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Abstract: Infrared thermography (IRT) is a noninvasive and safe method of displaying the temper-
ature map of objects that can be used to detect hoof diseases and lameness to reduce significant
financial costs and physically stress animals. A qualitative bibliometric method based on the analysis
of publications by the authors themselves using sophisticated tools of scientific databases was applied
in this work. This review presents the fundamentals of IRT as well as recent developments in IRT
detection in dairy science, including preprocessing, segmentation, and classification of objects in
IRT images. In addition, recent studies dealing with the detection of hoof diseases and lameness
using IRT are reviewed. As a result of this study, select previous studies are confronted in terms of
technical aspects of IRT measurements such as emissivity, distance, temperature range, and reflected
air temperature. Subsequently, recommendations for future IRT measurements are discussed.

Keywords: infrared thermography; optimization; dairy cows; hoof diseases; lameness

1. Introduction

Infrared thermography (IRT) is a noninvasive and safe method of displaying the
temperature map of objects, which can then be computer-processed [1]. As a result of
technical advances, this method has found numerous applications in many fields including
construction, engineering, and energy, for example [2,3].

Regarding the application of IRT in human and veterinary medicine, it is mainly used
as a diagnostic tool or for pain monitoring [4–6]. IRT also allows effectively evaluating
animal stress, as reported in [7,8].

In precision agriculture, it is mainly used as an indicator of thermal biometric changes
in the surface temperature of animals [9] with use for pregnancy assessment in mares in
late pregnancy [10], animal welfare, weanling horses, or for screening of limb tempera-
ture [11]. This is because limb and skin temperatures depend, among other things, on
blood flow and tissue metabolism [12]. If changes in limb blood flow occur, radiated
heat differs due to changes in blood flow, which can be detected by IRT. Detection of such
changes may indicate development of inflammation at the site or local changes in metabolic
activity [13]. However, it must be remembered that body temperature of the livestock
constantly changes throughout the day. This fluctuation is due not only to the presence
of undesirable physiological changes, but also to the physical activity performed by the
organism and the influence of the surrounding climatic conditions [14]. Previous studies
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also confirmed that IRT is an effective tool for detecting body temperature of the livestock
and their parts, including hooves, susceptible to a range of diseases manifested at different
stages, especially lameness [15,16].

As the prevalence of lameness is high worldwide, healthy hooves are important
for livestock production. Hoof diseases and lameness cause significant financial costs
and physically stress the animals [17,18]. In 90% of cases, lameness is caused by claw
abnormalities [19]. Therefore, it is essential to take preventive measures to avoid significant
economic losses caused by lameness.

So far, hoof health and lameness have been detected by conventional diagnostic
methods which include visual observation of hooves, observation of animal behavior, use
of parallel force plates, use of a pedometer or an accelerometer.

Visual observation of the hooves can be performed, for example, during routine
hoof trimming. With the help of a simple optical instrument, it is then typically possible
to diagnose, for example, digital dermatitis [20]. Nevertheless, visual observation of the
hooves is particularly complicated by a lack of hygiene [21]. Behavioral monitoring consists
of gait assessment in dairy cows, which, however, shows variable accuracy depending
on the cause of lameness and the stage of the disease [22]. Moreover, the assessment is
subjective and not comparable between assessors [23]. Detection of lameness can also be
achieved using more sophisticated devices, such as parallel force plates, which measure the
force reactions acting on the ground as cows walk on these plates. This method and others
like it are limited by a number of factors (how the cow stands, udder fill rate, cow pregnancy
rate, etc.) [24]. The use of a pedometer to monitor the locomotor activity of dairy cows can
be used not only to detect estrus but also for early detection of lameness in dairy herds [25].
In contrast to the previous methods, the use of a pedometer seems very promising, and
previous studies showed that this method is very accurate and suitable for early detection
of most cases with developing lameness [26]. Similarly, the use of accelerometers attached
to the body of a dairy cow appears to be promising. Three-dimensional accelerometers
measuring acceleration of the back and legs of dairy cows can be a useful tool for lameness
detection [27].

The abovementioned conventional methods of lameness detection in dairy cows may
be limited by restricted accuracy, subjective observer’s view or low compatibility with
computer technology. In contrast, IRT represents a method that exhibits high accuracy,
objectivity, and possibility of implementation in sophisticated computerized remote disease
surveillance management systems for breeders and veterinarians [1]. In addition, visual
hoof observation and behavioral observation methods for dairy cows can be combined with
IRT [28,29]. On the other hand, the IRT method of lameness detection requires advanced
knowledge of the technology, the ability to properly adjust several technical parameters so
that the acquired images are conclusive, comparable, and free of unwanted reflections and
other defects.

For this reason, the aim of this study was to provide an overview of recent studies
dealing with lameness detection in dairy cows using IRT, including an assessment of the
technical aspects of their measurements, which will provide a basis for making summary
recommendations for optimizing the technical parameters of IRT detection.

