
applied  
sciences

Article

Evaluations of All-in-One, Polycarboxylate-Based
Superplasticizer with Viscosity Modifying Agents for the
Application of Normal-Strength, High-Fluidity Concrete

Tae-Woong Kong 1, Hyun-Min Yang 2,*, Han-Seung Lee 3,* and Chang-Bok Yoon 4

����������
�������

Citation: Kong, T.-W.; Yang, H.-M.;

Lee, H.-S.; Yoon, C.-B. Evaluations of

All-in-One, Polycarboxylate-Based

Superplasticizer with Viscosity

Modifying Agents for the Application

of Normal-Strength, High-Fluidity

Concrete. Appl. Sci. 2021, 11, 11141.

https://doi.org/10.3390/app112311141

Academic Editor:

Karin Habermehl-Cwirzen

Received: 23 September 2021

Accepted: 17 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 R&D Center, Sunil Industrial Co., LTD, 68, Gwiin-ro, Dongan-gu, Anyang-si 14080, Korea;
genikong@sirmc.co.kr

2 Innovative Durable Building and Infrastructure Research Center, Hanyang University, 1271 Sa 3-dong,
Sangnok-gu, Ansan-si 15588, Korea

3 Department of Architectural Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu,
Ansan-si 15588, Korea

4 Department of Architectural Engineering, Seoil University, 28-6, Yongmasan-ro 90-gil, Myeonmok,
Jungnang-gu, Seoul 02192, Korea; 20210009@seoil.ac.kr

* Correspondence: yhm04@hanyang.ac.kr (H.-M.Y.); ercleehs@hanyang.ac.kr (H.-S.L.)

Abstract: High fluidity concrete exhibits an excellent self-compacting property. However, the
application of typical high-fluidity concrete is limited in the normal strength range (18~35 MPa)
due to the large amount of binder. Therefore, it is important to solve these problems by adding a
viscosity modifying agent (VMA) with a superplasticizer (PCE), which helps to improve the fluidity
of the concrete. In addition, the rheology and stability of the concrete with VMA can be improved by
preventing bleeding and segregation issues. Current studies focused on the physical phenomena of
concrete such as the fluidity, rheological properties, and compressive strength of normal-strength,
high-fluidity concrete (NSHFC) with different types of a polycarboxylate-based superplasticizer
(NPCE). The obtained results suggested that the combinations of all-in-one polycarboxylate-based
superplasticizers (NPCE) did not cause any cohesion or sedimentation even stored for a long time.
The combination of three types of VMA showed the best fluidity (initial slump flow of 595~630 mm)
without any segregation and bleeding, and the compressive strength at 28 days was also found to be
the highest: 34–37 MPa. From these results, the combination of PCE (2.0%) + HPMC (0.3%) + WG
(0.1%) + ST (0.1%) showed an 18% higher plastic viscosity and -4.4% lower yield stress than Plain.

Keywords: polycarboxylate-based superplasticizer; normal-strength; high-fluidity concrete; viscosity;
rheology; workability

1. Introduction

High-fluidity concrete flows under its own weight, filling formwork, and achieves a
full compaction, even in the presence of congested reinforcement. Improvement in con-
struction quality and efficiency, shortening the construction time, and reducing labor costs
were considered advantages of the high-fluidity concrete that should be highlighted [1].
However, high-fluidity concrete is affected by the rheology and thixotropy of cementitious
materials. Therefore, there is a large difference in the properties depending on the contents
of binders such as cement and mineral admixtures, and the particle size of the aggregate [2].

Most researchers applied a large amount of binder and expensive admixtures to
develop self-compacting or high-fluidity concrete [3–8]. Moreover, many researchers are
used smaller-sized coarse aggregates (maximum size of 20 mm or 25 mm) or used fine
aggregates at the level of fine fillers [9,10].

In order to expand the range of the applications of high-fluidity concrete, it is necessary
to secure the stability properties of the concrete with good fluidity, viscosity, and appropri-
ate strength. The stability of the fresh properties of the fluidity concrete is determined by
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several parameters including particle and fluid movement. The stability of concrete can
be classified into the separation and sedimentation of coarse aggregate and cement paste
in concrete, as well as the bleeding of concrete [11–13]. In particular, to produce normal
strength concrete with a high fluidity and low binder content, the yield stress must be
minimized while securing plastic viscosity [14–16]. For this, the filling ability with the
high dispersion effect of the superplasticizer should be utilized [17,18]. However, there
was a limitation in ensuring the high workability, strength, and durability of conventional,
polycarboxylate-based superplasticizer concrete with a normal strength and a low amount
of binder.

