
 
 

 

 
Appl. Sci. 2021, 11, 11086. https://doi.org/10.3390/app112311086 www.mdpi.com/journal/applsci 

Article 

Underexposed Vision-Based Sensors’ Image Enhancement for 
Feature Identification in Close-Range Photogrammetry and 
Structural Health Monitoring 
Luna Ngeljaratan 1,2 and Mohamed A. Moustafa 1,* 

1 Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA;  
lngeljaratan@nevada.unr.edu 

2 Research Center for Biomaterials, National Research and Innovation Agency, Cibinong 16911, Indonesia 
* Correspondence: mmoustafa@unr.edu 

Featured Application: Close-range photogrammetry and structural health monitoring of civil in-
frastructures in challenging lighting environments. 

Abstract: This paper describes an alternative structural health monitoring (SHM) framework for 
low-light settings or dark environments using underexposed images from vision-based sensors 
based on the practical implementation of image enhancement algorithms. The proposed framework 
was validated by two experimental works monitored by two vision systems under ambient lights 
without assistance from additional lightings. The first experiment monitored six artificial templates 
attached to a sliding bar that was displaced by a standard one-inch steel block. The effect of image 
enhancement in the feature identification and bundle adjustment integrated into the close-range 
photogrammetry were evaluated. The second validation was from a seismic shake table test of a 
full-scale three-story building tested at E-Defense in Japan. Overall, this study demonstrated the 
efficiency and robustness of the proposed image enhancement framework in (i) modifying the orig-
inal image characteristics so the feature identification algorithm is capable of accurately detecting, 
locating and registering the existing features on the object; (ii) integrating the identified features 
into the automatic bundle adjustment in the close-range photogrammetry process; and (iii) as-
sessing the measurement of identified features in static and dynamic SHM, and in structural system 
identification, with high accuracy. 

Keywords: structural health monitoring; vision-based sensor; underexposed images; image en-
hancement; feature identification; system identification; accuracy 
 

1. Introduction 
In recent years, vision-based sensors have been significantly developed for structural 

health monitoring (SHM) of engineering structures, and depend strongly on the acquisi-
tion of high-quality images or videos [1–17]. However, monitored images or videos rarely 
meet the computer vision (CV) requirements to be processed further when the SHM is 
conducted during the night and in hazy atmospheres, or under merely dark settings due 
to the camera design trade-off. Collected data from these environments are lacking visible 
details and result in underexposed and low-contrast images or videos that are not only 
dim for human vision, but also challenging to be interpreted. They may not capture im-
portant image characteristics such as sharpness, contrast, or dynamic range, leading to 
difficulties in analysis using image segmentation, structure from motion, pattern recogni-
tion, detection and matching, or other CV algorithms. Without adequate lighting, more 
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hardware or tools should be incorporated into the SHM system. Alternatively, further im-
age processing should be conducted before employing these algorithms to enable feature 
identification, track structural movement, or identify structural vibration characteristics. 

Only limited works are solely dedicated and reported for vision-based SHM in a dark 
or night environment using real images. Li et al. [18] conducted a dynamic test using a 
smartphone and Kim et al. [19] installed a vision-based monitoring system equipped with 
a digital camera with a zoom lens on a three-span cable-stayed bridge. However, these 
two studies were conducted in low light and completely dark settings without additional 
lighting, so the SHM was unable to identify the monitored object [19] and a significant 
quantity of time-signals were missing in the data [18]. To solve these problems, a small 
number of studies that added additional components to the vision-based system have 
been reported. An SHM using a smartphone camera with a laser device was reported by 
Li et al. [20]. Choi et al. [21] proposed a night vision camera equipped with an IR pass 
filter to remove the red-eye effect in the infrared region. Digital cameras with LED lights 
as targets were used for night monitoring as evaluated by Feng et al. [22]. In terms of 
accuracy, these studies showed good precision and promising results; however, they only 
validated their works using low-amplitude testing. 

Post-processing underexposed images using image enhancement algorithms is also 
a solution as it improves the image quality. Histogram equalization [23,24] was used to 
enhance image gray resolution for crack detection [25] and crack monitoring from thermal 
imaging [26]. Wavelet transforms [27,28] were used to correct vision-based images for 
damage and crack detection [29,30] and fatigue crack detection [31]. Contrast enhance-
ment was conducted on vision-based images to separate the crack and the background 
area [32], and the advanced deep learning method was capable of autonomously detecting 
concrete cracking, steel corrosion, and delamination [33]. A recent study by Zollini et al. 
[34] deployed UAV monitoring and applied a contrast enhancement technique on imag-
ing photogrammetry to enable monitoring on the deteriorated concrete area. Image en-
hancement is also commonly integrated into other remote sensing fields such as satellite 
imagery [35] and aerial system imagery [36]. However, at the present time, almost no rel-
evant works can be referred to in this study that are related to vision-based system image 
enhancement with specific implementation for vibration SHM purposes. 

Although prior studies successfully conducted SHM under low-light settings and 
night environments with good accuracy and by integrating image enhancement methods, 
several research gaps can still be identified. First, an alternative SHM framework can be 
proposed to improve the real vision-based SHM data under the complexity of a dark en-
vironment without assistance from additional equipment or hardware. Second, a specific 
study of vibration-based SHM in a dark environment should be conducted because avail-
able studies were only proposed for the damage-detection SHM. Third, more experiments 
are necessary to identify SHM accuracy, ranging from a very small displacement to higher 
amplitudes, as the prior works only validated their SHM framework under a very low 
amplitude of dynamic excitation. To fill these gaps, this study proposes the integration of 
image enhancement algorithms for low-light settings and dark environments. The objec-
tive of this study is to modify the underexposed and low-contrast image characteristics to 
improve their quality before implementation into automatic processing of bundle adjust-
ment in close-range photogrammetry. The goal is to assess the accuracy of the enhanced 
images in measuring displacement and in identifying structural dynamic properties 
through system identification. 