2. Materials and Methods

The Web of Science (WoS) and ScienceDirect (SD) databases for bibliometric analysis
of scientific publications were mainly used. These databases contain original research and
review articles, book chapters, and other publications with the highest level of quality. For
this reason, WoS and SD were used as the main sources of information in this study. In
addition, the publications obtained from the mentioned databases were supplemented by
articles found in SpringerLink (indexed by Scopus) and the Wiley Online Library.

The scope of research mainly included publications from publishers Elsevier and
Cambridge University Press. All the recently published publications in WoS and SD found
using keywords “IRT hoof”, “IRT dairy cows”, “thermography hoof”, and “thermography
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dairy cows” in categories “Agriculture Dairy Animal Science” and “Veterinary Sciences”
were analyzed. Several older publications were added for their relevance.

A qualitative bibliometric method based on the analysis of publications by the authors
themselves, partially supported by WoS sophisticated tools and the extraction of biblio-
metric data for processing in spreadsheet software, was applied in the work. The used
methodological approach included the following stages:

1. Identification of publications in scientific databases by keywords: “IRT hoof”, “IRT
dairy cattle”, “thermography hoof”, and “thermography dairy cattle”.

2. Analysis of the results and selection of relevant publications in the journals focused
on the topic of the article using the Analyze Results tool (WoS).

3. Downloading of all the selected relevant publications in the analyzed period and
extraction of their bibliometric data (authors, title, year of issue, keywords, additional
keywords, publishing house) using the Export to Excel (WoS) and Extract (SD) tools.

4. Processing of the bibliometric data using the MS Excel 2019 spreadsheet software
(sorting according to required criteria, identification of articles from the same authors,
keywords analysis for further search).

5. Detailed qualitative analysis of the content of the selected publications in terms of
the following:

a. investigated problem/topic,
b. area of application,
c. used type of method/algorithm,
d. achieved results and their relevance to the solution of the investigated problem.

3. Fundamentals of IRT

IRT is currently widely used in many fields, and its importance is also irreplaceable in
human and veterinary medicine [30,31]. It is a noninvasive technique in which physical
contact with the surface to be measured is not necessary [32].

IRT is based on the fundamental laws of radiation—Stefan–Boltzmann law, Wien’s
displacement law, and Planck’s law [33]. The principle of IRT is the property of all bodies
with a surface temperature above absolute zero to emit electromagnetic radiation [32]. The
portion of the electromagnetic radiation spectrum with wavelengths ranging from 780 nm
to 1 mm is defined as infrared radiation and can be used to measure the surface temperature
of a body [34]. Infrared radiation is absorbed by a thermal imaging camera and is converted
into electrical pulses that are processed by software and displayed with a thermogram in
pseudocolors that represent different temperatures in the infrared range [35–39].

A thermal image, a thermogram, is an image taken with a thermal imaging camera. In
accordance with the amount of information captured, thermograms can be divided into
nonradiometric and radiometric [40]. A nonradiometric thermogram is a simple image
of temperature distribution [41]. A radiometric thermogram contains information about
the surface temperature of an object and the surface properties affecting the ability to
emit infrared radiation [42]. These parameters include emissivity ε, information about the
surrounding atmosphere—apparent reflected temperature, relative humidity, and distance
from the object being measured [43].

Emissivity is the ratio of the intensity of emission of a real body to that of an absolute
blackbody with the same temperature. Emissivity determines the ability of a body to
radiate heat. Emissivity is not constant for a given surface but is a function of a number of
parameters: the angle of deviation from the surface normal, the temperature of the object,
the wavelength, the surface color, the surface texture and its contamination, etc. [44].

The atmospheric temperature, relative atmospheric humidity and the distance be-
tween the thermal imaging camera and the surface of the object to be measured are adjusted
to correct for the influence of the atmosphere. The atmosphere attenuates the thermal
radiation from the surface to be measured. Attenuation depends mainly on the relative
humidity and the distance. The atmosphere itself is a source of thermal radiation. The in-
tensity of thermal radiation of the atmosphere depends mainly on its temperature, but also



Appl. Sci. 2021, 11, 11045 4 of 19

on its composition. The apparent reflected temperature is the ambient thermal radiation
reflected from the surface of the object to be measured which then hits the sensor of the
thermal camera. The camera does not distinguish whether it is the thermal radiation of
a body or reflected thermal radiation. The effect of the reflected apparent temperature is
higher the greater the reflectivity of the surface. The reflectivity of the surface is smaller the
greater the emissivity. The distance from the object to be measured affects the field of view
of the camera, the smallest detectable object of the camera, and the smallest measurable
object of the camera. The field of view of the camera is the area visible to the sensor. The
smallest detectable object of the camera corresponds to the size of one pixel depending on
the distance. In general, the influence of the atmosphere is greater the more distant the
objects being measured are [38].

A thermogram consists of individual pixels and provides information about the
surface distribution of apparent temperature on the surface of the object(s) being mea-
sured [45].

