved high perfor-
mance on all shape classes [4]. Moreover, some of the existing feature extraction methods
are only based on 2D images, which use many different views per image to represent a
3D model. Compared with some of these methods, image-based approaches have shown
to produce some promising results, but they are not effective over various types of 3D
models. Therefore, we believe that using the image-based approach to represent 3D models

Appl. Sci. 2021, 11, 11142. https://doi.org/10.3390/app112311142 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5803-513X
https://doi.org/10.3390/app112311142
https://doi.org/10.3390/app112311142
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112311142
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112311142?type=check_update&version=3

Appl. Sci. 2021, 11, 11142 2 of 13

is likely to omit some important information, which has limited discriminative power for
3D model classification.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 13

Figure 1. The common 3D model retrieval process.

However, although various approaches have been developed for content-based 3D

model classification, recognition and retrieval, none of them have achieved high perfor-

mance on all shape classes [4]. Moreover, some of the existing feature extraction methods

are only based on 2D images, which use many different views per image to represent a

3D model. Compared with some of these methods, image-based approaches have shown

to produce some promising results, but they are not effective over various types of 3D

models. Therefore, we believe that using the image-based approach to represent 3D mod-

els is likely to omit some important information, which has limited discriminative power

for 3D model classification.

In image-based 3D model retrieval, using a large number of 2D images to represent

a 3D model is impractical, since it is time consuming and requires a very large storage

space. Moreover, some important information would not be fully extracted when 3D mod-

els are described by images only, such as: fine features; spatial features; global features;

etc. In other words, the method of using limited pictures to represent a 3D model has a

limited potential to extract better representative feature descriptors for 3D models. There-

fore, we propose a method to extract both global and localized features to represent 3D

models.

The main objective of this paper is to construct a space-based concept 3D model fea-

ture representation, namely CSS (Cube of Space Sampling). The CSS method is a branch

of the voxelization method. Although voxel data has been widely used in some previous

studies [5–7], most of the voxelization methods or voxel data are used in the visualization

field. In contrast to these studies, this paper focuses on voxel-based features, i.e., based on

the voxel data rather than the visual display. It is worth mentioning that we believe that

the voxel-based feature approach has great potential and robustness for 3D model re-

trieval, and that our experiments confirm this argument.

In CSS, cube space 3D model sampling is used to extract whole, new features from

3D models. In addition, the extracted features not only provide the global distribution of

information, but also provide information on local features.

The rest of this paper is organized as follows: Section 2 overviews related work of 3D

model retrieval and feature representation; Section 3 introduces the proposed feature ex-

traction approach; and experimental results and the conclusion are provided in Sections

4 and 5, respectively.

2. Literature Review

2.1. 3D Model Retrieval

Past 3D model retrieval research focuses on the following issues: correctness (good

discrimination); automation; robustness; and calculation speed, etc. (1) Correctness: to

correctly identifying the degree of similarity between 3D models, so that users can find

similar models. (2) Automation: using more sophisticated methods to complete certain

processes automatically (such as comparison, alignment, etc.) (3) Robustness: this can be

Figure 1. The common 3D model retrieval process.

In image-based 3D model retrieval, using a large number of 2D images to represent a
3D model is impractical, since it is time consuming and requires a very large storage space.
Moreover, some important information would not be fully extracted when 3D models are
described by images only, such as: fine features; spatial features; global features; etc. In
other words, the method of using limited pictures to represent a 3D model has a limited
potential to extract better representative feature descriptors for 3D models. Therefore, we
propose a method to extract both global and localized features to represent 3D models.

The main objective of this paper is to construct a space-based concept 3D model
feature representation, namely CSS (Cube of Space Sampling). The CSS method is a branch
of the voxelization method. Although voxel data has been widely used in some previous
studies [5–7], most of the voxelization methods or voxel data are used in the visualization
field. In contrast to these studies, this paper focuses on voxel-based features, i.e., based on
the voxel data rather than the visual display. It is worth mentioning that we believe that
the voxel-based feature approach has great potential and robustness for 3D model retrieval,
and that our experiments confirm this argument.

In CSS, cube space 3D model sampling is used to extract whole, new features from
3D models. In addition, the extracted features not only provide the global distribution of
information, but also provide information on local features.

The rest of this paper is organized as follows: Section 2 overviews related work of
3D model retrieval and feature representation; Section 3 introduces the proposed fea-
ture extraction approach; and experimental results and the conclusion are provided in
Sections 4 and 5, respectively.

2. Literature Review
2.1. 3D Model Retrieval

Past 3D model retrieval research focuses on the following issues: correctness (good
discrimination); automation; robustness; and calculation speed, etc. (1) Correctness: to
correctly identifying the degree of similarity between 3D models, so that users can find
similar models. (2) Automation: using more sophisticated methods to complete certain
processes automatically (such as comparison, alignment, etc.) (3) Robustness: this can be
divided into the following issues: translation; rotation and scaling; mesh changes; noise;
and shape deformation. (4) Calculation speed: efficiently retrieving 3D models.

While the above four issues are very important, the main advantage of 3D models is
the idea of “build once, reuse often” (i.e., modify them to become a new model or reuse).
Therefore, in order to fully demonstrate this advantage of 3D models, i.e., to achieve re-use,
it is very important to accurately classify 3D models for the system in order to easily find
the most similar model to a query.

Appl. Sci. 2021, 11, 11142 3 of 13

2.2. Different Types of Models

From the data point of view, 3D model data can be divided into dynamic and static
3D models. A dynamic 3D model can be likened to a toy doll with movable joints, which
can be carried out in accordance with the need of the designer’s action; thus, a 3D model
can have a variety of actions. As a result, the system must be able to distinguish between
these actions, which are not the same but have the same model form, as these models are
classified as the same model.

On the other hand, most static 3D models are “Engineering modeling”, such as those
used in construction, furniture, cars, and various spare parts. The number of such models
is usually large, but the level of difference between them is small. In order to reduce
development time, these models are normally re-used or modified, so the retrieval system
should be able to accurately distinguish between the parts in order to improve the ease of
their re-use or re-development.

2.3. Model-Matching Methods

Previous research in model-matching methods can be classified broadly into: feature-
based; graph-based; and other methods [1].

• Feature-based: previous feature-based research can be divided into: global features;
global feature distribution; spatial maps; and local features. Feature-based model
matching represents features of a model using a single descriptor consisting of a
d-dimensional vector of values, where the dimension (d) is fixed for each model.