2. Methods 
Remotely operated vision systems equipped with cameras, sensors, lighting, and nat-

ural or artificial features form an image through a process. This process starts from a light 
source with an intensity, polarization, and color spectrum that travels through a medium, 
then hits and is scattered on the surface of an object. The reflected rays on the object sur-
face are captured by a camera sensor, and are then converted into electrons to form a two-
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dimensional pixel intensity map, i.e., an image [37]. Therefore, lighting directly affects the 
pixel intensity map and significantly simplifies the applied classical to advanced matching 
algorithms procedure, if the object is illuminated adequately [18,38–42]. Matching princi-
pals from the classical correlation coefficient [1,10,43–46], intensity interpolation [47–50], 
Newton–Raphson method [51–53], gradient-based method [54–57], and genetic algorithm 
[58–60] to the advanced artificial and convolutional neural network [61–66] requires a 
high dynamic range of grayscale values, sharp edges, and high contrast images. These 
approaches can be challenging to implement because automatic and robust measurement 
identification and matching at either the pixel or the sub-pixel level is difficult for large 
image data captured under a low-light setting. Therefore, as shown in Figure 1, image 
enhancement is proposed in this study as an SHM framework specifically for monitoring 
in low-light and dark environments. It is implemented in close-range photogrammetry 
and SHM imaging that requires feature detection and computes displacement based on 
template matching. 

 
Figure 1. Proposed framework for underexposed and low-contrast image enhancement that incorporates a close-range 
photogrammetry procedure for application in SHM. 

2.1. Feature Detection Problems in Low-Light Setting and Dark Environment 
Examples of SHM images captured by two types of cameras in the laboratory envi-

ronments are shown in Figure 2. The monitoring of these structures completely relied on 
the ambient light. Without extra lighting, it is difficult to stop fast action or to maximize 
the depth of field, and these factors impact the brightness of the captured images, result-
ing in the underexposed images shown in Figure 2a,c. When using commercial DSLR cam-
eras, a higher ISO should be set to compensate for the dim light. Without proper lighting, 
the DSLR system will capture a low-contrast image, as shown in Figure 2e, especially 
when a fast shutter speed is required in high-speed testing. 

For a vision-based sensor with a tracking system based on a specifically designed 
artificial feature or template [67] as shown in Figure 2, separating the black background 
from the white template rings is the fundamental step before applying a feature detection 
algorithm. The background is defined as the template region with the lowest gray level 
intensity (black). The object is identified as the white circle feature that is separated from 
the background in an area of the whole template Point Spread Function (PSF) size with a 
higher density. Then, the template is detected based on the principles of the scale-space 
theory [68,69] such that the center of the circle is identified based on second-order partial 
derivatives of the Laplacian of Gaussian (LoG). When the template is illuminated suffi-
ciently and the vision system exposure is set appropriately, the circle center and template 
can be registered and identified automatically as shown in Figure 2g. It is clearly shown 
in Figure 2a,c that no features on the templates can be identified as there is no distinction 
between the background and the object. Even though the structure is visible as a higher 
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ISO is set on the DSLR cameras as shown in Figure 2e, the low-level of the dynamic range 
due to the low-contrast image only detects a few templates and falsely identifies a few 
backgrounds as the object. Therefore, completely relying on the ambient light without any 
additional lighting will lose image details and makes it challenging for CV algorithms to 
automatically extract their important features. 

 
Figure 2. Underexposed and low-contrast images with their associated enhanced versions and identified gray level inten-
sity (green): (a–d) images from high-speed cameras, (e–f) images from digital cameras, (g) normal image from a digital 
camera with a zoomed view of detected templates and gray level intensity. 

2.2. Image Enhancement Algorithms 
Based on the modified area, image enhancement can be categorized as the local and 

global enhancement methods; more about the application of these methods on grayscale 
images can be found in Pathak et al. [70]. This study focuses on improving the image 
characteristics using the global instead of the local method, with the explanation as fol-
lows. Vision-based SHM has the capability of measuring multiple locations at the same 
time by tracking the movement of the artificial templates. In monitoring large-scale struc-
tures, these templates are distributed in the entire structure component as shown in Figure 
2f. This means that these templates should be correctly identified in the image after the 
enhancement process. Local operations will be less efficient for this purpose as processing 
multiple targets is more time-consuming. These operations also result in noise and other 
types of spatial artifacts that will affect the background separation and feature detection, 
which requires clarity of the processed images. 
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The mathematical fundamental of global image enhancement is to find the mapping 
function, ℱ, to improve the quality of input image, 𝐼(𝑥, 𝑦), to the optimum output im-
age, 𝑂(𝑥, 𝑦) as shown in Equation (1): 𝑂(𝑥, 𝑦) =  ℱ(𝐼(𝑥, 𝑦)) (1) 

In this study, five global image enhancement algorithms as shown in Figure 1 are 
implemented to improve vision-based image quality. The algorithms are contrast stretch-
ing (CS) [71], contrast limited adaptive histogram equalization (CLAHE) [72], histogram 
equalization (HE), haze removal with an inverted operation (HRIO) [73], and with single 
dark channel prior (HRDC) [74]. To visualize how each method improves image charac-
teristics, the examples of an underexposed input and enhanced output images are given 
in Figure 3 with their associated gray level histogram. The processed image size is of 
width, 𝑋 =  2560 pixels, and height, 𝑌 =  2048 pixels. The histogram bins for mono-
chrome images with bit 𝑛 = 8 are defined as 2௡ = 256 ranging from the darkest gray 
value of zero to the brightest value of 𝑁 = 2௡ − 1 = 255. 