These problems can be solved by adding VMA and PCE to help improve the fluidity
of the concrete by the improved filling and dispersion ability of the binders [19,20]. In
addition, the rheology and stability of the concrete with VMA can be improved by pre-
venting bleeding and segregation problems. VMA improves the retention of cement
paste components in the suspension [21], cohesion, stability, and viscosity of the concrete.
Therefore, the rheology and stability of the concrete with VMA can be improved by
preventing bleeding and segregation problems [22–25]. Moreover, it can replace mineral
admixtures such as fly ash and silica fumes [19].

Among the most popular VMAs, hydroxypropyl-methylcellulose (HPMC), welan
gum, guar gum, and starch have excellent thickening, adhesive, and water retention
properties, and are widely used in construction as an additive to concrete or mortar. HPMC
has good adhesive, thickening, and water retention properties, and is mainly applied in
self-leveling mortar and self-compacting concrete, with the intention of improving bleeding
and aggregate segregation [26,27]. Welan gum is widely applied to prevent the bleeding
and segregation of mortar or concrete, as well as at higher W/C ratios, and less additive
is needed [28,29]. Guar gum improves the water retention of mortar or concrete, adapts
the rheological behavior of the cementitious materials, prevents aggregate segregation
and improves the workability and homogeneity of cement-based systems. Moreover,
the addition of the guar gum slightly increases the strength and reduces the carbonation
rate [30,31]. Starches are VMA that alter the properties of a mortar in the fresh state. They
improve the viscosity and homogeneity of a material in mortars and concretes, and are
often used together with a high-range, water-reducing admixture to avoid segregation and
bleeding and to improve the cohesion of a mortar or concrete [22,24].

Despite the many advantages of VMA in concrete or mortar, if PCE and VMA are
mixed and stored, then there is issue of productivity, usability, and storage in ready-mixed
concrete plants [32].

The above literature search suggests that there are no such studies on the mixing of all-
in-one, polycarboxylate-based superplasticizers (NPCE) that did not cause any cohesion or
sedimentation even when PCE and VMA were mixed and stored for a long time. Therefore,
in the present studies, an all-in-one, polycarboxylate-based superplasticizer, with viscosity
modifying agents for the application of normal-strength, high-fluidity con-crete, mixed
and evaluated the properties of this concrete.

2. Materials and Methods
2.1. Materials
2.1.1. Cement and Mineral Admixtures

Type 1 Portland cement (ASTM C 150) was used with a density and fineness of
3.15 g/cm3 and 3590 cm2/g, respectively [33]. Mineral admixtures of fly ash and blast
furnace slag were used in accordance with KSL 5405 [34] and KS F 2563 [35], respectively.
The density of fly ash and blast furnace slag was 2.24 g/cm3 and 2.90 g/cm3, while fineness
was 3350 cm3/g and 4130 cm3/g, respectively. Table 1 shows the physical and chemical
properties of cement, fly ash, and blast furnace slag.
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Table 1. Physical and chemical properties of cement, fly ash, and blast furnace slag.

Contents (wt.%)

Cement Fly Ash Blast Furnace
Slag

Physical
properties

Density (g/cm3) 3.15 2.24 2.90
Blaine (cm2/g) 3590 3350 4130

Chemical
properties

CaO 62.51 3.12 42.11
SiO2 21.46 55.59 31.86

Al2O3 6.44 23.54 14.43
SO3 2.32 0.41 2.12

Fe2O3 3.03 7.79 0.75
MgO 2.75 1.20 3.81

Ig.loss (%) 1.21 (950 ± 50 ◦C) 1.81 (975 ± 25 ◦C) 0.56 (700 ± 25 ◦C)

2.1.2. Aggregates

In this study, 20 mm coarse aggregates (gravel) and fine aggregates (sea sand) were
used in accordance with KS F 2527 [36]. The density was found to be at 2.69 g/cm3 and
2.58 g/cm3, with a fineness modulus of 6.61 and 2.12, respectively. Table 2 shows the
physical properties of the aggregates used.

Table 2. Physical properties of aggregate.

