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Abstract: Archival formalin-fixed, paraffin-embedded (FFPE) tissues and their related diagnostic
records are an invaluable source of biological information. The archival samples can be used for
retrospective investigation of molecular fingerprints and biomarkers of diseases and susceptibility.
Radiobiological archives were set up not only following clinical performance such as cancer diagnosis
and therapy but also after accidental and occupational radiation exposure events where autopsies or
cancer biopsies were sampled. These biobanks provide unique and often irreplaceable materials for
the understanding of molecular mechanisms underlying radiation-related biological effects. In recent
years, the application of rapidly evolving “omics” platforms, including transcriptomics, genomics,
proteomics, metabolomics and sequencing, to FFPE tissues has gained increasing interest as an
alternative to fresh/frozen tissue. However, omics profiling of FFPE samples remains a challenge
mainly due to the condition and duration of tissue fixation and storage, and the extraction methods
of biomolecules. Although biobanking has a long history in radiation research, the application of
omics to profile FFPE samples available in radiobiological archives is still young. Application of the
advanced omics technologies on archival materials provides a new opportunity to understand and
quantify the biological effects of radiation exposure. These newly generated omics data can be well
integrated into results obtained from earlier experimental and epidemiological analyses to shape a
powerful strategy for modelling and evaluating radiation effects on health outcomes. This review
aims to give an overview of the unique properties of radiation biobanks and their potential impact on
radiation biology studies. Studies recently performed on FFPE samples from radiobiology archives
using advanced omics are summarized. Furthermore, the compatibility of archived FFPE tissues for
omics analysis and the major challenges that lie ahead are discussed.
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1. Introduction

Formalin-fixed, paraffin-embedded (FFPE) tissue archives and their well-annotated
clinical records represent an invaluable source for prospective and retrospective studies.
FFPE tissues are routinely provided from biopsies or autopsies and stored in significant
quantities over many years. These biomaterials offer an extensive resource of normal and
diseased tissue for screening identification and validation of biomarkers, investigation of
disease mechanisms and the development of new therapies [1–4].

Biobanking has a long tradition in radiation research [5–7]. The radiobiological
archives contain not only the clinical samples obtained during cancer diagnostic or therapy
but are also exclusively collected after different radiation scenarios including occupational
or accidental exposure [5,6]. The radiation biology biobanks also contain the samples
collected from well-established animal studies [6]. In addition to blood and cells, a large
number of FFPE tissues were also stored in these archives. These samples, which frequently
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are the only source of biomaterial available, can be used to understand the molecular
mechanisms involved in the biological effects of radiation exposure,

Advances in high-throughput molecular analysis in recent years have revolutionised
our knowledge of biological processes. Global analyses of proteins, RNA, genes, metabo-
lites and lipids are the goal of highly advanced omics technologies such as proteomics,
transcriptomics, genomics, metabolomics and lipidomics. Recently, the number of studies
using omics approaches to profile the FFPE tissues has markedly increased. However, the
application of omics technologies remains challenging mainly due to the harsh fixation
and embedding process that severely impacts the integrity and quality of biomolecules [3].
Considerable efforts have been made to develop the optimized and standardized protocols
for extraction and separation of protein, DNA and RNA from FFPE samples by testing
different factors such as buffer components, detergents, pH, temperature, pressure and
others [8–11]. These methods aim to optimise reproducible, cost-effective and efficient
protocols that are compatible with omics techniques. Analytical protocols for the profiling
of FFPE samples have been also established, optimized and used in radiation biology
studies [12–14]. In this review, we describe the characteristics of radiobiological archives
with available FFPE samples and the recent advances in omics analysis on FFPE tissues
in radiation research. The main problems and challenges to be overcome for the optimal
application of omics on radiobiological FFPE samples are further discussed.

2. Radiation Biology Archives

Biobanking has a very long history in radiation research. Over the past 100 years, the
large scale of animal and human biomaterials from different radiation exposure scenarios
were collected, proceeded, and stored. These archival samples often originated from non-
repeatable experiments or unique events. Retrospective studies of such biobanks allow
understanding of the biological effects of radiation exposure and improve interpretation of
the epidemiological data for radiation risk assessment. Accordingly, efforts were made to
rescue both endangered data and biomaterials [15].

The FFPE samples and, in part, their characterized tagged data are a substantial
part of radiobiological archives. The majority of FFPE blocks in radiobiological archives
are from animal experiments, but human tissues are also available. The information of
several radiobiological biobanks and associated large-scale data collections are available in
the STORE database (https://www.storedb.org) (accessed on 18 November 2021). In the
following section, we summarize the information about the biobanks with available FFPE
samples and related databases. Both the archives and the databases are listed below, with a
concise overview in Table 1 for animal material and in Table 2 for human material.

2.1. FFPE Blocks from Animal Experiments

A major archive of biological animal material is hosted by Northwestern University,
Chicago, USA. The so-called NURA archive houses the JANUS Mouse Archive including
data and tissues from 50,000 mice exposed to gamma and neutron irradiation during
11 different studies, as well as the Argonne Dog Archive including data and tissues from
5000 beagle dogs exposed to gamma irradiation and internal emitters at Argonne National
Laboratory. It also includes the Lovelace Dog Archive with data and tissues from beagle
dogs exposed to internal emitters and inhaled radionuclides at the Lovelace Inhalation
Toxicology Research Institute (ITRI). A Radiation Biology Wiki (http://janus.northwestern.
edu/nira/index.php/Main_Page) (accessed on 18 November 2021) holds summary reports
and documentation of the research related to these three archives [7,16,17].