The gray distribution of the input image in Figure 3a shows a very low gray level 
intensity with several localized peaks near the top corner of the image from the light back-
ground. The contrast stretching (CS) algorithm in Figure 3a linearly scales these underex-
posed image pixel values between specified upper 𝑙𝑖𝑚௨௣ and lower limit 𝑙𝑖𝑚௟௢௪ . The 
mathematical relationship of CS operation is given in Equation (2): 𝑂(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) − 𝑙𝑖𝑚௟௢௪𝑙𝑖𝑚௨௣ − 𝑙𝑖𝑚௟௢௪ × 𝑁 (2) 

The example in Figure 3a is the output of the CS algorithm that defines the 𝑙𝑖𝑚௟௢௪ = 0.01 pixel and 𝑙𝑖𝑚௨௣ = 0.99 pixel for 255 gray level intensity. This block finds these pixels 
and saturates the values above and below this limit. Of all the proposed methods, histo-
gram equalization (HE) is the most commonly selected algorithm to improve mono-
chrome images. The HE operation on a dark image can be expressed in Equation (3) as 
follows: 𝑂(𝑥, 𝑦) = ሼℱ(𝐼(𝑥, 𝑦))|∀𝐼(𝑥, 𝑦) ∈ 𝐼ሽ (3) 

The transform function ℱ in Equation (3) is based on the cumulative density func-
tion (CDF) that maps the input image 𝐼(𝑥, 𝑦) to the entire dynamic range ൫𝐼଴,𝐼ே൯. The en-
hanced image using the HE method in Figure 3c shows that this method redistributes the 
probability of occurrence of the input gray level to make it uniform in the output image 
using the entire range of intensity level 𝑁. The modification of the HE method that also 
supports its potential for image enhancement is the contrast limited adaptive histogram 
equalization (CLAHE). The method limits the contrast amplification by histogram clip-
ping at a specified value before computing the CDF. Therefore, the resulting output image 
from this method as given in Figure 3b is not brightened excessively because the peaks 
that are present in the input image are still clearly visible in the output image. 

Images captured in a hazy environment have high-intensity pixels in the background 
for each channel, either in monochrome or RGB images, whereas the object is mainly dis-
turbed by shadows, streaks, etc., causing it to have low intensity. The goal of haze removal 
in CV is given in Equation (4), in which 𝐼(𝑖) is the image intensity, 𝐽(𝑖) is the scene ra-
diance, 𝐴 is the global atmospheric light, and 𝑡(𝑖) is the light portion that is not dis-
persed and reaches the sensor [74]. The direct attenuation of 𝐽(𝑖)𝑡(𝑖) decays in the air as 
a multiplicative distortion of the scene radiance, whereas the air light term from 𝐴(1 −𝑡(𝑖)) is the additive of the scene radiance that shifts the image colors. 𝐼(𝑖) =  𝐽(𝑖)𝑡(𝑖) + 𝐴(1 − 𝑡(𝑖)) (4) 
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Figure 3. Underexposed input (top-left) and enhanced output images with their associated gray level histogram (a–e). 

He et al. [74] proposed a modification of Equation (4) that is based on statistics of 
haze-free images. The concept is defined as haze removal using dark channel prior 
(HRDC) and is expressed by Equation (5) below. The transmission of 𝑡(𝑖) is restricted by 
the lower bound 𝑡଴ so a small amount of haze is preserved in the dense haze region. 𝐽(𝑖) =  𝐼(𝑖) − 𝐴max (𝑡(𝑖), 𝑡଴) + 𝐴 (5) 

Previous studies conducted by Dong et al. [73] discovered that low-lighting video or 
image enhancement has similarities with dehazing or haze removal operation. Equation 
(4) is modified by Dong et al. [73] following the haze removal procedure that is started by 
inverting the low-lighting image as 𝑅(𝑖). The global atmospheric light 𝐴 is selected from 
the highest intensity pixel from the input image 𝐼(𝑖). A multiplier 𝑃(𝑥) is introduced to 
adjust 𝑡(𝑖) because the brightness of the object is still low when 𝑡(𝑖) is being applied 
directly to the low-light image. The multiplier 𝑃(𝑥) is set following the assigned 𝑡(𝑖) 
value to avoid over- or under-enhancement of the input image. This procedure is ex-
pressed in Equation (6) and is defined as haze removal with an inverted operation (HRIO) 
in this study. 𝐽(𝑖) =  𝑅(𝑖) − 𝐴𝑃(𝑖)𝑡(𝑖) + 𝐴 (6) 

A clear difference between the dehazing algorithms expressed in Equations (5) and 
(6) can be observed in Figures 3d,e. The output image from the HRDC algorithm is almost 
similar to that of CLAHE, resulting in a more natural image without oversaturated colors. 
Furthermore, the improvement of white level intensity is more visible in the HRIO 
method such that the separation between the background and the object is more obvious. 

2.3. Image Quality Assessment 
When a field deployment of the vision-based system is conducted in a low-light or 

dark environment, no input image can be used as a reference image, i.e., an image that is 
captured under normal lighting conditions, so it is assumed to have good visual quality. 
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Therefore, the assessment of output image quality from enhancement operations in this 
study is conducted based on the no-reference quality metrics, namely, the blind-reference-
less image spatial quality evaluator (BR) [75], naturalness image quality evaluator (NQ) 
[76], and perception-based image quality evaluator (PQ) [77]. Essentially, BR, PQ, and NR 
metrics use similar NSS features but BR and PQ metrics use trained features based on 
natural and distorted images, in addition to human interpretation. Therefore, BR and PQ 
scores are restricted to the assigned types of distortion, whereas NS is more independent 
in predicting the image quality. 

No reference quality metrics as described previously are used to estimate the quality 
of the output image from enhancement procedures. Meanwhile, the classical quality met-
rics, i.e., image entropy (𝐸), peak-signal-to-noise ratio (𝑃𝑆𝑁𝑅), and structural similarity 
index (𝑆𝑆𝐼𝑀) are still used in this study to measure how each of these indexes changes 
following the enhancement process. The difference in image characteristics before and af-
ter implementing the enhancement algorithms can be estimated using these metrics. 