Fine Aggregate Coarse Aggregate

Density (g/cm3) 2.58 2.69
Fineness modulus 2.12 6.64

Water absorption ratio (%) 0.86 0.53
Passing ratio of 0.08 mm sieve (%) 2.95 0.77

2.1.3. Superplasticizer

In order to apply to NSHFC, PCE is used and developed in advance. In the present
study, the fluidity and rheological properties were reviewed according to three types of
combinations of MPEG-type polycarboxylate ether (water reduction type, hybrid type,
retention type).

Table 3 shows the appearances and functional characteristics of each type of raw material.

Table 3. Properties of PC-based raw materials.

Types Appearances Description

Water
reduction type

Light yellow
liquid

- Excellent water reduction by the powerful
dispersing effect

- High flowable concrete

Hybrid type Yellowish-brown
liquid

- High water reduction and long slump retention
- Good for blending cement (fly ash, blast

furnace slag)
- Higher compressive strength at an early age and

28 days
- High workability without bleeding or segregation

Retention type Faint light yellow - Excellent water reduction and long slump retention
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2.1.4. VMA (Viscosity Modifying Agent)

In this study, hydroxypropyl methylcellulose (HPMC (HL, HH)), starch (ST), welan
gum (WG), and guar gum (GG) were dissolved in distilled water and used as VMAs. The
appearance, physical, and chemical properties of the VMAs are presented in Table 4.

Table 4. Appearance and chemical composition of VMAs.

HPMC WG (Welan Gum) GG (Guar Gum) ST (Starch)

Appearance
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Figure 1. Mixing equipment for manufacturing NPCE. (a) homogenizer, (b) magnetic stirrers.

2.2.2. Concrete Mix

The concrete mixing was performed using a pen-type mixer (WOOJIN, WJ-226,
Gyeonggi-do, South Korea). First, aggregates and binders were mixed at 25 rpm for 60 s.
Next, NPCE solution and water were added and mixed at 35 rpm for another 180 s. Then,
the concrete mix was poured into the cylindrical concrete mold of size 100 mm × 200 mm.
The concrete samples were cured for 1 day at 20 ± 2 ◦C before being de-molded and kept in
the water tank for another 27 days of curing duration. Table 5 shows the mixed proportion
of the normal-strength, high-fluidity concrete.
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Table 5. Combinations of NPCE and mixture design for NSHFC.

% kg/m3 NPCE (Binders × wt.%)

W/B S/a W
Binders

S G PCE HPMC WG GG ST
C FA BS

Plain 43.5 55.0 152 228 53 70 983 811 2.0
HL

43.9 55.0 154 228 53 70 981 809

2.0 0.3 - - -
HH 2.0 0.6 - - -
WG 2.0 - 0.1 - -
GG 2.0 - - 0.1 -
ST 2.0 - - - 0.1

HLW
44.3 55.0 155 228 53 70 979 807

2.0 0.3 0.1 - -
HHW 2.0 0.6 0.1 - -
HLWG

45.6 55.0 160 228 53 70 973 802

2.0 0.3 0.1 0.1 -
HLWS 2.0 0.3 0.1 - 0.1

HHWG 2.0 0.6 0.1 0.1 -
HHWS 2.0 0.6 0.1 - 0.1

C: cement, FA: fly ash, BS: blast furnace slag, S: fine aggregate, G: coarse aggregate, HPMC: hydroxypropyl
methylcellulose, WG: welan gum, GG: guar gum, and ST: starch.

2.2.3. Fluidity

In accordance with ASTM C 1611, the slump flow test was conducted to evaluate
the workability of the NSHFC. The workability value was measured by two orthogonal
parts (longest length and shortest length) and the average value of both measurements
was taken.

2.2.4. Rheology

To measure the rheology of NSHFC, rotational viscometer (BROOKFIELD, DV-III
ULTRA, Middleborough, MA, USA) coupled with spindle SC4-29 was used. The concrete
sample was crushed, and the mortar sample was collected. The shear rate was changed
at each step to measure the torque, with values of 0.125, 0.25, 0.625, 1.25, 2.5, 5, 12.5, and
25 s−1. The consistency curve was derived by applying the Bingham model Equation (1),
and the plastic viscosity and yield stress were calculated by linear regression analysis:

τ = τ◦ + nγλ (1)

where τ is the shear stress (Pa), τ◦ is the yield stress (Pa), nγ is the plastic viscosity (Pa s),
and λ is the shear rate (s−1).

2.2.5. Compressive Strength

The compressive strength test was carried out according to ASTM C39 [37]. Cylindrical
concrete specimens of size 100 mm × 200 mm were used and tested after 3, 7, and 28 days
of curing duration [38].