1. Global features: Zhang and Chen [8] extracted global features such as vol-
ume, area, statistical moments, and Fourier transform coefficients efficiently.
Paquet et al. [9] applied bounding boxes, cord-based, moment-based and wavelet-
based descriptors for 3D shape matching. Kazhdan et al. [10] described a reflec-
tive symmetry descriptor as a 2D function associating a measure of reflective
symmetry to every plane (specified by two parameters) through the model’s
centroid. Since these methods only used global features to characterize the
overall shape of the objects, they could not describe objects in detail, but their
implementation was straightforward [1].

2. Global feature distribution: Osada et al. [11] introduced and compared shape
distributions, which measured properties based on distance, angle, area and
volume measurements between random surface points. Ohbuchi et al. [12]
investigated shape histograms that were discretely parameterized along the
principal axes of the inertia of the model. Ip et al. [13] investigated the application
of shape distributions in the context of CAD and solid modeling. However,
they often performed poorly when they needed to distinguish between shapes
having similar gross shape properties but significantly different detailed shape
properties [1].

3. Local features: Zaharia and Prêteux [14] described the 3D Shape Spectrum
Descriptor, which was defined as the histogram of shape index values, and calcu-
lated over an entire mesh. The shape index, first introduced by Koenderink [15],
was defined as a function of the two principal curvatures on continuous surfaces.

4. Graph-based: graph-based methods can be roughly divided into three categories
according to the type of graph used, which are: model graphs; Reeb graphs; and
skeletons [1,16].

In skeletons, the focus is on skeletal graph matching with node-to-node correspon-
dence based upon the topology and radial distance about the edge [14].

For Reeb graphs, mathematically, they are defined as the quotient space of a shape
(S) and a quotient function (f). Biasotti et al. [17] compared Reeb graphs obtained by
using different quotient functions and highlighted how the choice of f determines the final
matching result.

Appl. Sci. 2021, 11, 11142 4 of 13

The advantages of graph-based methods include the fact that that they are good at
capturing shape features, which are relatively high-level and natural, meaning graph-based
methods can support local and multi-resolution retrieval. In addition, they are robust when
the model has a detailed level of structure. However, the drawbacks include the fact that
they are computationally expensive, sensitive to noise and difficult to index and match [16].

• Other methods: other methods, such as view-based similarity, assumes that two 3D
models are similar. In particular, the level of similarity between 3D models is judged
by different viewing results [17,18]. For example, LightField Descriptor is one of many
outstanding 3D model feature descriptors.

On the other hand, Novotni and Klein [19] introduce a geometry similarity approach to
3D shape matching, which is based on calculating the volumetric error between one object
and a sequence of offset hulls of the other objects. Another approach is weighted-point
set-based similarity, where shape descriptors consist of weighted 3D points [20].

2.4. Normalization

• Translation: in general, 3D modeling software (such as 3ds Max, Maya, etc.) uses
different settings or different coordinate systems [21]. However, different coordinate
systems are equal to different “spaces”. Sometimes, a creator modeling 3D models
does not place them in the center of the coordinate systems; that is, the locations of 3D
models are not aligned in the coordinate systems. In addition, when these 3D models
are created from different coordinate systems, the center of each model is not the same.
This will cause more difficulties and biases in the process of re-sampling.

• Scale: similarly, 3D modeling software may use different settings or different scales to
construct the 3D modeling space [22]. As a result, different modeling software may
produce the models with different scales. In practice, it is common that in a 3D model
dataset each 3D model always has different sizes or scales. This usually causes some
problems in re-sampling and errors of comparison.

• Rotation: since each model may not have the same angle when placed (e.g., upright,
flat, etc.), several difficulties in comparisons can arise (e.g., reversed, tilted, etc.). To
this end, 3D models must be appropriately adjusted. In the literature, some methods,
such as PCA and CPCA, have been applied to solve such problems [21].

2.5. Summary

In summary, no related studies applied the collision detection method along with the
voxelization method for 3D model feature extraction, and no studies show how robust
the voxel-based feature is for problems caused by rotation. In addition to 3D model
normalization, it is necessary to pre-process 3D models before extracting their features or
descriptors. The pre-processing steps include: the transformation between different 3D
data representations (e.g., to transform polygon meshes into voxel grids); the partition of
model units; and vertex clustering, etc. [22–24]. According to the literature review, we can
observe that no single most credible method of 3D model retrieval has yet arisen between
standard sampling methods or most discerning feature methods. Therefore, we propose a
new approach of 3D model re-sampling, in which various types of features are extracted in
the interest of improving classification accuracy.

3. 3D Model Feature Representation
3.1. Preprocessing

Before feature extraction, pre-processing for the raw data of a 3D model is usually
required, such as translation, scale, and rotation, etc. [1,18]. After these pre-processing tasks
are completed, some specific features can be extracted, which are used as the descriptors or
feature representations of a 3D model.

• Translation: in our approach, we focused on the calculation of each model by the X, Y
and Z axes to obtain the maximum length, which was then used to find the center of a

Appl. Sci. 2021, 11, 11142 5 of 13

3D model. Next, a unified coordinate system was established. Finally, the 3D model
was moved to the center of the coordinate system, so that all models will be aligned.

• Scale: in our approach, we applied the maximum length of each axis to perform
normalization for each 3D model. In addition, we set the maximum axial length to
one, which made all of the normalized 3D models fit into a cube space with a length,
width and height of one.

• Rotation: when the abovementioned preprocessing tasks were completed, the 3D
models were ready for re-sampling. Through the CSS method, the 3D model was be
changed into CSS data (a type of voxel), and then the CSS data were transformed into
voxel-based features. Since the features contain the space and the global information
(because CSS data is very information-rich and powerful) of the model, there was no
need to perform any additional processing to solve the rotation problem.

3.2. Cube of Space Sampling (CSS)

After pre-processing, feature extraction from 3D models can be performed. In this
paper, a spatial scale of sampling for re-sampling 3D models was extracted. In other words,
we focused on extracting the features of the spatial concept of a 3D model. This concept is
similar to a set of building blocks, which is based on a number of small building blocks to
construct and fit to each 3D model. The re-sampling process is described as follows:

• Step one: normalization. All 3D models were normalized and shifted to the center of
the cube space, in which they have the same views.

• Step two: selection of cutting number. The cutting number of CSS, i.e., N (e.g., N =
10), was used to determine the density of sampling. In particular, the average cut
into N blocks of the cube space in each dimension was considered. As a result, we
obtained the total number N3 of sub-spaces. Next, these sub-spaces were used to
perform re-sampling for each 3D model.