The Southern Urals Biophysical Institute (SUBI) in Ozyorsk, Russian Federation, con-
ducted a large number of animal studies, mostly with Wistar rats. For six of these experi-
ments study descriptions are available through the STORE database (http://dx.doi.org/doi:
10.20348/STOREDB/1056) (accessed on 18 November 2021); biological samples and the
related data can be accessed on request. The studies dealt with the effects of incorporated
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tritium or tritium oxide, incorporated plutonium and external gamma radiation, partly
with a mixture of these.

Along with the German Thorotrast Study [18], a large study was conducted by the
German Cancer Research Center (DKFZ) on rats to investigate the roles of the radioactive
and chemical components in Thorotrast gel-induced tumours of the lung, liver or spleen.
About 6000 annotated FFPE blocks are held by the German Federal Office for Radiation
Protection (BfS), Neuherberg, Germany (http://dx.doi.org/doi:10.20348/STOREDB/1017)
(accessed on 18 November 2021). Both the study-related data and the blocks are available
on request.

In Japan, the Japan-Store house of animal radiobiology experiments (J-SHARE) has
been established, aimed at providing access to data and samples from experiments with
mice and rats conducted at the Institute of Radiological Sciences of the National Institutes
for Quantum and Radiological Science and Technology (QST), Chiba, Japan [19]. Exposures
included X-rays, gamma-rays, neutrons as well as a range of heavy ions, including carbon
ions as used in radiotherapy. Currently, efforts are made to make the J-Share website
accessible to the scientific community.

The Institute for Environmental Sciences (IES) in Aomori, Japan, has a unique Low
Dose Radiation Effects Research Facility (LERF) which was established to study the biolog-
ical effects of long-term low-dose-rate irradiation on large populations of mice [20]. IES
maintains and stores, among other materials, all FFPE samples. Data and samples can be
accessed on request [21].

After the Fukushima catastrophe, an archive system was established at Tohoku Uni-
versity, Japan, composed of frozen tissues, FFPE blocks, blood samples and extracted
DNA and RNA from cattle and wild Japanese macaques in and around the evacuation
zone [22–24]. These materials and their associated data are available on request [23].

The French Nuclear Safety Authority (ASN), Montrouge, France, conducted a number
of large-scale experiments with rats for different exposure scenarios including plutonium
or neptunium inhalation, intravenous plutonium citrate injection and wound contamina-
tion by actinides [25–27]. Descriptions of these studies are available through the STORE
database (https://www.storedb.org/store_v3/study.jsp?studyId=1005) (http://dx.doi.
org/doi:10.20348/STOREDB/1005, http://dx.doi.org/doi:10.20348/STOREDB/1007 and
http://dx.doi.org/doi:10.20348/STOREDB/1022) (accessed on 18 November 2021).

Table 1. The FFPE animal tissue listed in STORE DB and/or available in the radiobiological archives.

Place Name of
Archive Species Tissue Exposure * Source of

Information DOI Reference

BfS a n.a. Rats Various Internal
(Thorotrast) storedb.org http://dx.doi.org/doi:10

.20348/STOREDB/1017 [18]

SUBI b n.a. Wistar rats,
CBA mice Various

Tritium;
tritium and

external
gamma; Pu

storedb.org

http://dx.doi.org/doi:10
.20348/STOREDB/1041

http://dx.doi.org/doi:10
.20348/STOREDB/1056

ASN c n.a. Rats Lung Inhalation
Pu; Np

storedb.org
ERA; study ID 23.1

http://dx.doi.org/doi:10
.20348/STOREDB/1005 [25]

ASN n.a. Rats Bone Pu citrate i.v. storedb.org http://dx.doi.org/doi:10
.20348/STOREDB/1007 [26]

ASN n.a. Rats Various
Wound

contamination
with actinides

storedb.org http://dx.doi.org/doi:10
.20348/STOREDB/1022 [27]

QST-NIRS d J-Share Mice; rats Various Various storedb.org http://dx.doi.org/doi:10
.20348/STOREDB/1138 [19]

IES e n.a. Mice; rats Various External
gamma storedb.org http://dx.doi.org/doi:10

.20348/STOREDB/1139 [20]
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Table 1. Cont.

Place Name of
Archive Species Tissue Exposure * Source of

Information DOI Reference

Tohoku
University f n.a.

Cattle wild
Japanese
macaques

Various
Gamma

(external and
internal)

storedb.org http://dx.doi.org/doi:10
.20348/STOREDB/1141 [22–24]

Northwestern
University g NURA Mice;

Beagle Dogs Various
External

neutron; and
gamma

storedb.org
http://janus.

northwestern.edu/
wololab/index.

php?go=archives

http://dx.doi.org/doi:10
.20348/STOREDB/1094 [7,16,17]

a Federal Office for Radiation Protection, Germany; b Southern Urals Biophysical Institute, Russian Federation; c The French Nuclear
Safety Authority, Fontenay-aux-Roses, France; d National Institutes for Quantum and Radiological Science and Technology (QST)-National
Institute of Radiological Sciences (NIRS), Chiba, Japan; e Institute of Environmental Sciences, Aomori, Japan; f Department of Pathology,
Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan; g Northwestern University, Chicago, USA; n.a. non-
applicable; * All animal experiments include at least one unexposed control group. (All DOIs have been accessed on 18 November 2021).

Table 2. The FFPE human tissue listed in the STORE DB and/or available in the radiobiological archive.