3. Results and Discussion
3.1. Workability

Figure 2 shows the workability properties of concrete according to the combination
of PCE and VMA, and Table 6 shows the shapes of the slump flow. With the addition of
PCE without VMA, the slump flow is found to be at 555 mm and 523 mm at the start of
the experiment and after 60 min, respectively. From our observation, segregation occurs
in the middle of the samples even after 60 min of testing. Moreover, the addition of PCE
with only one type of VMA (HL, HH, WG, GG, and ST) shows the largest slump flow at
the initial time for the ST sample (693 mm) followed by HL (660 mm), GG (600 mm), and
HH and WG (548 mm). After 60 min of testing, ST shows the lowest elapsed ratio of slump
flow (4.3%) followed by HH (4.6%), HL (6.1%), GG (7.9%), and WG (24.7%). WG shows a
high plastic viscosity and yield stress by strengthening the cohesion of the cement particles.
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Due to the smaller slump value of the WG samples, segregation does not occur. In the case
of adding PCE with HL, ST, or GG, the slump value is over 600 mm, with the occurrence
of segregation. In particular, ST shows the highest slump flow value, but shows the most
severe segregation. This is caused by the lowest plastic viscosity and yield stress. Thus, it
is confirmed that there is a limit in securing the fluidity and segregation resistance when
only one type of VMA is added.

Aside from this, with the addition of PCE with two types of VMA (HLW and HHW),
the initial slump flows are found to be 543 mm and 540 mm for HLW and HHW samples,
respectively. After 60 min of testing, the elapsed ratio of slump flow was larger in HLW
samples (17.1%) compared to HHW samples (7.9%). It was expected that, with the increase
in the amount of HPMC (0.3 to 0.6%), the adsorption disturbance of the PCE will increase,
and the dispersion of cement particles will decrease.

Furthermore, with the addition of PCE with three types of VMA (HLWG, HLWS,
HHWG, and HHWS), the initial slump flow of HLWS is the largest (630 mm), followed by
HLWG and HHWS (613 mm), and HHWG (595 mm). After 60 min of testing, the elapsed
ratio of slump flow is the lowest for HHWS (3.7%), followed by HHWS (6.3%), HHWG
(11.3%), and HLWG (14.7%). The increase in the amount of HPMC decreases the elapsed
ratio due to the characteristics of the HPMC, which will delay the setting time of the cement
paste. On the other hand, in the case of the HH (HPMC 0.6%) combination, segregation
does not occur due to the slump flow value.

In summary, when the amount of HPMC increases from 0.3% to 0.6%, the cohesion of
the concrete is strengthened. This causes an increase in the plastic viscosity and yield stress
of the concrete and reduces the slump flow. The elapsed ratio decreases because HPMC
enhances the water retention and delays the setting time of concrete. Generally, regardless
of the amount and combinations of HPMC, ST has an effect on increasing fluidity and
reducing the elapsed ratio. WG has an effect on reducing fluidity and increasing the elapsed
ratio. These results are similarly reflected in all combinations of VMAs. Additionally, ST
increases fluidity more than GG. Because of this effect, the tendency of the slump flow
increases slightly.
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Figure 2. Slump flow and elapsed ratio of fresh concrete mixes by combinations of VMAs. Plain: non-VMA, HL: HPMC
0.3% only, HH: HPMC 0.6% only, WG: welan gum only, GG: guar gum only, ST: starch only, HLW: HPMC (0.3%) + welan
gum (0.1%), HHW: HPMC (0.6%) + welan gum (0.1%), HLWG: HPMC (0.3%) + welan gum (0.1%) + guar gum (0.1%),
HLWS: HPMC (0.3%) + welan gum (0.1%) + starch (0.1%), HHWG: HPMC (0.6%) + welan gum (0.1%) + guar gum (0.1%),
HHWS: HPMC (0.6%) + welan gum (0.1%) + starch (0.1%).
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3.2. Rheological Performance 
Figures 3 and 4 show the consistency curve of the fresh concrete added with NPCE 