• Step three: re-sampling. Our method applied a collision detection method to perform
re-sampling, which entailed testing each subspace Sijk as a collision with a 3D model
(where i, j, and k mean the x, y, and z axes respectively). If it was a collision, then the
subspace was labeled as 1; if not, 0. Consequently, we could obtain a sampling matrix,
which was composed of 0s and 1s. However, this sampling matrix acted a basis for
our classification features. The labeling method is by:

Sijk ∈ [1, 0], I = 1, 2 . . . N, j = 1, 2 . . . N, k = 1, 2 . . . N (1)

Figure 2 shows the pseudo code of the CSS process.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 13

Figure 2. The pseudo code of CSS.

Note that there are two key techniques which were used in our method: “AABB col-
lision detection” and “Fast Collision detection”. “AABB collision detection” was used to
reduce the detection area, and “Fast Collision detection” was for determining whether the
subspace was a collision. “AABB collision detection” and “Fast Collision detection” are
introduced as follows.
1. 3D collision detection: 3D collision detection in virtual reality and 3D games are the

common technique used in the literature [25], which is based on collision detection to
realize the physical phenomena. However, in our approach, a subspace was regarded
as another 3D model or object, and a collision between two objects was measured.
Then, each subspace with or without a collision was labeled to obtain a sampling ma-
trix. Figure 3 shows an explanation for why we required collision detection between
a 3D model and its sampling subspaces.

2. The candidate subspace for collision detection: as 3D models are usually presented by
irregular shapes, high computational costs are usually required for precise collision
detection between objects. In the literature, the most efficient method is AABB colli-
sion detection [26]. It uses the most closely placed cuboids to replace an irregular 3D
model to perform complex and cumbersome collision detection. However, directly
applying this method to our approach proved difficult. This is because if the re-sam-
pling scope is too large, it will cause the loss of many features in detail. On the other
hand, although the AABB method could not be used to fully detect a collision be-
tween objects, it could effectively reduce the number of spaces that we needed for the
detection. Therefore, we used the AABB method to find out the most similar rectan-
gular space with the smallest size for the surface of each 3D model, which was then
used to map into the subspace to find candidate subspaces. In short, the rectangular
space is a set of subspaces, which could show possible collision in the surface. Figure
4 shows an example of AABB collision detection.

3. Fast collision detection: most collision detection algorithms try to minimize the num-
ber of primitive–primitive intersections that need to be computed. A fast and reliable
method for computing the primitive–primitive intersection is desired. Since rendering
hardware is often targeted for triangles, the primitives in collision detection algo-
rithms are often triangles as well [16].

Figure 2. The pseudo code of CSS.

Appl. Sci. 2021, 11, 11142 6 of 13

Note that there are two key techniques which were used in our method: “AABB
collision detection” and “Fast Collision detection”. “AABB collision detection” was used
to reduce the detection area, and “Fast Collision detection” was for determining whether
the subspace was a collision. “AABB collision detection” and “Fast Collision detection” are
introduced as follows.

1. 3D collision detection: 3D collision detection in virtual reality and 3D games are the
common technique used in the literature [25], which is based on collision detection
to realize the physical phenomena. However, in our approach, a subspace was
regarded as another 3D model or object, and a collision between two objects was
measured. Then, each subspace with or without a collision was labeled to obtain
a sampling matrix. Figure 3 shows an explanation for why we required collision
detection between a 3D model and its sampling subspaces.

2. The candidate subspace for collision detection: as 3D models are usually presented by
irregular shapes, high computational costs are usually required for precise collision
detection between objects. In the literature, the most efficient method is AABB
collision detection [26]. It uses the most closely placed cuboids to replace an irregular
3D model to perform complex and cumbersome collision detection. However, directly
applying this method to our approach proved difficult. This is because if the re-
sampling scope is too large, it will cause the loss of many features in detail. On the
other hand, although the AABB method could not be used to fully detect a collision
between objects, it could effectively reduce the number of spaces that we needed
for the detection. Therefore, we used the AABB method to find out the most similar
rectangular space with the smallest size for the surface of each 3D model, which
was then used to map into the subspace to find candidate subspaces. In short, the
rectangular space is a set of subspaces, which could show possible collision in the
surface. Figure 4 shows an example of AABB collision detection.

3. Fast collision detection: most collision detection algorithms try to minimize the
number of primitive–primitive intersections that need to be computed. A fast and
reliable method for computing the primitive–primitive intersection is desired. Since
rendering hardware is often targeted for triangles, the primitives in collision detection
algorithms are often triangles as well [16].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 13

Figure 3. The concept of the CSS method. Each greys cube is the subspace of a 3D model, and each

has an associated label to show whether they contain a collision in the 3D model.

Figure 4. The AABB Collision detection method. Each small black cube is the unit of sampling (cube

space).

For this problem, “A Fast Triangle-Triangle Intersection Test” method was applied

[27] to execute the task of collision detection for accelerating the efficiency of sampling.

3.3. Feature Rperesentation by CSS Data Transformation

In order to retain the information of CSS, we did not use a complex feature extraction

method to produce feature vectors of 3D models. On the contrary, we performed some

simple statistical calculations on each ‘CSS data’. After these calculations were completed,

we obtained a set of data, which could be directly used for 3D model classification. In

other words, CSS data could be converted into a group of features as 3D model feature

descriptors for classification. In this paper, we propose six different calculation methods

as follows. Note that in our experiments present in Section 4, we set our CSS sampling to

50.

 Hollow feature

𝑁𝑢𝑙𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑦 = ∑(𝑆𝑖𝑗𝑘)

𝑛

𝑘=1

 (2)

𝑁𝑢𝑙𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑦 = ∑(𝑆𝑖𝑘𝑗)

𝑛

𝑘=1

 (3)

𝑁𝑢𝑙𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑦 = ∑(𝑆𝑘𝑖𝑗)

𝑛

𝑘=1

 (4)

where n is the number of sampling, M is the total number of 3D models, and Sijk is the

subspace (i = 1, 2 …n, j = 1, 2 …n, y = i + n(j − 1), r = 1, 2 …M)

Hollow Feature: the typical CSS feature. This is the same as general 3D objects,

which only have an empty shell or the skin. So, we call them “Hollow”. We calculated

the sum of the cross-section of each dimension to form a simple feature.

 Hollow + TF-IDF

Transform the “Hollow Feature” matrix into the TFIDF matrix.

Figure 3. The concept of the CSS method. Each greys cube is the subspace of a 3D model, and each
has an associated label to show whether they contain a collision in the 3D model.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 13

Figure 3. The concept of the CSS method. Each greys cube is the subspace of a 3D model, and each

has an associated label to show whether they contain a collision in the 3D model.