Place Name of Archive Tissue Exposure Source of
Information DOI Reference

BfS, Germany Wismut Uranium
Miners Biobank Lung

Radon, Radon
progeny,
longlived

Radionuclides,
external gamma

storedb.org
http://dx.doi.

org/doi:10.20348
/STOREDB/1034

[28,29]

UA, RUS Chernobyl Tissue
Bank Thyroid Chernobyl

catastrophy

storedb.org www.
chernobyltissuebank.

com

http://dx.doi.
org/doi:10.20348
/STOREDB/1092

[30]

RERF, Japan a Adult Health
Study (AHS) Various Atomic bomb

survivors

storedb.org
https:

//www.rerf.or.jp/en/
programs/research_
activities_e/outline_

e/progahs-en/

http://dx.doi.
org/doi:10.20348
/STOREDB/1137

[31]

Washinton State
University, USA NHRTR/USTUR Various Internal; actinides

storedb.org
https:

//ustur.wsu.edu/

http://dx.doi.
org/doi:10.20348
/STOREDB/1140

[32]

Nagasaki
University, Japan

The Nagasaki
Atomic

Bomb Survivors’
Tumor

Tissue Bank of
Atomic Bomb

Disease Institute

Various cancer
and

surrounding
tissue

Atomic bomb
survivors

storedb.org
https://www.

genken.nagasaki-u.ac.
jp/pathology/en/tt-
bank/index_e.html

http://dx.doi.
org/doi:10.20348
/STOREDB/1142

[33]

SUBI b RHTR Various Actinides;
external gamma

storedb.org
http:

//www.rhtr.subi.su/
?requests/new

http://dx.doi.
org/doi:10.20348
/STOREDB/1149

[34]

Nagasaki
University, Japan

The Nagasaki
Atomic Bomb

Survivors’ Tumor
Tissue Bank of
Atomic Bomb

Disease Institute

Various Thorotrast

https://www.
genken.nagasaki-u.ac.
jp/pathology/en/tt-
bank/index_e.html

[7,23,35,36]

a Radiation Effects Research Foundation, Hiroshima, Japan; b Southern Urals Biophysics Research Institute, Ozyerk, Russian Federation.
(All DOIs have been accessed on 18 November 2021).

2.2. FFPE Material from Humans

From 1946 to 1990, extensive uranium mining was conducted by the former SDAG
Wismut in Saxony and Thuringia which are southern parts of the former German Demo-
cratic Republic (GDR). The health services of the SDAG Wismut included an Institute
of Pathology [37,38]. In the 1990s, the BfS began constructing the German uranium

http://dx.doi.org/doi:10.20348/STOREDB/1141
http://dx.doi.org/doi:10.20348/STOREDB/1141
http://janus.northwestern.edu/wololab/index.php?go=archives
http://janus.northwestern.edu/wololab/index.php?go=archives
http://janus.northwestern.edu/wololab/index.php?go=archives
http://janus.northwestern.edu/wololab/index.php?go=archives
http://dx.doi.org/doi:10.20348/STOREDB/1094
http://dx.doi.org/doi:10.20348/STOREDB/1094
http://dx.doi.org/doi:10.20348/STOREDB/1034
http://dx.doi.org/doi:10.20348/STOREDB/1034
http://dx.doi.org/doi:10.20348/STOREDB/1034
www.chernobyltissuebank.com
www.chernobyltissuebank.com
www.chernobyltissuebank.com
http://dx.doi.org/doi:10.20348/STOREDB/1092
http://dx.doi.org/doi:10.20348/STOREDB/1092
http://dx.doi.org/doi:10.20348/STOREDB/1092
https://www.rerf.or.jp/en/programs/research_activities_e/outline_e/progahs-en/
https://www.rerf.or.jp/en/programs/research_activities_e/outline_e/progahs-en/
https://www.rerf.or.jp/en/programs/research_activities_e/outline_e/progahs-en/
https://www.rerf.or.jp/en/programs/research_activities_e/outline_e/progahs-en/
https://www.rerf.or.jp/en/programs/research_activities_e/outline_e/progahs-en/
http://dx.doi.org/doi:10.20348/STOREDB/1137
http://dx.doi.org/doi:10.20348/STOREDB/1137
http://dx.doi.org/doi:10.20348/STOREDB/1137
https://ustur.wsu.edu/
https://ustur.wsu.edu/
http://dx.doi.org/doi:10.20348/STOREDB/1140
http://dx.doi.org/doi:10.20348/STOREDB/1140
http://dx.doi.org/doi:10.20348/STOREDB/1140
https://www.genken.nagasaki-u.ac.jp/pathology/en/tt-bank/index_e.html
https://www.genken.nagasaki-u.ac.jp/pathology/en/tt-bank/index_e.html
https://www.genken.nagasaki-u.ac.jp/pathology/en/tt-bank/index_e.html
https://www.genken.nagasaki-u.ac.jp/pathology/en/tt-bank/index_e.html
http://dx.doi.org/doi:10.20348/STOREDB/1142
http://dx.doi.org/doi:10.20348/STOREDB/1142
http://dx.doi.org/doi:10.20348/STOREDB/1142
http://www.rhtr.subi.su/?requests/new
http://www.rhtr.subi.su/?requests/new
http://www.rhtr.subi.su/?requests/new
http://dx.doi.org/doi:10.20348/STOREDB/1149
http://dx.doi.org/doi:10.20348/STOREDB/1149
http://dx.doi.org/doi:10.20348/STOREDB/1149
https://www.genken.nagasaki-u.ac.jp/pathology/en/tt-bank/index_e.html
https://www.genken.nagasaki-u.ac.jp/pathology/en/tt-bank/index_e.html
https://www.genken.nagasaki-u.ac.jp/pathology/en/tt-bank/index_e.html
https://www.genken.nagasaki-u.ac.jp/pathology/en/tt-bank/index_e.html


Appl. Sci. 2021, 11, 11108 5 of 17

miners cohort to investigate the potential health risks associated with occupational ra-
diation exposures and dust [28,39,40]. The archived biological samples including FFPE
tissues are now hosted by the Institute of Prevention and Occupational Medicine (IPA)
in Bochum, Germany. Overall, it harbours 28,975 autopsy cases and health data [41] that
have been collected from 1957 to 1994. Among these cases, 17,466 were identified as ura-
nium workers [29]. The long-term study of cohort and its follow-up includes information
on radon, quartz and arsenic exposure derived from work history, as well as informa-
tion on tumour subtypes and non-cancer diseases [28,39]. For more than 600 workers,
DNA and RNA were extracted from the FFPE tissue and stored at the German Ura-
nium Miners Biobank (http://dx.doi.org/doi:10.20348/STOREDB/1034), (accessed on
18 November 2021) hosted at BfS.