prepared by VMA combinations at an initial time and after 60 min, respectively. The 
plastic viscosity and yield stress are derived by applying the Bingham model to these 
results. Moreover, the plastic viscosity and yield stress of the fresh concrete are depicted 
in Figures 5 and 6, respectively. With the addition of only PCE (plain), the plastic viscosity 
is found to be at 1.11 Pa s at the start time and 1.21 Pa s after 60 min of testing. Moreover, 
the yield stress is found to be at 2.89 Pa at an initial time and 3.45 Pa after 60 min of testing. 
With the addition of PCE with one type of VMA (HL, HH, WG, GG, and ST), the plastic 
viscosity of WG samples is the highest, followed by GG, HH, HL, and ST. Moreover, the 
yield stress of WG samples is also the highest compared to other types of VMAs. It shows 
that WG is strongly adsorbed onto cement particles, and this adsorption could be the 
reason for the increase in the yield stress due to bridging flocculation. In particular, when 
ST is added, the plastic viscosity value is found to be similar to the plain sample, but the 
yield stress is reduced. Due to this, slump flow is improved, but shows a more severe 
segregation. 

  With the addition of PCE with two types of VMA (HLW and HHW), plastic 
viscosity and yield stress of the HHW sample are higher compared to the HLW sample. 
It is considered that the viscosity of concrete increased as the amount of HPMC increased 
from 0.3% to 0.6%. 

 With the addition of PCE with three types of VMA (HLWG, HLWS, HHWG, and 
HHWS), the plastic viscosity and yield stress of HHWG are the highest, followed by the 
HLWS, HHWG and HHWS sample. It is considered that the combinations of GG 
increased the plastic viscosity of concrete more than with the combinations of ST, because 
the cohesion of GG is stronger than that of ST in cement paste. In summary, adding VMA 
shows a higher plastic viscosity when compared to plain samples [39–42]. The plastic 
viscosity and yield stress show a proportional relationship regardless of the combinations 
of VMA and the elapsed time. Moreover, the plastic viscosity and yield stress decrease 
when the slump flow is increased and vice versa. An inverse relationship is found 
between the plastic viscosity or yield stress and the slump flow [43]. 
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yield stress of WG samples is also the highest compared to other types of VMAs. It shows 
that WG is strongly adsorbed onto cement particles, and this adsorption could be the 
reason for the increase in the yield stress due to bridging flocculation. In particular, when 
ST is added, the plastic viscosity value is found to be similar to the plain sample, but the 
yield stress is reduced. Due to this, slump flow is improved, but shows a more severe 
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3.2. Rheological Performance

Figures 3 and 4 show the consistency curve of the fresh concrete added with NPCE
prepared by VMA combinations at an initial time and after 60 min, respectively. The
plastic viscosity and yield stress are derived by applying the Bingham model to these
results. Moreover, the plastic viscosity and yield stress of the fresh concrete are depicted in
Figures 5 and 6, respectively. With the addition of only PCE (plain), the plastic viscosity is
found to be at 1.11 Pa s at the start time and 1.21 Pa s after 60 min of testing. Moreover,
the yield stress is found to be at 2.89 Pa at an initial time and 3.45 Pa after 60 min of
testing. With the addition of PCE with one type of VMA (HL, HH, WG, GG, and ST), the
plastic viscosity of WG samples is the highest, followed by GG, HH, HL, and ST. Moreover,
the yield stress of WG samples is also the highest compared to other types of VMAs. It
shows that WG is strongly adsorbed onto cement particles, and this adsorption could be
the reason for the increase in the yield stress due to bridging flocculation. In particular,
when ST is added, the plastic viscosity value is found to be similar to the plain sample,
but the yield stress is reduced. Due to this, slump flow is improved, but shows a more
severe segregation.

With the addition of PCE with two types of VMA (HLW and HHW), plastic viscosity
and yield stress of the HHW sample are higher compared to the HLW sample. It is
considered that the viscosity of concrete increased as the amount of HPMC increased from
0.3% to 0.6%.

With the addition of PCE with three types of VMA (HLWG, HLWS, HHWG, and
HHWS), the plastic viscosity and yield stress of HHWG are the highest, followed by
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the HLWS, HHWG and HHWS sample. It is considered that the combinations of GG
increased the plastic viscosity of concrete more than with the combinations of ST, because
the cohesion of GG is stronger than that of ST in cement paste. In summary, adding VMA
shows a higher plastic viscosity when compared to plain samples [39–42]. The plastic
viscosity and yield stress show a proportional relationship regardless of the combinations
of VMA and the elapsed time. Moreover, the plastic viscosity and yield stress decrease
when the slump flow is increased and vice versa. An inverse relationship is found between
the plastic viscosity or yield stress and the slump flow [43].
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Figure 3. Consistency curves of fresh concrete added with NPCE prepared by VMA combinations at
the initial time. (a) Combinations of one type of VMA only. (b) Combinations of two types of VMAs.
(c) Combinations of three types of VMAs.
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Figure 4. Consistency curves of fresh concrete added with NPCE, prepared by VMA combinations
after 60 min. (a) Combinations of one type of VMA only. (b) Combinations of two types of VMAs.
(c) Combinations of three types of VMAs.
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Figure 5. Plastic viscosity and elapsed ratio of fresh concrete by different combinations of VMAs.
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Figure 6. Yield stress and elapsed ratio of fresh concrete by different combinations of VMAs.