Figure 4. The AABB Collision detection method. Each small black cube is the unit of sampling (cube

space).

For this problem, “A Fast Triangle-Triangle Intersection Test” method was applied

[27] to execute the task of collision detection for accelerating the efficiency of sampling.

3.3. Feature Rperesentation by CSS Data Transformation

In order to retain the information of CSS, we did not use a complex feature extraction

method to produce feature vectors of 3D models. On the contrary, we performed some

simple statistical calculations on each ‘CSS data’. After these calculations were completed,

we obtained a set of data, which could be directly used for 3D model classification. In

other words, CSS data could be converted into a group of features as 3D model feature

descriptors for classification. In this paper, we propose six different calculation methods

as follows. Note that in our experiments present in Section 4, we set our CSS sampling to

50.

 Hollow feature

𝑁𝑢𝑙𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑦 = ∑(𝑆𝑖𝑗𝑘)

𝑛

𝑘=1

 (2)

𝑁𝑢𝑙𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑦 = ∑(𝑆𝑖𝑘𝑗)

𝑛

𝑘=1

 (3)

𝑁𝑢𝑙𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑦 = ∑(𝑆𝑘𝑖𝑗)

𝑛

𝑘=1

 (4)

where n is the number of sampling, M is the total number of 3D models, and Sijk is the

subspace (i = 1, 2 …n, j = 1, 2 …n, y = i + n(j − 1), r = 1, 2 …M)

Hollow Feature: the typical CSS feature. This is the same as general 3D objects,

which only have an empty shell or the skin. So, we call them “Hollow”. We calculated

the sum of the cross-section of each dimension to form a simple feature.

 Hollow + TF-IDF

Transform the “Hollow Feature” matrix into the TFIDF matrix.

Figure 4. The AABB Collision detection method. Each small black cube is the unit of sampling
(cube space).

Appl. Sci. 2021, 11, 11142 7 of 13

For this problem, “A Fast Triangle-Triangle Intersection Test” method was applied [27]
to execute the task of collision detection for accelerating the efficiency of sampling.

3.3. Feature Rperesentation by CSS Data Transformation

In order to retain the information of CSS, we did not use a complex feature extraction
method to produce feature vectors of 3D models. On the contrary, we performed some
simple statistical calculations on each ‘CSS data’. After these calculations were completed,
we obtained a set of data, which could be directly used for 3D model classification. In
other words, CSS data could be converted into a group of features as 3D model feature
descriptors for classification. In this paper, we propose six different calculation methods as
follows. Note that in our experiments present in Section 4, we set our CSS sampling to 50.

• Hollow feature

Null Featurery =
n

∑
k=1

(
Sijk

)
(2)

Null Featurery =
n

∑
k=1

(
Sikj

)
(3)

Null Featurery =
n

∑
k=1

(
Skij

)
(4)

where n is the number of sampling, M is the total number of 3D models, and Sijk is the
subspace (i = 1, 2 . . . n, j = 1, 2 . . . n, y = i + n(j − 1), r = 1, 2 . . . M)

Hollow Feature: the typical CSS feature. This is the same as general 3D objects, which
only have an empty shell or the skin. So, we call them “Hollow”. We calculated the sum of
the cross-section of each dimension to form a simple feature.

• Hollow + TF-IDF

Transform the “Hollow Feature” matrix into the TFIDF matrix.

Hollow + TFIDF: We applied the term frequency–inverse document frequency (TF-
IDF) methods on the typical “Hollow” feature.

• Hollow + ˆ2

Square of each “Hollow Feature” vector.

Hollow + ˆ2: In order to increase the difference between each column, we squared
each “Hollow Feature” vector.

• MMF

n is the number of sampling.
For each dimensions

For i = 1, 2 . . . n
For j = 1, 2 . . . n

y = j + n(i−1)

�MDy = max distance between two points in row Sij1~Sijn
�NDy = min distance between two points in row Sij1~Sijn
�ODy = the distance between the origin and the max distance.

End
End

End
Combine the features MD, ND and OD.
Obtain a set of MMF features from a 3D model.

MMF: this is also a typical CSS feature. Different from the “Hollow”, we applied the
other method to calculate the sum of each cross section.

Appl. Sci. 2021, 11, 11142 8 of 13

• MMF + ˆ2

Square of each “MMF Feature” vector.

MMF + ˆ2: similarly, to increase the difference between each column, we squared each
“MMF Feature” vector.

• Full

Based on “Hollow Feature” data to fill the vacancies within the model.

Full: due to the “Hollow” feature internal being empty, we attempted to fill the hollow
part to form a new type of feature, namely “Full”.

3.4. An Example of CSS

Here we show an example for the CSS process. Figure 5 shows a 3D model which has
not yet been processed for re-sampling.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 13

Hollow + TFIDF: We applied the term frequency–inverse document frequency

(TF-IDF) methods on the typical “Hollow” feature.

 Hollow + ^2

Square of each “Hollow Feature” vector.

Hollow + ^2: In order to increase the difference between each column, we squared

each “Hollow Feature” vector.

 MMF

n is the number of sampling.

For each dimensions

For i=1,2…n

For j=1,2…n

y=j+n(i − 1)

 MDy = max distance between two points in row Sij1~Sijn

 NDy = min distance between two points in row Sij1~Sijn

 ODy = the distance between the origin and the max distance.

End

End

End

Combine the features MD, ND and OD.

Obtain a set of MMF features from a 3D model.

MMF: this is also a typical CSS feature. Different from the “Hollow”, we applied

the other method to calculate the sum of each cross section.

 MMF + ^2

Square of each “MMF Feature” vector.

MMF + ^2: similarly, to increase the difference between each column, we squared

each “MMF Feature” vector.

 Full

Based on “Hollow Feature” data to fill the vacancies within the model.

Full: due to the “Hollow” feature internal being empty, we attempted to fill the

hollow part to form a new type of feature, namely “Full”.

3.4. An Example of CSS

Here we show an example for the CSS process. Figure 5 shows a 3D model which has

not yet been processed for re-sampling.

Figure 5. An original 3D model.

In order to examine the effect of sampling, we set the sampling number N to 10 and

50 individually, and then performed re-sampling for this object. The sampling results are

shown in Figure 6a,b. Finally, a feature vector was produced through a simple sum for

this object as shown in Figure 7.

Figure 5. An original 3D model.