The Chernobyl Tissue bank inherits human thyroid material and was established after
the 1986 Chernobyl accident. Both data and material can be accessed on request [30]. The
US National Human Radiobiology Tissue Repository (NHRTR), which is associated with
the United States Transuranium and Uranium Registries (USTUR) (https://ustur.wsu.edu)
(accessed on 18 November 2021), contains a variety of biological material. Primarily it
comprises tissues obtained at autopsy from USTUR, including among other material tissue
blocks. The NHRTR also houses a collection of tissue material obtained from the terminated
Radium Worker study at Argonne National Laboratory.

For the Japanese Adult Health Study, a sub-cohort of 15,000 individuals of the life-span
study (LSS) of atomic bomb survivors, biological samples have been collected including
FFPE (https://www.rerf.or.jp/en/about/organization-en/chart-e/bio_e/) (accessed on
18 November 2021). Beginning in April 2008, a cohort study has been initiated at Nagasaki
University to analyse solid cancers and haemopoietic malignancies among atomic bomb
survivors. Biomaterial includes tumours and surrounding normal tissues [33]. These
tissues are removed at surgery and archived together with personal, historical dose and
demographic data.

The Russian Radiobiological Human Tissue Repository (RHTR), known as the Mayak
Worker Tissue Repository, samples and stores for a long period of time the human tissues
after chronic, low-dose radiation exposure. The RHTR enrolled two cohorts between 1951
to the present time including exposed workers at the Mayak facilities as well as the local
residents who were never occupationally exposed to ionizing radiation as controls. The
repository consists of surgical tissues and autopsy samples, together with blood samples
and DNA from parental-offspring trios [34]. The detailed information of the samples,
including FFPE tissues, are available on RHTR website (www.rhtr.subi.su) (accessed on
18 November 2021).

Data and material from the Japanese Thorotrast study developed by Tohoku University
were transferred to the Atomic Bomb Disease Institute of Nagasaki University, Japan.
Efforts are currently being made to make the website of the Thorotrast study accessible to
the scientific community.

2.3. Databases

The diversity and quantity of the samples available in radiobiological archives and the
volume of the datasets associated with them are prompting the radiation community to
design different platforms to manage big data collections. In addition to the above mentioned
JANUS database held by the Northwestern University, there are the European Radiobiolog-
ical Archives (ERA) (https://era.bfs.de) (accessed on 18 November 2021) [42,43] and the
STOREDB database (https://www.storedb.org) (accessed on 18 November 2021) [7]. The
ERA databank aims to preserve the information provided by the long-term animal studies
between the 1960s and 1990s on the effects of radiation exposure and radioactivity to make
them available to the scientific community for further evaluation. STOREDB hosted by the
German Federal Office for Radiation Protection (BfS) (https://www.bfs.de) (accessed on
18 November 2021) is a central access portal to information from radiobiology experiments
distributed across scientific institutions worldwide [7]. The database was developed with

http://dx.doi.org/doi:10.20348/STOREDB/1034
https://ustur.wsu.edu
https://www.rerf.or.jp/en/about/organization-en/chart-e/bio_e/
www.rhtr.subi.su
https://era.bfs.de
https://www.storedb.org
https://www.bfs.de
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funding from the Euratom Research and Training Programme and is intended to provide
a repository of primary data to support publications, protect data at risk of being lost
to the community, and maintain legacy data and links to archives, as well as links to
biological resource collections for radiobiology projects to facilitate systematic data sharing
and archiving [7]. The platform provides an opportunity for addressing newly arising
questions by re-analysing existing information or application of new analytical approaches
including omics on archival samples. Furthermore, the database provides Standard Oper-
ating Procedures (SOPs) on the storage and use of the biological samples. Access to the
STOREDB is free and is provided by users’ ORCID IDs through an intuitive web interface.
Any type of data or information can be uploaded, e.g., text or data files, PDFs, specs,
JPGs etc., i.e., no special format is needed. Copyright remains with the laboratory, and the
uploader can decide whether the data are locked, are accessible only on request, or are
donated to the public domain. The form of the license can be applied to all data by the
originating laboratory.

Not included in this review are repositories held at clinics and hospitals for their own
purposes (e.g., [44,45]), as it is not certain whether FFPE blocks from these institutions will
be made available to interested scientists from outside. Moreover, the authors are well
aware that the number of archives listed here might be incomplete.

Tables 1 and 2 provide an overview of the FFPE tissues that are made available on-
demand to interested scientists, although the procedures for accessing this valuable material
vary. While the process of how to obtain access to data and material is well structured in
some cases, particularly for the Chernobyl Tissue Bank, in most cases personal contact to
the Principal Investigators of previous studies or to those who oversee hosting the archive
is recommended. However, it must always be described precisely what scientific question
lies behind the request for access and how it is to be answered.