2.4. Automated Identification of Object Features and Significance in Close-Range Photogramme-
try and SHM Procedures 

In automated close-range photogrammetry, the object detection is tested as a homog-
enous white area based on the predefined search window. Template matching based on 
normalized cross-correlation coefficient (NCC) computes all possible radii of the center of 
the white area in two directions within the search window. Overall, the adapted photo-
grammetry procedure in this study is computed automatically within all photogrammetry 
images by the self-calibrating bundle adjustment. When the photogrammetry is com-
pleted without error, the SHM is conducted, and the recorded videos or images are pro-
cessed to generate the data. The sub-pixel registration of the pattern or template matching 
method [78] based on NCC is also used to track the object locations within the image se-
quences. Finally, using the relationship between two cameras (as a full-projection matrix) 
and the change in object location in each image (from the template matching method) as 
outlined in Figure 1, images are translated into time-domain response signals, i.e., dis-
placement, velocity, or acceleration. The SHM accuracy is computed based on the differ-
ence between the vision-based measurement and reference values as the absolute or rela-
tive error based on the experiments. 

3. Implementation and Validation of the Proposed Framework through a One-Inch 
Block Experiment 
3.1. Experimental Setup 

The proposed image enhancement framework was experimentally evaluated using a 
one-inch steel block test in the Earthquake Engineering Laboratory at the University of 
Nevada, Reno. For the largest field of view, the vision-based system monitored the test 
approximately at a 5 m distance and was set on the top of a shake table as shown in Figure 
4. The deployed vision systems consisted of two digital cameras with specifications listed 
in Table 1. Two high-speed (HS) cameras that required a host computer were triggered 
from the control room, while the second set consisted of two DSLR cameras that were 
operated manually (standalone DSLR, SD). A total of 28 templates were glued to the spec-
imen as shown in Figure 4, with a radius of the white circle of 21 mm. They were not 
illuminated by extra lights so the monitoring completely relied on the ambient lighting. 
The HS camera exposures were also set such that the captured image was completely dark 
and underexposed as shown previously in Figure 2a. They were set as 𝑓/14 and 1/3940 
for the 𝑓-stop number and shutter speed settings, respectively. Regarding the SD cam-
eras, the general setting for the ambient light environment was selected as given in Table 
1 with ISO 400 𝑓-stop number of 𝑓/14, and shutter speed of 1/50, resulting in a normal 
image, as shown previously in the example in Figure 2g. 
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Figure 4. Experimental setup using a standard one-inch (25.4 mm) block inserted into a sliding verification bar. 

Table 1. Vision-based system configuration sets for one-inch block validation experiment. 

Camera Type High-Speed (HS) Standalone DSLR (SD) 
Standalone No Yes 

Sensor CMOS CMOS 
Color Monochrome Monochrome 

Depth, 𝑛 8 8 
Input image size, 𝑤 × ℎ (pixel) 2560 × 2048 5184 × 2912 

f-stop number 𝑓/14 𝑓/8 
Shutter speed  1/3940 1/50 

File type .tiff .jpg 

The main component of the validation test model shown in Figure 4 is a sliding bar 
attached to a concrete column–capital–slab specimen. The sliding bar consists of a Novo-
technik displacement sensor, an aluminum plate, and six circular templates. Other tem-
plates shown in Figure 4 were used for other static experiments; however, the minimum 
target constraints in the bundle adjustment process required them to be included in the 
photogrammetry images. A one-inch magnetic block was used in the static test by insert-
ing it to the sliding bar that displaced the six templates by exactly one inch as read by the 
Novotechnik sensor. Three still images were recorded in the tests, i.e., two images without 
the block inserted (before and after) and one when the templates were moved by exactly 
one inch when the block was placed. Therefore, the accuracy measured from this test was 
based on an absolute single value of 25.4 mm; this value was compared with the six-points 
measurement shown in Figure 4. 

3.2. Output Object Visualization 
A total of 50 photogrammetry images, 25 captured by each camera of the HS system, 

was taken from different positions and orientations towards the specimen. The underex-
posed input images were improved first before the automatic object detection and close-
range photogrammetry, in addition to the SHM procedures. The global histogram for in-
put and associated output images for each enhancement method are shown above in Fig-
ure 3. Because the measurement accuracy was conducted based on the displacement of 
the six templates shown in Figure 5, the detailed modification of each point after enhance-
ment at their 2D locations is given in Figure 5. This figure displays the change in gray 
level and the results clearly show that the intensity is evenly stretched for all points. The 
clipping effect is observed from the CS and HE methods, i.e., the pure white block is 
clipped at a maximum of 255 intensity. The gray values at this specific region are outside 
the sensor dynamic range after enhancement so they are set as the maximum (255) and 
appear as the clipped peaks in the histogram bins. Another observation is that the HRDC 
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method effectively separates the white and black background, such that the low-level in-
tensity of the dark background is visually clear in Figure 5e. Meanwhile, CLAHE softens 
the clipping effect that is evident in the HE method. It limits template brightness by setting 
a threshold of 0.01 pixel, thus avoiding oversaturation. The HRIO method also confines 
the gray level distribution within the sensor dynamic range without the clipping effect. 

 
Figure 5. Gray level distribution of measured templates before (top-left) and after enhancement procedures (a–e). 