In order to examine the effect of sampling, we set the sampling number N to 10 and
50 individually, and then performed re-sampling for this object. The sampling results are
shown in Figure 6a,b. Finally, a feature vector was produced through a simple sum for this
object as shown in Figure 7.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 13

(a) (b)

Figure 6. The results of using different sampling numbers. (a) N is 10; (b) N is 50.

Figure 7. Feature representation of the 3D model (based on N = 50 and Hollow feature calculation).

4. Experiments

4.1. The Dataset

In this paper, we used the ESB (Engineering Shape Benchmark) [20] dataset

(https://engineering.purdue.edu/cdesign/wp/downloads/, accessed on 23 November

2021) for the experiments. The dataset is used for evaluating shape-based search methods

relevant to the mechanical engineering domain. In 3D model retrieval, the ESB dataset is

the commonly used benchmark. This dataset is based on the 3D component models of

computer-aided design, and it contains 867 3D CAD models. In addition, there are 45 dif-

ferent classes in ESB.

4.2. The Baseline

Since we wanted to prove that the voxel-based feature is robust against the rotation

problem, we compared it to the most well-known method, LFD (LightField Descriptor)

[20,21]. the LFD method does not need the additional process or methods for rotation.

Therefore, we compared CSS with LFD in terms of classification and retrieval.

LFD is a moment- type of features, its concept being to use many different angles to

obtain different 2D images. Then, some features are extracted from these images for 3D

model retrieval.

In the LFD approach, each 3D model had a set of LightField Descriptors, and each set

of LightField Descriptors was composed of ten different camera systems. Each LightField

Descriptor had 20 viewpoints (i.e., 20 images). Then, the ten most important pictures were

chosen to represent the LightField Descriptor (each image was based on 256 * 256 pixels).

Therefore, each 3D model must render 100 images from 10 different camera systems, in

total.

After feature extraction, we obtained some different features, which were: ART fea-

ture (ART); circularity feature (CIR); color descriptor (CCD); eccentricity feature (ECC);

and Fourier descriptor feature (FD). For detailed information, please refer to [4] and [28].

4.3. The Classification Model

In order to assess the performance of CSS, the support vector machine (SVM) classi-

fier was constructed for 3D model classification. SVM is the widely used classification

technique for many pattern recognition problems [29]. In this paper, LibSVM

Figure 6. The results of using different sampling numbers. (a) N is 10; (b) N is 50.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 13

(a) (b)

Figure 6. The results of using different sampling numbers. (a) N is 10; (b) N is 50.

Figure 7. Feature representation of the 3D model (based on N = 50 and Hollow feature calculation).

4. Experiments

4.1. The Dataset

In this paper, we used the ESB (Engineering Shape Benchmark) [20] dataset

(https://engineering.purdue.edu/cdesign/wp/downloads/, accessed on 23 November

2021) for the experiments. The dataset is used for evaluating shape-based search methods

relevant to the mechanical engineering domain. In 3D model retrieval, the ESB dataset is

the commonly used benchmark. This dataset is based on the 3D component models of

computer-aided design, and it contains 867 3D CAD models. In addition, there are 45 dif-

ferent classes in ESB.

4.2. The Baseline

Since we wanted to prove that the voxel-based feature is robust against the rotation

problem, we compared it to the most well-known method, LFD (LightField Descriptor)

[20,21]. the LFD method does not need the additional process or methods for rotation.

Therefore, we compared CSS with LFD in terms of classification and retrieval.

LFD is a moment- type of features, its concept being to use many different angles to

obtain different 2D images. Then, some features are extracted from these images for 3D

model retrieval.

In the LFD approach, each 3D model had a set of LightField Descriptors, and each set

of LightField Descriptors was composed of ten different camera systems. Each LightField

Descriptor had 20 viewpoints (i.e., 20 images). Then, the ten most important pictures were

chosen to represent the LightField Descriptor (each image was based on 256 * 256 pixels).

Therefore, each 3D model must render 100 images from 10 different camera systems, in

total.

After feature extraction, we obtained some different features, which were: ART fea-

ture (ART); circularity feature (CIR); color descriptor (CCD); eccentricity feature (ECC);

and Fourier descriptor feature (FD). For detailed information, please refer to [4] and [28].

4.3. The Classification Model

In order to assess the performance of CSS, the support vector machine (SVM) classi-

fier was constructed for 3D model classification. SVM is the widely used classification

technique for many pattern recognition problems [29]. In this paper, LibSVM

Figure 7. Feature representation of the 3D model (based on N = 50 and Hollow feature calculation).

4. Experiments
4.1. The Dataset

In this paper, we used the ESB (Engineering Shape Benchmark) [20] dataset (https:
//engineering.purdue.edu/cdesign/wp/downloads/, accessed on 23 November 2021) for

https://engineering.purdue.edu/cdesign/wp/downloads/
https://engineering.purdue.edu/cdesign/wp/downloads/

Appl. Sci. 2021, 11, 11142 9 of 13

the experiments. The dataset is used for evaluating shape-based search methods relevant to
the mechanical engineering domain. In 3D model retrieval, the ESB dataset is the commonly
used benchmark. This dataset is based on the 3D component models of computer-aided
design, and it contains 867 3D CAD models. In addition, there are 45 different classes
in ESB.

4.2. The Baseline

Since we wanted to prove that the voxel-based feature is robust against the rotation
problem, we compared it to the most well-known method, LFD (LightField Descrip-
tor) [20,21]. the LFD method does not need the additional process or methods for rotation.
Therefore, we compared CSS with LFD in terms of classification and retrieval.

LFD is a moment- type of features, its concept being to use many different angles to
obtain different 2D images. Then, some features are extracted from these images for 3D
model retrieval.

In the LFD approach, each 3D model had a set of LightField Descriptors, and each set
of LightField Descriptors was composed of ten different camera systems. Each LightField
Descriptor had 20 viewpoints (i.e., 20 images). Then, the ten most important pictures
were chosen to represent the LightField Descriptor (each image was based on 256 ∗ 256
pixels). Therefore, each 3D model must render 100 images from 10 different camera systems,
in total.

After feature extraction, we obtained some different features, which were: ART feature
(ART); circularity feature (CIR); color descriptor (CCD); eccentricity feature (ECC); and
Fourier descriptor feature (FD). For detailed information, please refer to [4,28].

4.3. The Classification Model

In order to assess the performance of CSS, the support vector machine (SVM) classifier
was constructed for 3D model classification. SVM is the widely used classification technique
for many pattern recognition problems [29]. In this paper, LibSVM (http://www.csie.ntu.
edu.tw/~cjlin/libsvm/, accessed on 23 November 2021) was used. Specifically, we used
the polynomial kernel function to construct the SVM classifier. In addition, the parameter
setting for Cost was set to 128 and the Gamma value was set to 0.65.