3.3. Compressive Strength

Figure 7 shows the compressive strength according to combinations of PCE and VMAs.
Overall, the strength exceeds 24 MPa at 28 days of curing duration for all types of mixes.
With the addition of PCE (without VMA), the compressive strength was found to be at 13.6,
21.5, and 30.9 MPa after 3, 7, and 28 days of curing duration. Aside from this, PCE with WG
showed the highest compressive strength when compared to other samples. In particular,
WG provides a 17% higher compressive strength at 28 days, but the other combinations
show a decrease of 4–20% in strength compared to the plain sample at 28 days. In particular,
the addition of HPMC (HL and HH) shows the greatest decrease in strength for Plain.
The reasons for this are that HPMC has the potential to adsorb PCE, and it delays the
cement hydration due to its effects on the precipitation of calcium hydroxide and water
absorption. With the addition of PCE with two types of VMA, the two mixes show a similar
compressive strength at 28 days. Due to the increase in HPMC from 0.3% to 0.6%, HHW
shows a 7% strength reduction compared to HLW at 3 days. It was considered that the
characteristics of HPMC influenced the setting time and hydration process [44,45]. With
the addition of PCE with three types of VMA, the compressive strength of HLWG and
HHWG at 3 days and 28 days are the highest compared to HLWS and HHWS samples.
The combination of HL or GG shows a higher compressive strength than the combination
of HH or ST. This supposedly reflects each strength characteristic that is confirmed when
only one type of VMA is added. In summary, it is shown that the unique characteristics of
VMA are exhibited by and affect the compressive strength, according to the combinations
of different types of VMAs.
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4. Conclusions

This study focused on the physical phenomena, such as fluidity, rheological properties,
and compressive strength, of normal-strength, high-fluidity concrete (NSHFC) with a
different type of polycarboxylate-based superplasticizer (NPCE):

(1) When the amount of HPMC increased from 0.3% to 0.6%, the slump flow decreased
due to the increase in the plastic viscosity of concrete. The elapsed ratio of concrete
decreased due to the delay in the setting time of HPMC. Regardless of the amount and
combinations of HPMC, ST had an effect on increasing fluidity and reducing the elapsed
ratio, whereas WG had an effect on reducing fluidity and increasing the elapsed ratio.
These results are similarly reflected in all combinations of VMAs.

(2) Adding VMA caused a higher plastic viscosity compared to the plain sample. The
plastic viscosity and yield stress showed a proportional relationship, regardless of the
combinations of VMA and the elapsed time. Moreover, the plastic viscosity and yield
stress decreased when the slump flow increased, and increased when the slump flow is
decreased. This showed an inverse relationship between the plastic viscosity or yield stress
and the slump flow.

(3) The compressive strength at 28 days was found to be in the order of WG (36.1
MPa) > GG (29.7 MPa) > ST (25.9 MPa) > HL (24.8 MPa) > HH (24.4 MPa), compared to
when VMA was used alone. When two or more types of VMA were added, the unique
characteristics of VMA were exhibited and affected the compressive strength according to
the combinations of VMA.

(4) Using NPCE with VMA, it was possible to reduce the lack of fluidity and segrega-
tion, which were limited when using a polycarboxylate-based superplasticizer alone at low
binders (350 kg/m3). In conclusion, the combination of three types of VMA showed the
best fluidity (slump flow 595~630 mm at initial) without any segregation and bleeding, and
the compressive strength at 28 days was also the highest at 34–37 MPa. From these results,
the combination of PCE (2.0%) + HPMC (0.3%) + WG (0.1%) + ST (0.1%) showed an 18%
higher plastic viscosity than Plain and a −4.4% lower yield stress than Plain. As a result, it
was considered to have the best fluidity performance (slump flow 630 mm) of NSHFC.
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