The radii of each point in Figure 5 that are identified as an object from NCC template 
matching are listed in Table 2 for each enhancement algorithm. The search window for 
the object is set as a 5.0-pixel minimum to allow automatic detection of the center. From 
Table 2, the pixel length in each direction is not uniform and there is approximately a scale 
factor of 1.2 due to the difference. Because the images were taken from different angles, 
the appearance of the object was not always in a circular shape. Therefore, instead of de-
tecting a circle feature, an ellipse threshold of 2.0 pixels was selected to check the similarity 
of the radius in each direction. When an ellipse feature was detected, the center of the 
search window defines the ellipse center based on the minimum threshold average length 
of 2.0 pixels in each direction. The results given in Table 2 show the range of 19–21 pixels 
and 15–17 pixels for the first and second radius, respectively. The variations within each 
enhancement method are at the largest using the HRIO method, and at the minimum 
when CS and HE methods are used. The radii also have variations within each point due 
to the applied enhancement method, with slightly more percentages for points 2 and 3. 
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Table 2. Two-directional radii, 𝑅ଵ and 𝑅ଶ, for identification of object points. 

 𝑹𝟏 (pix.) 𝑹𝟐 (pix.) 

Point 1 2 3 4 5 6 𝑪𝑽  (%) 1 2 3 4 5 6 𝑪𝑽 (%) 
CS a) 19.09 19.18 18.75 19.3 19.32 19.38 2.41 15.95 15.91 15.19 16.24 16.41 16.31 5.56 

CLAHE b) 19.81 19.73 19.69 20.33 20.46 20.28 3.42 16.59 16.2 17.17 17.4 17.4 17.19 5.75 
HE c) 20.89 21 20.7 20.97 20.94 20.99 1.08 17.65 17.57 17.01 17.71 17.78 17.63 3.17 

HRIO d) 19.1 18.55 18.58 20.39 20.68 20.96 11.08 16.1 15.41 15.2 17.26 17.62 17.88 14.00 
HRDC e) 20.73 20.98 20.66 20.85 21.07 20.93 1.48 17.44 17.51 17.02 17.59 17.8 17.61 3.00 𝐶𝑉  (%) 4.33 5.48 5.13 3.24 3.40 3.40  4.60 5.89 6.29 3.39 3.32 3.57  

a) contrast stretching, b) contrast limited adaptive histogram equalization, c) histogram equalization, d) haze removal with 
an inverted operation, and e) haze-removal with single dark channel prior. 

3.3. Image Quality Assessment 
The effectiveness of each algorithm in modifying image quality was measured based 

on the classical entropy (𝐸), 𝑃𝑆𝑁𝑅, and 𝑆𝑆𝐼𝑀, and the output image quality was esti-
mated using the no-reference image quality index metrics, i.e., 𝐵𝑅, 𝑁𝑄, and 𝑃𝑄. They fo-
cused only on the quality and index changes due to image enhancement procedures ap-
plied to the underexposed images captured by the vision-based HS system. Quality as-
sessment was conducted on all enhanced photogrammetry images with the statistics 
shown in Table 3. The coefficient of variations (𝐶𝑉) were computed from 50 output im-
ages for each enhancement method and index, and the index change (∆௜௡௣௨௧) was meas-
ured from the mean difference between each algorithm and input index. 

Table 3. Coefficient of variations (𝐶𝑉) and index change concerning input image quality (∆𝑖𝑛𝑝𝑢𝑡). 𝑪𝑽 (%) ∆𝒊𝒏𝒑𝒖𝒕 (%) 

Method Index Method Index 𝑬 𝑷𝑺𝑵𝑹 𝑺𝑺𝑰𝑴 𝑩𝑹 𝑵𝑸 𝑷𝑸 𝑬 𝑩𝑹 𝑵𝑸 𝑷𝑸 
CS 2.74 8.08 11.01 1.78 5.04 (b) 5.19 (a) CS 0.96 4.96 12.66 89.31 

CLAHE 0.86 (b) 2.62 (b) 4.43 (b) 1.96 6.02 4.46 CLAHE 23.46 12.43 (a) 8.90 (b) 17.04 (b) 
HE 2.71 2.75 14.90 2.07 5.93 4.45 HE 0.19 (b) 4.72 (b) 10.40 87.04 

HRIO 1.61 5.73 7.44 1.65 (b) 6.61 1.74 (b) HRIO 37.88 (a) 6.37 10.78 103.62 (a) 
HRDC 6.10 (a) 15.36 (a) 15.18 (a) 5.25 (a) 9.41 (a) 3.35 HRDC 22.31 5.75 14.16 (a) 83.58 

(a) max. (b) min. 

Although uniform boundary conditions of enhancement algorithms were applied to 
the 50 input images, some variations based on 𝐶𝑉 percentage were observed in the out-
put images, especially when the enhancement was conducted using the HRDC method. 
No reference index metrics also measure input image 𝐶𝑉 within 1.6–9.4% with more var-
iants computed by 𝑁𝑄 index, as listed in Table 3. The input images were visually dark 
and underexposed; however, they were taken from different positions and orientations 
towards the specimen. Because the monitoring depends entirely on the ambient lights and 
the lighting cannot be controlled to evenly illuminate the templates, changing the camera 
positions while taking pictures affected the images captured by the camera sensor. Over-
all, the observation based on the output image statistics in Table 3 shows that the imple-
mentation of the image enhancement algorithm modifies the input image characteristics, 
and some metrics detect major changes compared to other indices. These variations can-
not be identified merely from the output image perception or gray level histogram. 

3.4. Effect of Image Enhancement on the Object Identification in the Close-Range Photogramme-
try 
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The automatic object identification procedure using the ellipse assumption and NCC 
matching was described previously in Section 3.2. The example of accurate identification 
is shown in Figure 6a, in which the object center is detected and positioned at the center 
with correct registration following the white rings. As a result of the predefined window 
search and threshold, these rings were sometimes detected as objects, so their center co-
ordinates and residuals were computed in the preliminary object orientation, as shown in 
Figure 6c. The white rings were detected separately from the circular center and are con-
sidered objects. Therefore, these rings cannot be grouped into a single object or correctly 
registered as a single template. The object center can also be detected but when the match-
ing is not convergent, the detected object is unable to be registered, like the example in 
Figure 6e. Ellipse shape assumption also may detect a few non-object features, such as the 
bolts or stair reflections in Figure 6d. These features may cause the photogrammetry im-
age to fail in bundle adjustment computation if they are more dominant in the image 
plane, as shown in Figure 6f. This image was excluded from automatic bundle adjustment 
and the photogrammetry cannot be completed when most objects are incorrectly identi-
fied in each image plane. 