Moreover, since the number of each class is significantly different, to make a more
reliable conclusion, we used k-fold cross-validation by k = 2, 5, 10, 15, and 20 (The exper-
imental environments are as follows: CPU: Intel(R) Core(TM) i7-3770 @ 3.40GHz, RAN:
32GB, OS: Windows 7-64bit, Code: Matlab R2012a).

4.4. Experimental Results

In Table 1, we observed that among all of the features, the CSS based feature, “Hollow
+ TFIDF”, had the best classification accuracy. In comparison with the baseline, using
“Hollow” and “Hollow + TFIDF” features performed better, with a significant level of
performance difference based on the Wilcoxon rank-sum test (p < 0.05). Although using the
“Full” feature provides similar accuracy to the baseline, it still performed slightly better.

We used two sets of different values (5, 20, 60, 140, 220, 300, 380, 460, 540, 620, 700,
and 859) and (1, 3, 5, 7, 9, 11, 13, and 15) to calculate the precision and recall rates of each
feature, respectively. In this experiment, for simplicity, the Euclidean distance was used as
a similarity measure to distinguish between 3D models. The results of precision and recall
are shown in Figures 8 and 9, respectively.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Appl. Sci. 2021, 11, 11142 10 of 13

Table 1. Classification accuracy of each feature representation method.

2-Fold 5-Fold 10-Fold 15-Fold 20-Fold

Baseline 33.53% 42.61% 44.82% 46.33% 47.03%

Hollow 37.60% 47.38% 50.76% 52.15% 52.27%

Hollow + TFIDF 37.49% 49.48% 52.85% 54.25% 54.60%

Hollow + ˆ2 25.73% 34.46% 36.32% 37.72% 37.72%

Full 33.53% 43.77% 46.92% 48.54% 48.31%

MMF 28.17% 37.95% 40.16% 41.68% 41.33%

MMF + ˆ2 24.91% 33.41% 35.27% 36.44% 36.44%

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 13

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/, accessed on 23 November 2021) was used.

Specifically, we used the polynomial kernel function to construct the SVM classifier. In

addition, the parameter setting for Cost was set to 128 and the Gamma value was set to

0.65.

Moreover, since the number of each class is significantly different, to make a more

reliable conclusion, we used k-fold cross-validation by k = 2, 5, 10, 15, and 20 (The exper-

imental environments are as follows: CPU: Intel(R) Core(TM) i7-3770 @ 3.40GHz, RAN:

32GB, OS: Windows 7-64bit, Code: Matlab R2012a).

4.4. Experimental Results

In Table 1, we observed that among all of the features, the CSS based feature, “Hollow

+ TFIDF”, had the best classification accuracy. In comparison with the baseline, using

“Hollow” and “Hollow + TFIDF” features performed better, with a significant level of

performance difference based on the Wilcoxon rank-sum test (p < 0.05). Although using

the “Full” feature provides similar accuracy to the baseline, it still performed slightly bet-

ter.

Table 1. Classification accuracy of each feature representation method.

 2-Fold 5-Fold 10-Fold 15-Fold 20-Fold

Baseline 33.53% 42.61% 44.82% 46.33% 47.03%

Hollow 37.60% 47.38% 50.76% 52.15% 52.27%

Hollow + TFIDF 37.49% 49.48% 52.85% 54.25% 54.60%

Hollow + ^2 25.73% 34.46% 36.32% 37.72% 37.72%

Full 33.53% 43.77% 46.92% 48.54% 48.31%

MMF 28.17% 37.95% 40.16% 41.68% 41.33%

MMF + ^2 24.91% 33.41% 35.27% 36.44% 36.44%

We used two sets of different values (5, 20, 60, 140, 220, 300, 380, 460, 540, 620, 700,

and 859) and (1, 3, 5, 7, 9, 11, 13, and 15) to calculate the precision and recall rates of each

feature, respectively. In this experiment, for simplicity, the Euclidean distance was used

as a similarity measure to distinguish between 3D models. The results of precision and

recall are shown in Figures 8 and 9, respectively.

Figure 8. The precision rate of each feature representation method.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 10 20 40 60 100 140 220 300 380 460 540 620 700 780

Baseline

MMF

Hollow

HoTF

HoDb

Figure 8. The precision rate of each feature representation method.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 13

Figure 9. The recall rate of each feature representation method.

These results show that the baseline performed slightly better than CSS. However,

since the proposed method was only based on simple statistics, the CSS features still con-

tained a lot of noise and non-critical data, which was likely to be affected by the Euclidean

distance leading to poorer precision and recall.

Nevertheless, considering the classification accuracy, using the SVM classifier can

effectively highlight the discriminative power of CSS features; thus, better results can be

obtained.

5. Conclusions

In this paper, we propose a novel approach for 3D model re-sampling, namely CSS

(Cube of Space Sampling). It is a kind of voxelization method and can be transformed into

the voxel-based feature for 3D model classification and retrieval. Particularly, the voxel-

based feature via the CSS method can represent 3D models well, and it can also solve the

3D model normalization problem (e.g., rotation problem). The proposed CSS method can

work on the non-completely closed 3D models without failure. Therefore, the CSS method

can be fully applied to all types of 3D models.

The experimental results based on the ESB dataset show that the proposed method

is indeed able to effectively extract useful features for 3D model retrieval. More specifi-

cally, the CSS features can improve classification accuracy by SVM when compared with

a state-of-the-art technique. However, our proposed approach does not aim to replace the

existing features, but to provide new data to extract important features. Therefore, the CSS

features provide an opportunity for future research, which could use a different form of

data for feature extraction and increase the accuracy of classification. On the other hand,

this proposed method still has some shortcomings. For example, the computational cost

is high during feature extraction.

There are several issues to be addressed in future work. In this study, since the CSS

data were only based on some simple statistics to create a set of features, other methods

of dealing with our CSS data to highlight the characteristics of each model (such as FFT,

etc.) could be applied. In addition, other existing features (e.g., Skeleton) could be com-

bined with the CSS features to further increase the classification accuracy and retrieval

effectiveness. On the other hand, as the processing time of the proposed approach is

longer than the baseline, some more efficient strategies for space sampling need to be pro-

posed with regards to computational cost during feature extraction. Similarly, for the in-

dex issue, the 3D spatial index could be considered to speed up the calculation. Moreover,

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15

Baseline

MMF

Hollow

HoTF

Figure 9. The recall rate of each feature representation method.