3. Main Challenges with Omics Analysis of FFPE

For decades FFPE tissues offered the standard materials for histopathological analysis
due to the well-preserved morphological architecture, ease of sample preparation, and
stability during long-term storage. The rapid development of emerging molecular technolo-
gies provides new opportunities for retrospective studies. For a long time, applying such
advanced approaches as omics analysis to archival samples were considered an almost
impossible task, mainly due to the loss of macromolecular integrity and quality during the
rough fixation, delayed embedding and conditions of long-term storage. The sequence of
events strongly affected the quality and quantity of protein and nucleic acids yielded from
FFPE tissue and hampered the accurate qualitative and quantitative analysis [3,46].

The changes occurring during cross-linking of proteins during the fixation of FFPE
tissue were investigated in several studies [47–49]. The most significant consequence of
formaldehyde fixation is the generation of a methylol modification at free lysine residues
that severely interferes with protein extraction and separation [47,50]. The modified lysine
residues remain inaccessible to protease during digestion, a phenomenon that results in a
preference for identifying tryptic peptides with the C-terminal arginine over lysine [47,50].
Furthermore, the use of conventional protein labelling techniques for quantitative pro-
teomic analysis of FFPE tissues is even less effective [47,50]. Since the majority of the
chemical labels used in quantitative proteomics target lysine residues, the formalin mod-
ification of lysin leads to inefficient labelling of FFPE material [51–53]. Several studies
were conducted to evaluate different protocols for the extraction of proteins of FFPE
tissues [8–11].

DNA, as the most stable species among biological macromolecules, is subject to
the cross-linking of cytosine residues, or spontaneous deamination/depurination of nu-
cleotides and fragmentation during the fixation procedure [54,55]. The formalin fixation
not only affects the quantity and purity of the DNA yield, but also causes misinterpretation
of the DNA sequence, particularly due to an increase in the level of artifactual mutation of
cytosine (C) to thymine (T) and guanine (G) to adenine (A) (C:G > T:A) [56]. Yet another
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known problem is the high fragmentation of DNA, probably caused by warm ischemic
time in operating rooms, or the type of formalin (buffered versus unbuffered) used, time of
fixation that all may result in low quantities DNA yields and therefore low quantities of am-
plifiable templates for analysis. In addition, formalin fixation produces non-reproducible
sequence artefacts due to DNA fragmentation and hydrolytic deamination [57]. Several
studies have reported the protocols to overcome these limitations for DNA microarray and
DNA sequencing [3,56–58]. These protocols also include bioinformatics or statistical tools
to allow for different mutation findings in fresh-frozen or FFPE tissue, considering different
allelic fractions, or distinguishing between clonal and subclonal mutations. In the same
line of evidence, mRNA extracted from FFPE tissues is mostly fragmented, degraded and
modified. Formaldehyde modification of RNA interferes with the base-pairing necessary
for hybridization and introduces the cross-linking of RNA to other macromolecules [58,59].
However, recent studies have demonstrated the feasibility of RNA analysis approaches
including RNA seq in FFPE samples [60–63]. In contrast to mRNA, miRNA showed more
stability and compatibility in FFPE for expression analysis [64–67]. The short length of
miRNA is probably responsible for the fact that they are minimally affected by methylol
cross-links during the fixation procedure, therefore their expression profile is comparable
to those from frozen tissue samples [67,68].

The conditions of FFPE preparation also pose a challenge for other omics approaches
such as metabolomics and lipidomics. In the meantime, the first reports describe the
technical feasibility of metabolome and lipidome profiling in FFPE tissue, opening up the
possibility of utilizing MS-based metabolic/lipid profiling of radiobiological FFPE samples
in the future [4,69].

More than general difficulties for analytical approaches using FFPE samples, some
concerns need to be addressed specifically for radiobiological archives. The first issue is
handling the FFPE tissues with long-lived internal emitters, in this case, the radioactivity
released by tissues needs to be carefully assessed before and during analysis.

A further problem is the lack of knowledge about the availability and quantity of
FFPE tissues sampled during or after radiotherapy in clinical biobanks. Although a large
volume of samples was continually collected from patients who received radiotherapy
in hospitals, it is surprisingly difficult to find accurate information about the number of
samples and their diagnostic outcome. It is fully understandable that the growing field
of omic-analysis on archival materials raises concerns of privacy, confidentiality and data
protection, but the extent to which these limitations affect the data and material sharing
surprises the authors. Ensuring an optimal mechanism for data protection and facilitating
scientific research is particularly important in the case of radiooncology biobanks.

4. Omics Analysis on FFPE Samples in Radiobiological Archives

The omics studies performed on FFPE samples of radiobiological archives have mainly
focused on the analysis of a molecular signature of the response of cancer tissue to radiation
exposure. There are only a few omics analyses on FFPE samples provided from normal
tissues such as the heart, lung and liver after irradiation. In the following sections, we
discuss the available omics studies performed on radiobiological archives.