 
Figure 6. Examples of an automatic object and non-object detection, identification, and positioning in the photogrammetry 
procedure. 

The results of object identifications in photogrammetry based on each enhancement 
algorithm are listed in Table 4. If the 28 templates are all visible in 50 photogrammetry 
images, the correct object identification should result in 1400 objects. However, these im-
ages were taken from different positions, with some pictures taken closer to the specimen. 
The templates for the top specimen are lost in this position; therefore, the correct identifi-
cations in Table 4 comprise fewer than 1400 objects. The total numbers given in Table 4 
are the results from the summation of the correct, incorrect, and non-object identification, 
from which are then subtracted by the unidentified objects. It is observed that haze re-
moval-based algorithms identified 80% of the objects correctly but have slightly higher 
percentages of non-object identification. Almost 20% of the images enhanced by the 
HRDC procedure failed as these images consist of incorrect object detection. Furthermore, 
histogram-based enhancements have lower accuracy of approximately 60% with 0.4% or 
less unidentified objects. Incorrect object identification also has a higher percentage than 
in the haze removal-based algorithm. However, they are not concentrated into one image 
but rather distributed within all 50 images, so there are no failed images from either CS, 
CLAHE, or HE methods. 

The enhanced images from each procedure were carefully analyzed, confirming that 
all failed images were excluded in the bundle adjustment procedure. Therefore, despite 
the failed images and variations in object identification observed in each enhancement 
method, the bundle adjustment could still reach convergence. The photogrammetry using 
output images from each enhancement method was completed, with results given in Ta-
ble 5. Principal point locations 𝑢଴ and 𝑣଴ were determined by the projected positions of 
the light rays through the lens center that are perpendicular to the image plane. The length 
of the perpendicular line is the principal distance that is equal to the focal length at infinity 
focus. It is related to the HS hardware system setting for the validation tests; therefore, the 
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variations are negligible and estimated as 0.23% within all methods. Furthermore, the 
principal point locations are known to have correlations with other internal camera pa-
rameters such as distortion coefficients. A strong correlation with other camera internal 
parameters resulted in higher variations in the principal point locations within each 
method, which were computed as −18% and −24.64%, respectively. 

Overall, the global image enhancement method implemented in the study may still 
have some limitations in automatically identifying and registering objects. In addition, the 
careful selection of the images that need to be enhanced is required early in the process in 
the bundle adjustment procedure. However, as demonstrated from the results in this sec-
tion, the method is still valid when the enhanced images are carefully selected to be in-
cluded in the bundle adjustment procedure so that the process is complete and proper 
camera system parameters can be obtained (Table 5). 

Table 4. Object identification results from 50 photogrammetry images. 

Method Total Correct % Incorrect % Non-Object % Unidentified % Failed Images 
(Out of 50) 

CS 1963 1233 62.81 668 34.03 68 3.46 −6 −0.30 0 
CLAHE 1897 1215 64.05 636 33.53 49 2.58 −3 −0.16 0 

HE 2040 1278 62.65 678 33.24 85 4.17 −1 −0.05 0 
HRIO 1466 1174 80.08 201 13.71 91 6.21 0 0 1 
HRDC 1178 965 81.92 178 15.11 35 2.97 0 0 10 

Table 5. High-speed system internal parameters measured from the photogrammetry process using 
enhanced images. 

Method 𝒄 (pix.) 𝒖𝟎 (pix.) 𝒗𝟎 (pix.) 
CS 7135.09 −35.01 −7.06 

CLAHE 7154.47 −24.22 −8.28 
HE 7156.03 −28.39 −9.81 

HRIO 7181.46 −31.85 −12.01 
HRDC 7160.54 −38.92 −12.95 𝐶𝑉(%) 0.23 −18.00 −24.64 

3.5. Effect of Image Enhancement on the Vision System Measurement Accuracy 
Similar enhancement methods were applied in three static images taken from the 

validation experiments. The measurement accuracy was assessed by computing the abso-
lute error, ∆௔௕௦, of the displacement of the six points, 𝛿, with respect to the absolute 
value of 25.4 mm. The results are shown in Table 6 and the average absolute error, ∆௔௕௦,௠௘௔௡, is computed from all points. A high accuracy of less than 1% error is observed 
from all measurements using enhanced images. Only HRDC output images achieve a 
slightly higher error of 1.37%. Overall, the results shown in Table 6 provide the ultimate 
validation and verification for implementing image enhancement using either histogram-
based or haze-removal-based algorithms, where displacement measurement absolute er-
rors can be less than 1%. 

Table 6. Measurement accuracy from one-inch steel block experiments using enhanced images. 

Measure-
ment 

Point 
Measurement 

Point 
1 2 3 4 5 6 1 2 3 4 5 6 

(1) 

𝛿 (mm) 25.83 24.92 25.35 25.47 25.79 25.32 
(4) 

𝛿 (mm) 24.70 24.96 25.18 25.40 25.48 25.43 ∆௔௕௦ (%) 1.71 1.89 0.18 0.27 1.55 0.31 ∆௔௕௦ (%) 2.76 1.75 0.85 0.01 0.30 0.14 ∆௔௕௦,௠௘௔௡ 
(%) 0.98  

∆௔௕௦,௠௘௔௡ 
(%) 0.97 
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(2) 

𝛿 (mm) 24.95 25.02 25.20 25.56 25.59 25.41 (5) 𝛿 (mm) 25.81 24.91 25.14 25.65 25.82 25.14 ∆௔௕௦ (%) 1.79 1.50 0.78 0.65 0.74 0.06 ∆௔௕௦ (%) 1.63 1.94 1.02 1.00 1.64 1.01 ∆௔௕௦,௠௘௔௡ 
(%) 0.92  