These results show that the baseline performed slightly better than CSS. However,
since the proposed method was only based on simple statistics, the CSS features still

Appl. Sci. 2021, 11, 11142 11 of 13

contained a lot of noise and non-critical data, which was likely to be affected by the
Euclidean distance leading to poorer precision and recall.

Nevertheless, considering the classification accuracy, using the SVM classifier can
effectively highlight the discriminative power of CSS features; thus, better results can
be obtained.

5. Conclusions

In this paper, we propose a novel approach for 3D model re-sampling, namely CSS
(Cube of Space Sampling). It is a kind of voxelization method and can be transformed
into the voxel-based feature for 3D model classification and retrieval. Particularly, the
voxel-based feature via the CSS method can represent 3D models well, and it can also solve
the 3D model normalization problem (e.g., rotation problem). The proposed CSS method
can work on the non-completely closed 3D models without failure. Therefore, the CSS
method can be fully applied to all types of 3D models.

The experimental results based on the ESB dataset show that the proposed method is
indeed able to effectively extract useful features for 3D model retrieval. More specifically,
the CSS features can improve classification accuracy by SVM when compared with a
state-of-the-art technique. However, our proposed approach does not aim to replace the
existing features, but to provide new data to extract important features. Therefore, the CSS
features provide an opportunity for future research, which could use a different form of
data for feature extraction and increase the accuracy of classification. On the other hand,
this proposed method still has some shortcomings. For example, the computational cost is
high during feature extraction.

There are several issues to be addressed in future work. In this study, since the
CSS data were only based on some simple statistics to create a set of features, other
methods of dealing with our CSS data to highlight the characteristics of each model (such
as FFT, etc.) could be applied. In addition, other existing features (e.g., Skeleton) could be
combined with the CSS features to further increase the classification accuracy and retrieval
effectiveness. On the other hand, as the processing time of the proposed approach is longer
than the baseline, some more efficient strategies for space sampling need to be proposed
with regards to computational cost during feature extraction. Similarly, for the index issue,
the 3D spatial index could be considered to speed up the calculation. Moreover, further
performance comparisons could be conducted based on some deep-learning techniques,
such as convolutional neural networks [30–32] and other feature representations, such as
view-based 3D model feature representation [33,34]. Finally, it would be interesting to
examine the performance of CSS for different types of 3D objects, such as objects composed
of multiple parts that are not watertight, and the sensitivity of CSS when applied to
arbitrarily rotated models, or swapping the XYZ axes.

Author Contributions: Conceptualization, Z.-Y.C.; methodology, Z.-Y.C., C.-F.T. and W.-C.L.; soft-
ware, W.-C.L.; validation, Z.-Y.C. and W.-C.L.; formal analysis, Z.-Y.C., C.-F.T. and W.-C.L.; resources,
Z.-Y.C.; data curation, Z.-Y.C.; writing—original draft preparation, Z.-Y.C., C.-F.T. and W.-C.L.;
writing—review and editing, Z.-Y.C., C.-F.T. and W.-C.L.; supervision, C.-F.T.; project administration,
C.-F.T.; funding acquisition, W.-C.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan, grant MOST
110-2410-H-182-002 and Chang Gung Memorial Hospital, Linkou, grant BMRPH13 and CMRPG3J0732.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The work was supported in part by the Ministry of Science and Technology
of Taiwan under Grant MOST 110-2410-H-182-002 and in part by Chang Gung Memorial Hospital,
Linkou, under Grant BMRPH13 and CMRPG3J0732.

Appl. Sci. 2021, 11, 11142 12 of 13

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tangelder, J.W.H.; Veltkamp, R.C. A Survey of Content Based 3D Shape Retrieval Methods. In Proceedings of the Shape Modeling

International, Genova, Italy, 7–9 June 2004; pp. 145–156.
2. Zhu, K.; Wong, Y.; Lu, W.; Loh, H. 3D CAD model matching from 2D local invariant features. Comput. Ind. 2010, 61, 432–439.

[CrossRef]
3. Bustos, B.; Keim, D.; Saupe, D.; Schreck, T. Content-based 3D object retrieval. IEEE Eng. Med. Boil. Mag. 2007, 27, 22–27.

[CrossRef] [PubMed]
4. Laga, H.; Nakajima, M. A boosting approach to content-based 3D model retrieval. In Proceedings of the 5th International

Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, GRAPHITE ’07, Perth, Australia,
1–4 December 2007; ACM Press: New York, NY, USA, 2007; pp. 227–234.

5. Eisemann, E.; D’ecoret, X. Fast Scene Voxelization and Applications. In Proceedings of the ACM Symposium on Interactive 3D
Graphics and Games, Redwood City, CA, USA, 14–17 March 2006.

6. Huang, J.; Yagel, R.; Filippov, V.; Kurzion, Y. An Accurate Method for Voxelizing Polygon Meshes. In Proceedings of the 1998 IEEE
Symposium on Volume Visualization, VVS-’98, Research Triangle Park, NC, USA, 19–20 October 1998; ACM Press: New York,
NY, USA, 1998; pp. 119–126.

7. Schwarz, M.; Seidel, H. Fast parallel surface and solid voxelization on GPUs. ACM Trans. Graph. 2010, 29, 1–10. [CrossRef]
8. Zhang, C.; Chen, T. Indexing and retrieval of 3D models aided by active learning. In ACM Multimedia; ACM Press: New York,

NY, USA, 2001; pp. 615–616.
9. Paquet, E.; Murching, A.; Naveen, T.; Tabatabai, A.; Rioux, M. 2000. Description of shape information for 2-D and 3-D objects.

Signal. Process. Image Commun. 2000, 16, 103–122. [CrossRef]
10. Kazhdan, M.; Chazelle, B.; Dobkin, D.; Funkhouser, T.; Rusinkiewicz, S. A reflective symmetry descriptor for 3D models.

Algorithmica 2004, 38, 201–225. [CrossRef]
11. Osada, R.; Funkhouser, T.; Chazells, B.; Dobkin, D. Matching 3D models with shape distributions. In Proceedings of the Shape

Modeling International, Genoa, Italy, 7–11 May 2001.
12. Ohbuchi, R.; Takei, T. Shape-similarity comparison of 3D models using alpha shapes. In Proceedings of the 11th Pacific Conference

on Computer Graphics and Applications, Canmore, AB, Canada, 8–10 October 2003.
13. Ip, C.Y.; Lapadat, D.; Sieger, L.; Regli, W.C. Using shape distributions to compare solid models. In Proceedings of the Seventh

ACM Symposium on Solid Modeling and Applications, Saarbrücken, Germany, 17–21 June 2002; ACM Press: New York, NY,
USA, 2002; pp. 273–280.