4.1. Proteomics

The application of proteomics approaches in radiation research is well acknowl-
edged [70–72]. The proteome profiling offers a comprehensive platform to investigate the
cellular response of cancer and normal tissue to radiation exposure [73,74]. Proteomic anal-
ysis of FFPE samples as an alternative to fresh-frozen tissue has gained growing attention
in recent years [48,75–79]. However, the difficulties to achieve an optimal protein extraction
and separation make the application of quantitative proteomic analysis on FFPE samples
challenging. To optimize the quality and quantity of proteomic analysis of FFPE tissues, a
wide range of proteomic techniques were used [80]. The protein profile of FFPE cancer and
normal tissues was analysed using the well-established classical 2D electrophoresis and
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two-dimensional differential gel electrophoresis (2D-DIGE) [47,52,81,82]. To improve the
protein resolution pattern result in 2D, several extraction and focusing methods, including
liquid isoelectric focusing (LIEF), were applied before electrophoresis [47,77,81]. However,
these platforms often confirmed the difficulty in separating and identifying low abundance
proteins, especially those subjected to formalin-induced modification [47]. The separation
and identification of proteins from FFPE tissues have been greatly improved by gel-free
proteomics. The combination of different chromatography approaches with mass spec-
trometry makes gel-free proteomics a suitable technology for reducing the complexity of
the FFPE protein profile. A variety of methods such as nano-reverse phase LC (nano-RPLC)
tandem mass spectrometry [83], capillary isoelectric focusing (CIEF) [84], a multidimen-
sional separation platform, including capillary isoelectric focusing (CIEF)/nano-RPLC [85],
two-dimensional image-converted analysis of liquid chromatography, mass spectrometry
(2DICAL) [86], and surface-enhanced laser desorption ionisation time of flight mass spec-
troscopy (SELDI-TOF) [87] have been used to increase the resolution and identification
of proteins and peptides. The FFPE proteome has been quantified with label-based ap-
proaches such as iTRAQ [51] or DIGE [52,82]. However, in many of these studies, labelling
was not optimal as classical labelling targets lysine residues in a protein that are blocked
by the formalin modifications. Label-free approaches can markedly address the issues of
quantitative proteomic on FFPE tissues [12,14]. Imaging mass spectrometry combined with
Matrix-Assisted Laser Desorption/Ionization (MALDI MS) was also conducted on FFPE
tissue to identify the biomarker of cancer and drug development [80]. Protocols for the
extraction and analysis of proteins from the FFPE samples were established, optimised and
used in radiobiology studies [12,14,47].

To investigate the mechanism involved in different radiotherapy responses from
oropharyngeal carcinoma (OPC) patients, Sepiashvili et al. compared the proteome profiles
of human papillomavirus (HPV)-positive and HPV-negative OPC FFPE samples. The
multidimensional Protein Identification Technology (MudPIT) analysis showed significant
alterations in the proteins associated with the cell cycle, apoptosis, and immune response.
The level of the oncoprotein cortactin was enhanced in HPV-negative biopsies. The authors
compared their results to the published data on frozen HPV+ and HPV− OPC tissues [88]
and confirm the high level (70%) of protein co-identification in both studies. The authors
suggested that cortactin as a potential biomarker for radiation resistance contributes to
reduced survival in HPV-negative patients [89].

Dunne et al., investigated the proteome of FFPE samples collected from patients
treated by androgen deprivation and radiotherapy using nanoflow liquid chromatography-
MALDI MS/MS or after separation by 1D or 2D electrophoresis to identify the prognostic
biomarkers for prostate cancer (PC) [90]. Comparing the proteomics data of their study to
only a few available published data on frozen PC tissue confirmed identification of similar
proteins including a high abundance cytoplasmic, cytoskeletal and nuclear histones. The
analysis of FFPE proteomics data and further immunoblotting suggested that an alteration
in the ANXA2 expression served as a predictive marker for the metastatic potential of
prostate cancer [90].

To identify a predictive marker of chemotherapy and/or radiotherapy resistance
in patients with oral squamous cell carcinoma (OSCC), Matsukawa et al. compared the
proteome of FFPE samples obtained from patients who received preoperative chemother-
apy and/or radiotherapy followed by surgery, using nano-flow high-performance liquid
chromatography [91]. The FFPE samples of this study were provided from the different
groups of resistant and sensitive patients treated daily by fractional radiation exposure.
The proteome profiling and immunohistochemistry validation suggested galectin-7 as a
predictive marker of tumour resistance in OSCC patients [91].

Netto et al. used label-free proteomics to analyse the FFPE samples of nasopharyngeal
carcinoma (NPC) patients who were treated by intensity-modulated radiotherapy (IMRT).
The analysis identified that Epstein–Barr (EBV) and Herpes simplex (HSV) viruses-related
proteins markedly present in early-stage of cancer [92]. The authors suggested that identi-
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fied proteome signatures in their study is well-related to head and neck cancer onset and
can serve as potential targets for therapy but need further validation [92].

In contrast to archival tumour samples, the normal FFPE tissue in radiobiological
biobanks was not often analysed using proteomic approaches. To investigate the effect of
total body irradiation on the heart, Azimazdeh et al. used a label-free quantitative approach
to compare the FFPE heart tissues of sham- and total body irradiated C57BL/6 mice as a
model system. The mice hearts were isolated and fixed in formalin 24 h after the irradiation
and proteins were extracted and separated using an optimised protocol [47]. In good
agreement with data observed from proteome analysis of fresh-frozen hearts [12], the
study showed immediate alterations in cardiac metabolic enzymes and mitochondrial
proteins [12].

The same group used recently sequential urea/SDS extraction and filter-aided sample
preparation (FASP) digestion to analyse the late effects of chronic radiation exposure in
human FFPE heart autopsies from Mayak workers by label-free proteomics. Here authors
compared for the first time the proteome profiles of the fresh frozen and FFPE heart tissues
after chronic irradiation [14]. The proteome profile of the FFPE samples confirmed the
observations obtained from fresh-frozen cardiac tissue [93]. Although the experimental
design, sample size, analytical approaches make a direct comparison of the two studies
difficult, the main results of both studies were similar, indicating the changes in main
functional clusters of proteins involved in the heart metabolism and structure following
irradiation [14].

4.2. Genomics and Transcriptomics

Genomic approaches are widely applied in profiling clinical cancer samples and
biomarker discovery of diagnosis and prognosis. Comparison of the mutational burden of
a tumour to normal tissue provides insight into the tumour development due to environ-
mental exposures by the finding of specific mutational signatures of genotoxins [94], but
also allows to decipher the nature and timing of mutational processes and the contribution
of even rare germline variants increasing cancer risk [95].