∆௔௕௦,௠௘௔௡ 
(%) 1.37 

(3) 

𝛿 (mm) 24.83 25.01 25.20 25.44 25.58 25.51 
(6) 

𝛿 (mm) 25.06 25.03 25.14 25.22 25.15 25.51 ∆௔௕௦ (%) 2.26 1.53 0.78 0.18 0.71 0.45 ∆௔௕௦ (%) 1.34 1.46 1.02 0.71 0.98 0.43 ∆௔௕௦,௠௘௔௡ 
(%) 0.98  

∆௔௕௦,௠௘௔௡ 
(%) 0.99 

(1) CS method; (2) CLAHE method; (3) HE method; (4) HRIO method; (5) HRDC method; (6) SD system. 

4. Implementation in Seismic Monitoring of a Large-Scale Building Using Two Vi-
sion-Based Systems 
4.1. Monitoring Setup and Building Description 

The accuracy of image enhancement in measuring seismic vibrations and identifying 
structural dynamic characteristics was evaluated using a large-scale seismic shake table 
test of a three-story reinforced concrete (RC) building, as shown in Figure 7. The test was 
part of the Tokyo Metropolitan Resilience Project Subproject C and was performed in De-
cember 2019 at the National Research Institute for Earth Science and Disaster Resilience 
(NIED) in Kobe, Japan. The tests were dedicated to improving the resiliency of buildings 
and developing SHM techniques that could rapidly assess the safety of the buildings after 
major seismic shaking due to their post-disaster functions. More information related to 
the project or the building system can be found in Yeow et al. [79]. 

Two vision sensor systems and their configurations used in seismic monitoring are 
shown in Table 7, in which both systems used CMOS sensors. The first system comprised 
two high-speed (HS) cameras shown as Cam 1 and Cam 2 in Figure 7, which were similar 
to those used in the validation test. The second system used a standalone DSLR (SD), 
shown as Cam A and Cam B in Figure 7, which recorded monochrome videos of the tests. 
The SD system test videos were later converted into continuous images with a resolution 
of 1920 × 1080 pixels. The sampling rates for the seismic test were selected as 32 frames-
per-second for the HS system and the default setting of 30-frames-per-second was selected 
for the SD system. Both vision systems completely relied on the ambient light sources in 
the test environment and the setting adjustments in each camera. Therefore, the captured 
images for photogrammetry and the SHM required image processing to improve their 
dynamic range. 

 
Figure 7. Seismic shake table test monitoring setup using two vision-based sensor systems. 
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Table 7. Vision-based system configuration using two sets of cameras for the seismic shake table test. 

Type High-Speed (HS) Standalone DSLR (SD) 
Color Monochrome Monochrome 

Format .tiff .jpg 
Input image size, 𝑤 × ℎ (pixel) 2560 × 2048 1920 × 1080 

Sampling rates, 𝑓𝑠 (frame-per-second) 32 30 
Seismic record duration (s) 120 120 

White noise record duration (s) 180 180 

4.2. Output of Image Enhancement 
Given the promising results obtained from the simple 1-inch block test, it was desired 

to extend the study to more realistic cases, including full-scale building vibration moni-
toring, which is the focus of the next section. The validation test described previously 
highlights several enhancement algorithms that result in less error compared to other 
methods. An example of the enhanced image histogram using the CLAHE method and 
the quality index metric for both sensor systems is shown in Figure 8. The input images 
initially captured by each system were initially underexposed for the HS system and low 
in contrast for the SD system, as shown by their histogram in Figure 8c,d. As previously 
highlighted in Figure 2, the identification algorithms are unable to locate any features 
from the original HS image, whereas the low-contrast SD image identifies a small number, 
but their total is inadequate for bundle adjustment convergence. After processing using 
the CLAHE method, the histogram of the HS vision system clearly shows the stretching 
of pixel distribution within the gray level intensity as the effect of image enhancement. 
The reduction in the pixel counts is also observed, especially in darker areas. Regarding 
the SD system, the CLAHE algorithm relaxes the pixel counts so the separation between 
dark and bright areas is more evident in the output image. Similar to the static test image, 
the entropy of the seismic test output image also measures higher values due to the ap-
plied image enhancement. It is more noticeable in the HS output, whereas less change is 
computed for the low-contrast image as recorded by the SD system. From the metrics 
shown in Figure 8, the enhancement procedure is observed to affect underexposed images 
more than low-contrast images, especially when the quality is estimated by the PQ metric. 

 
Figure 8. Input and output image with gray level intensity from CLAHE methods. 
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4.3. Seismic Behavior and System Identification of the Three-Story Building 
Several ground motion excitations ranging from low to high wave amplitude were 

applied to the RC building. White noise excitations in terms of low amplitude vibration 
were applied to the building between the seismic tests with a loading duration of 180 s. A 
sample of the displacement history from high amplitude (150% scale of a synthetic ground 
motion seismic excitation [79]) and white noise are given in Figures 9 and 10 for the meas-
ured template marked in the figures. The HS system is selected as the reference sensor 
and the relative difference between each system measurement is presented in detail. 

 
Figure 9. Comparison between high-speed and commercial DSLR system measurements of high-amplitude seismic exci-
tation as measured from the marked template. 

 
Figure 10. White noise response as measured by high-speed and commercial DSLR system measurements in three princi-
pal axes as measured from the marked template. 