14. Zaharia, T.; Preteux, F.J. 3D shape-based retrieval within theMPEG-7 framework. In Nonlinear Image Processing and Pattern Analysis
XII; International Society for Optics and Photonics: Bellingham, WA, USA, 2001; Volume 4034, pp. 133–145.

15. Koendering, J. Solid Shape; MIT Press: Cambridge, MA, USA, 1990.
16. Vranic, D.V.; Saupe, D.; Richter, J. Tools for 3D-object retrieval: Karhunen-loeve transform and spherical harmonics. In Proceedings

of the IEEE 2001 Workshop Multimedia Signal Processing, Cannes, France, 3–5 October 2001; pp. 293–298.
17. Biasotti, S.; Marini, S.; Mortara, M.; Patane, G.; Spagnuolo, M.; Falcidieno, B. 3D shape matching through topological structures.

In Proceedings of the International Conference on Discrete Geometry for Computer Imagery, Naples, Italy, 19–21 November 2003;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 194–203.

18. Sundar, H.; Silver, D.; Gagvani, N.; Dickenson, S. Skeleton based shape matching and retrieval. In Proceedings of the 2003
International Conference on Shape Modelling International, Seoul, Korea, 12–16 May 2003; pp. 130–139.

19. Novotni, M.; Klein, R. A geometric approach to 3D object comparison. In Proceedings International Conference on Shape
Modeling and Applications, Cambridge, MA, USA, 13–17 June 2001; pp. 154–166.

20. Yang, Y.; Lin, H.; Zhang, Y. Content-Based 3-D Model Retrieval: A Survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007,
37, 1081–1098. [CrossRef]

21. Vranic, D.V.; Saupe, D. Description of 3D-shape using a complex function on the sphere. In Proceedings of the IEEE International
Conference Multimedia and Expo, Lausanne, Switzerland, 26–29 August 2002; pp. 177–180.

22. Min, P.; Halderman, A.; Kazhdan, M.; Funkhouser, A. Early experiences with a 3D model search engine. In Proceedings of the
Web3D Symposium, Saint Malo, France, 9–12 March 2003; ACM Press: New York, NY, USA, 2003; pp. 7–18.

23. Funkhouser, T.; Min, P.; Kazhdan, M.; Chen, J.; Halderman, A.; Dobkin, D.; Jacobs, D. A search engine for 3D models. ACM Trans.
Graph. 2003, 22, 83–105. [CrossRef]

24. Ankerst, M.; Kastenmuller, G.; Kriegel, H.; Seidl, T. Nearest neighbor classification in 3D protein databases. In Proceedings of the
ISMB, Heidelberg, Germany, 6–10 August 1999; pp. 34–43.

25. Jiménez, P.; Thomas, F.; Torras, C. 3D collision detection: A survey. In Proceedings of the 9th Pacific Conference on Computers &
Graphics, Tokyo, Japan, 16–18 October 2001; pp. 269–285.

26. Klosowski, J.T.; Held, M.; Mitchell, J.S.B.; Sowizral, H.; Zikan, K. Efficient collision detection using bounding volume hierarchies
of k-DOPs. IEEE Trans. Vis. Comput. Graph. 1998, 4, 21–36. [CrossRef]

27. Möller, T. 1997. A fast triangle-triangle intersection test. J. Graph. Tools 1997, 2, 25–30. [CrossRef]

http://doi.org/10.1016/j.compind.2009.11.001
http://doi.org/10.1109/MCG.2007.80
http://www.ncbi.nlm.nih.gov/pubmed/17713231
http://doi.org/10.1145/1882261.1866201
http://doi.org/10.1016/S0923-5965(00)00020-5
http://doi.org/10.1007/s00453-003-1050-5
http://doi.org/10.1109/TSMCC.2007.905756
http://doi.org/10.1145/588272.588279
http://doi.org/10.1109/2945.675649
http://doi.org/10.1080/10867651.1997.10487472

Appl. Sci. 2021, 11, 11142 13 of 13

28. Chen, D.-Y.; Tian, X.-P.; Shen, Y.-T.; Ouhyoung, M. On visual similarity based 3D model. Comput. Graph. Forum 2003, 22, 223–232.
[CrossRef]

29. Fan, R.-E.; Chen, P.-H.; Lin, C.-J. Working set selection using second order information for training SVM. J. Mach. Learn. Res. 2005,
6, 1889–1918.

30. Ding, B.; Tang, L.; He, Y.-J. An Efficient 3D Model Retrieval Method Based on Convolutional Neural Network. Complexity 2020,
2020, 1–14. [CrossRef]

31. Gao, Z.; Li, Y.; Wan, S. Exploring Deep Learning for View-Based 3D Model Retrieval. ACM Trans. Multimedia Comput. Commun.
Appl. 2020, 16, 1–21. [CrossRef]

32. Hoang, L.; Lee, S.-H.; Kwon, K.-R. A Deep Learning Method for 3D Object Classification and Retrieval Using the Global Point
Signature Plus and Deep Wide Residual Network. Sensors 2021, 21, 2644. [CrossRef] [PubMed]

33. Wang, D.; Wang, B.; Yao, H.; Liu, H. Center-push loss for joint view-based 3D model classification and retrieval feature learning.
Signal Image Video Process. 2021. [CrossRef]

34. Li, W.; Su, Y.; Zhao, Z.; Hao, T.; Li, Y. Exploring contextual information for view-wised 3D model retrieval. Multimedia Tools Appl.
2021, 80, 16397–16412. [CrossRef]

http://doi.org/10.1111/1467-8659.00669
http://doi.org/10.1155/2020/9050459
http://doi.org/10.1145/3377876
http://doi.org/10.3390/s21082644
http://www.ncbi.nlm.nih.gov/pubmed/33918845
http://doi.org/10.1007/s11760-021-01923-4
http://doi.org/10.1007/s11042-020-08967-7

	Introduction
	Literature Review
	3D Model Retrieval
	Different Types of Models
	Model-Matching Methods
	Normalization
	Summary

	3D Model Feature Representation
	Preprocessing
	Cube of Space Sampling (CSS)
	Feature Rperesentation by CSS Data Transformation
	An Example of CSS

	Experiments
	The Dataset
	The Baseline
	The Classification Model
	Experimental Results

	Conclusions
	References