FFPE tissues, with all known difficulties, offer attractive candidates for a compre-
hensive investigation of the cancer genome. High-throughput transcriptomics, including
microarrays and next-generation sequencing (NGS), is an emerging technology that enables
the study of genomes, epigenomes, and transcriptomes using limited sample material,
often used in cancer samples [3,96]. The potential of archival samples for high-throughput
transcriptome profiling has been well identified and discussed [97]. Efforts are given to
optimize microarray and next-generation sequencing technologies as well as associated
bioinformatics tools to develop a compatible platform to low input extracted nucleic acids
from FFPE tissues [61,98]. RNA extracted from FFPE samples is often not well compati-
ble with standard RNA-sequencing methods, where poly(A) selection or ribosomal RNA
(rRNA) depletion-based methods are the gold standard. Both approaches suffer from
a higher degree of RNA contamination and a lower number of alignable reads [96,99].
Several approaches have been developed to address the problem of degraded RNA in the
sequencing analysis. Veldman-Jones et al. used the nCounter platform from Nanostring
Technologies, which allows digital readout of up to 800 mRNA targets even when the RNA
is degraded [100]. An exome capture approach for RNA-seq from FFPE samples was also
developed. The platform maximizes RNA-seq libraries by including most reads in exons
regardless of the RNA quality [101]. Vahrenkamp et al. developed a so-called FFPEcap-seq
method suitable for sequencing capped 5-ends of FFPE RNA. To generate sequencing
libraries, the platform combines enzymatic enrichment of 5-capped RNAs with template
switching [96]. A recent comparison ranked platforms on their performance on FFPE
samples with different storage times [97]. Thereby 3′-sequencing approaches from Lexogen
and Qiagen were identified as highly reliable and cost-effective for old FFPE samples.

Despite considerable progress in the application of whole-genome sequencing on
FFPE samples, there are only a few studies available that analysed RNA and DNA isolated
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from FFPE materials from patients who received radiotherapy. These studies were mainly
designed to identify the tumour signature or biomarkers of radioresistance of cancer.

To investigate the mechanism underlying the poor outcome of radiochemotherapy
with and without cetuximab in cervical cancer (CC) patients, de la Rochefordiere et al.
screened the hotspot mutations by target sequencing on FFPE samples from patients who
were treated by chemotherapy combined with standard pelvic radiation therapy. The
authors showed that alterations in the PIK3CA pathway negatively affected the complete
response to radiochemotherapy. The analysis showed that CC patients with PIK3CA
mutation had trends to poorer disease-free survival (DFS) at 2 years [102].

Nuryadi et al. analysed the mutation signatures of radioresistant tumours by exon
sequencing of 409 cancer-related genes in FFPE samples of uterine cervical cancer (UCC)
patients who survived multiple rounds of radiotherapy [103]. The analysis indicated acti-
vating mutations in PIK3CA and KRAS, and putative inactivating mutations in SMAD4.
The authors further validated the association between this mutation signature and radiore-
sistance by cell-based experiments [103]. The same team later analysed the genetic profile
of FFPE tumours collected from UCC patients with local recurrence after carbon ion radio-
therapy using the same analytical platform [104]. The study identified mutations in FGFR3
and FGFR4 in the recurrent tumour compared with the treatment-naive tumour [104].

To investigate the association between tumour genetic profiles and radiotherapy
outcome, Yoshimoto et al. performed exon sequencing on cancer-related genes in FFPE
samples obtained from UCC patients following radiotherapy [105]. The analysis identified
the mutations in the intracellular tyrosine kinase domain of the FGFR gene family. The
observations were compared with data generated on FFPE and fresh-frozen samples in
previously published data where PIK3CA was often identified as a marker. The authors
argued that a low association of prognosis with PIK3CA is related to the tumour type
treatment. The authors also found worse 5-year progression-free survival (PFS) for FGFR
mutation-positive patients, suggesting a potential role for the FGFR signalling pathway in
UCC radioresistance [105].

In comparison to mRNA, miRNAs in FFPE tissues were shown to be more robust to
degradation, partially due to their smaller size. miRNAs are known to contribute to the
radiation response in several cancers [106–109].

Pajic et al. compared miRNA isolated from FFPE tumour samples of breast cancer
patients with and without local relapse using a microarray to identify the radioresistance
associated miRNA [107]. The analysis identified 11 miRNAs significantly differentially
expressed between the two groups. Among them, overexpressed miR-139-5p was selected
for further validation. The authors showed that the miR-139-5p and its targets were strong
predictive biomarkers for radiation sensitivity in vitro and correlated with outcomes in
radiotherapy-treated patients in breast cancer cohorts [107].

To identify the miRNAs signature for radioresponse of laryngeal squamous cell car-
cinoma (LSCC), Maia et al. analysed the expression pattern of miRNAs in radioresistant
and radiosensitive tumours of LSCC patients treated with primary radiation therapy [110].
This analysis and validation of additional samples indicated that the expression level of
miR-296-5p was associated with radioresistance and recurrence properties of early-stage
laryngeal cancer [110].

In contrast to studies performed to identify the radioresistance profile of the tumour,
there are only a few studies that investigate the mechanism of radiation-induced cancer
using FFPE samples available in radiation archives.

Using array comparative genomic hybridization (aCGH), Selmansberger et al. anal-
ysed the genomic copy number of radiation-associated papillary thyroid carcinoma in
FFPE tissues of the Ukrainian–American cohort [111]. The study identified a significant
association between single-copy number alterations (CNAs) and clinical parameters and
patient data, including individual gender and radiation dose [111].