The seismic response of the building under high-amplitude excitation is shown in 
Figure 9 based on the measurement of the two vision systems, together with their relative 
difference. More details are presented in Table 8, which provides a summary of the peak 
displacement values from both monitoring systems. The peaks observed from the dis-
placement measurement of HS systems were computed as 1118.3 and −787.4 mm, respec-
tively, whereas the SD system shows the peaks at a maximum of 1113.3 and −779.2 mm. 
The relative maximum error in the SD system measurement relative to the HS system was 
computed as −28.57 mm (3.63%), which shows that both consumer-grade and high-end 
high-speed sensor systems are comparable. 

Table 8. Measurement difference between high-speed (HS) system and standalone DSLR (SD) system in assessing high-
amplitude seismic excitation. 

System 
𝜹𝒎𝒂𝒙  
(mm) 

𝜹𝒎𝒊𝒏  
(mm) System 

𝜹𝒎𝒂𝒙  
(mm) 

𝜹𝒎𝒊𝒏  
(mm) 

∆𝒎𝒂𝒙 
(mm) (%) 

HS 1118.3 −787.4 SD 1113.3 −779.2 −28.57 3.63 
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The building response in three principal axes based on low-amplitude white noise 
excitation is given in Figure 10 for the two vision systems. These data were analyzed using 
the SSI-COV algorithm to enable frequency and modal identifications of the building sys-
tem. The HS sampling rate was 32 Hz, so the SD system acceleration signal was resampled 
to increase the computational efficiency of the identification algorithm. The signals from 
both systems were filtered using a 4th order Butterworth bandpass filter with cutoff fre-
quencies of 3 and 13 Hz. A model order of six was selected for all signals to enable the 
identification of the first three fundamental modes, with the fitting computed up to the 
30th order to show the stability of the poles at a higher level. The frequency response 
function of each signal is plotted in Figure 11 together with the stability of the poles. With 
a model order of six, only the transverse and longitudinal response data are able to extract 
three stable poles in frequency and damping. Higher modes and different filtering can 
also be selected to extract more modes in the vertical direction. For the uniformity in signal 
processing, the filtering and model order selection were set to be similar in this case study. 

 
Figure 11. Stabilization plots from output-only SSI-COV method measured for building dynamic modal properties in three 
directions. 

The comparison between HS and SD systems in extracting the first mode of vibration 
in the terms of frequency, 𝑓ଵ, and damping, 𝜁ଵ, is given in Table 9. The difference in 
measuring frequency, ∆௙, shows the lowest difference is computed in measuring the 
transverse frequency and a slightly higher difference is observed in other directions. The 
relative difference within the range of 3% is observed in measuring structural damping 
properties, ∆఍. Overall, similar to what was demonstrated for high-amplitude displace-
ment measurement, the structural modal properties computed from both vision systems 
are also very comparable. 

Table 9. Building fundamental frequency 𝑓ଵ, and damping, 𝜁ଵ, with their differences, ∆௙ and ∆఍, as measured by two-
vision systems. 

Transverse Mode 
System 𝑓ଵ (Hz) System 𝑓ଵ (Hz) ∆௙ (%) System 𝜁ଵ (%) System 𝜁ଵ (%) ∆఍ (%) 

HS 6.47 SD 6.44 0.46 HS 4.65 SD 4.51 3.01 
Longitudinal Mode 

System 𝑓ଵ (Hz) System 𝑓ଵ (Hz) ∆௙ (%) System 𝜁ଵ (%) System 𝜁ଵ (%) ∆఍ (%) 
HS 6.12 SD 5.91 3.43 HS 2.53 SD 2.61 3.16 

Vertical Mode 
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System 𝑓ଵ (Hz) System 𝑓ଵ (Hz) ∆௙ (%) System 𝜁ଵ (%) System 𝜁ଵ (%) ∆఍ (%) 
HS 8.59 SD 8.84 2.91 HS 2.70 SD 2.62 2.96 

5. Conclusions 
This work presents a framework of improving underexposed images using image 

enhancement algorithms for feature identification with implementation in close-range 
photogrammetry and structural health monitoring. An experimental validation with sys-
tematic evaluation was conducted using a one-inch steel block text which measured the 
absolute difference between two vision-based systems and the one-inch block displace-
ment. The framework was also tested in measuring the seismic response and modal prop-
erties of a three-story building tested under high-amplitude seismic excitation and a white 
noise test. Based on these laboratory experiments, the key findings and main conclusions 
can be drawn as follows: 
• Image enhancement efficiently improves the quality of image data collected from vi-

sion-based sensors and needs to be adopted more often in infrastructure and large-
scale SHM applications. The proposed algorithms can modify the underexposed and 
low-contrast input images captured by high-speed or commercial DSLR cameras, 
thus allowing automatic feature identification. Their efficiency can be estimated 
through the classical image quality metrics, and their output quality can be assessed 
by more advanced blind image quality metrics. 

• The precision of the enhanced images in measuring static displacement shows a very 
high accuracy as observed by the two vision systems in the one-inch block test. Com-
parable results from both systems were also assessed in measuring high-amplitude 
displacement from the large-scale seismic tests, and in estimating structural modal 
properties through the system identification procedure. 

• Overall, it is concluded that image enhancement does have a significant effect on fea-
ture identification and implications for the close-range photogrammetry and SHM 
accuracy. The applied enhancement algorithms were shown to be computationally 
effective and are recommended for vision-based SHM image enhancement applica-
tions. 

• On a specific note, automatic feature detection in enhanced images may be a limita-
tion of this method. Thus, future users are cautioned against selecting the search win-
dow and the threshold options for enabling automatic detection of the features on 
the output images when the global enhancement algorithms are implemented. In-
stead, a careful check is recommended of the number of obsolete objects identified 
within each enhanced image plane to allow the bundle adjustment to converge in the 
photogrammetry process. Measurement accuracy seems to slightly deteriorate when 
more failed images are identified from the bundle adjustment procedures. With due 
care, successful monitoring using underexposed and low-contrast images is still pos-
sible, not only for different vision system hardware, but also for a wide range of ex-
perimental works, through a proper selection of the image enhancement algorithm. 
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