Wilke et al. analysed the genomic copy number signature associated with radiation
exposure in post-Chernobyl breast cancer [112]. The authors compared FFPE tumours
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obtained from exposed female Chernobyl clean-up workers and evacuees and matched
non-exposed control patients by aCGH. The analysis revealed a significant association
of a set of nine signatures of CNAs with radiation exposure but not with any clinical
characteristics of the patients and radiation dose [112].

Unlike cancer, not many studies have analysed RNA or miRNA from FFPE lung or
heart to investigate the negative effect of radiation exposure on normal tissue.

The levels of miR-21 and miR-146a as potential biomarkers of heart disease were
measured using FFPE heart tissues in the proteomic study on Mayak autopsies [93]. The
analysis showed significant upregulation of both miRNAs in the highest dose group
compared to the control and lower dose groups [93].

5. Lessons from Past for Future

With a rapidly growing number of advanced omics approaches being used in trans-
lational research, the need for biological samples is continuously increasing. Big data
generated by omics technologies need to be validated for biological plausibility and repro-
ducibility, especially if the findings from in vitro or in vivo models are to be translated to
humans. The use of a larger sample size provides additional material for further validation
to address the problems of variability and heterogeneity of omics data with adequate
statistical power. In the absence of sufficient frozen samples, FFPE samples, with their
countless numbers, ease of storage and rich clinical information, can indeed provide the
optimal materials for such retrospective analyses. Unfortunately, the use of FFPE samples is
not hassle-free. The first problem is that the initial purpose for tissue collections is often not
prospectively defined based on the requirements and capacity of future analysis platforms
such as omics. In addition, the conditions for tissue collection, processing and storage are
not yet uniform across the laboratories. Protocols for isolation, extraction and separation
of biomolecules from FFPE samples are not consistently standardised, and storage and
sharing of archival materials and related information are not yet optimal.

To address these obstacles, the radiation biology biobanking policy and its infrastruc-
ture need to be improved. The optimal quality and quantity of FFPE samples must be well
foreseen in the main strategy of tissue collection, oriented towards omics analysis.

In an optimal platform, the facility and knowledge are already available to establish
uniform protocols for tissue collection and processing, monitor storage condition and
status and standardise protocols for biomolecule isolation and extraction. It should be
borne in mind that the maintaining of the archival tissues as well as the development of
cost- and time-effective protocols require a distinct universal institutional collaboration
scientifically and economically.

To evaluate the quality and quantity of omics data derived from FFPE tissues, several
studies performed analysis on paired frozen and FFPE samples [113,114]. Comparison of
frozen and FFPE tissues is a crucial strategy to evaluate extraction methods and ultimately
the validity of FFPE-omics data. Although these studies highlighted the difficulties in FFPE
profiling, they were often able to confirm the compatibility, reproducibility, and consistency
of FFPE samples for high-throughput omics analyses. Proteomics and transcriptomics anal-
yses have not only demonstrated the applicability of extraction, isolation, and separation
of biomolecules from FFPE tissue but have also shown a significant overlap in protein and
RNA identification and quantification between FFPE and fresh frozen samples [75,113,114].
Unfortunately, such comparisons for radiological FFPE materials have been very limited.
One reason for this is that the additional collection of fresh tissue is so time-consuming
and costly that it is not a standard part of routine clinical practice in cancer diagnosis and
therapy. This is all the more true for samples taken during a radiation disaster, where
priorities are still set differently. In the absence of matched frozen samples, FFPE omics
derived results need at least to be compared with available data from published studies
using similar analytical platforms. An important issue underscores the importance of
principles of findability, accessibility, interoperability, and reusability (FAIR) data sharing
in the radiation community. Clinical documentation and subsequently general agreements
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on sharing samples and related data also need to be improved. Standardized data acqui-
sition and data storage, as well as machine-readable output data, will facilitate sharing
of metadata and available experimental data. General agreements on how to manage
archive material and related data are urgently needed for efficient universal material and
data sharing.

The available database requires support and further promotion to cover a broader
spectrum of archival samples and facilitate sample and data sharing effectively. During the
preparation of this review, the authors were concerned to provide adequate information
on clinical FFPE tissue samples collected from patients receiving radiotherapy. The lack
of information about these types of FFPE specimens and the difficulty in sharing this
information is an issue that needs to be addressed. Here an enhanced exchange with the
specific existing medical fields is urgently warranted.

Another problem is related to FFPE samples prepared on normal tissues such as
the heart, lung, brain or liver. Although the study of non-cancerous diseases such as
CVD, pulmonary fibrosis and cognitive impairment has received a priority in radiation
research, there is still a significant knowledge gap in these areas. Unfortunately, there are
not enough omics studies performed on FFPE samples of normal tissue. Omics analysis on
FFPE normal tissue needs to be effectively promoted to uncover the molecular mechanism
underlying these diseases.

Despite these challenges, there are promising developments to further boost the
exploitation of omics data from radiological FFPE samples. New computational tools for
batch corrections will further facilitate the integration of data from different techniques
and therefore enable the combination of new data with pre-existing. This seems to be
especially important for the limited materials in radiological archives. Great potential
to further understand radiation-induced processes may lie in the integrative analysis of
FFPE samples with multiple omics platforms followed by a merged analysis of the data,
instead of a post-analysis integration [115]. Up to now such analysis unfortunately is
missing for radiological FFPE samples. Finally, it is important to note that omics data from
FFPE profiles have great potential to be combined with classical oncopathology findings
and epidemiologic data to meet the criteria for retrospective studies. Emerging research
areas such as radiomics, which employs artificial intelligence or advanced computational
data management tools, can improve the status of radiation biobanking and strengthen
observations from high-throughput omics on archival samples. All together, radiation
biology archives remain as a treasured source of samples and knowledge to be explored
for understanding the biological effects of radiation exposure, the knowledge that has been
processed in the past serving as a valuable resource to plan for the future.
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