Infrared cameras do not measure temperature directly, but rather its output signal,
which is proportional to the intensity of the incident radiation. Pseudocolors (false colors)
are colors that are different from what the human eye or sensors capturing light at the
same wavelengths as the eye would pick up. Pseudocolors can be used to display data
taken in areas of the electromagnetic spectrum that are invisible to the naked eye (for
example, infrared radiation) or to highlight values (for example, by converting greyscale to
different colors). Since commonly used sensors do not distinguish the wavelength of the
radiation, the image produced is monochromatic. The resulting thermogram is displayed
in pseudocolors.

Based on the color palette, different areas can be assigned shades based on temper-
ature [46]. A radiometric thermogram includes a palette—the temperature scale and its
associated temperature in ◦C (◦F). Analyzing monochromatic colors is appropriate for some
applications and a specific palette of colors is appropriate for others. The choice of color
palettes allows flexibility in analysis. The standard color palettes for thermograms are iron,
grayscale, and rainbow [47]. Depending on the manufacturer, color palettes can be named
differently, or additional types can be added [48]. The temperature scale can be fixed or
vary with the highest/lowest temperature point. The scale setting can be performed in the
analysis software or in the corresponding menu of the infrared camera.

A radiometric thermogram is the result of a thermal camera scan, and each point in it
represents a measured surface temperature [49]. Thermal cameras are capable of detecting
temperature changes below 0.05 ◦C. When using the iron palette, the hottest areas are
shown in white or red on the thermograph and the coolest in blue and black. Increased
temperature (hot spots) usually indicates inflammation or increased blood flow, while
lower temperature spots (cold spots) indicate decreased blood flow [50,51]. The amount of
infrared radiation emitted is different for each part of the animal [52]. According to the
studies conducted, the recommended range of emissivity values is 0.95–0.97 for furred
skin in mammals, e.g., see [53–55], but according to [56], sufficient determination of fur
emissivity is essential to obtain accurate temperature data, which is influenced by various
factors and thus the emissivity range used cannot be applied to all individuals or species.

4. Recent Developments in IRT Detection

IRT images provide indisputable advantages for direct retrieval of the surface temper-
ature distribution of the observed object, but also for detection and identification of objects
emitting thermal radiation under low-light conditions, when recording of the visible spec-
trum is insufficient [57,58], or for detection of defects of the observed object that cannot be
recorded by conventional photosensors [59–61]. However, images captured with thermal
imaging sensors currently still have a significantly lower resolution than images taken with
standard image sensors designed to capture the visible spectrum [62]. Table 1 shows that
a significant number of authors had images with a resolution of 320 × 240 pixels, which
is less than 0.1 MP. The highest-resolution thermal image for the sources examined was
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640 × 512 pixels. Another characteristic drawback of IRT images is low contrast and a
significant amount of noise, with the typical feature of IRT images being blurred edges of
the observed object contrary to the image in the visual range [57,63].

Table 1. Resolution of thermal images used for detection in livestock production.

Reference Resolution of Thermal Images

[64] 60 × 80 (0.005 MP)
[65,66] 160 × 120 (0.019 MP)
[67–80] 320 × 240 (0.077 MP)

[63,81,82] 320 × 256 (0.085 MP)
[83,84] 336 × 256 (0.086 MP)
[85,86] 384 × 288 (0.111 MP)

[59–62,87–94] 640 × 480 (0.307 MP)
[95,96] 640 × 512 (0.328 MP)

There is quite a wide range of methods for IRT image processing. However, in many
sources, their classification is not clear and comprehensive. In the literature, it is possible to
encounter a categorization of methods into spatial and frequency domain [59,68,77] prepro-
cessing, segmentation, feature extraction, and classification [97]. A different categorization
can be found in [98], where a classification into histogram modification methods, point
methods, and context-aware processing methods is presented, and Ćirić et al. includes
image segmentation and classification and specific features extraction among the main
areas of image processing [99]. The sources also differ in indicating the sequence of the
methods used. For example, Fleuret et al. state that segmentation represents the first step
in image processing [100]. In contrast, Waqar Akram et al., Shanmugam and Sekaran, and
Xiong et al. apply segmentation methods after other operations are completed [78,80,101].
Most sources agree in using a combination of multiple methods in IRT image processing.

4.1. IRT Image Preprocessing

Different scientific teams use different methods for image preprocessing. According
to [61], the simplest image processing methods that can be used to enhance the quality
of thermal images are those based on contrast adjustment. Histogram equalization, a
technique leading to an even redistribution of the brightness levels of individual pixels so
that the resulting histogram is as flat as possible, is usually applied to optimize the image
contrast [98]. The histogram equalization process is divided into three parts. The first
part is the computation of the histogram, followed by the computation of the normalized
histogram sum, and the last step is the transformation of the input image to the output
image [101]. Ashiba et al. chose gamma correction, defined as a nonlinear function that
modifies the distribution of brightness values of the input image, as the basic operation,
which they further combined with image matching (histogram matching) and contrast-
limited adaptive histogram equalization (CLAHE) methods [102].

Image enhancement methods not only increase the quality of the image, but also
allow for sharpening of features and reduction of image noise. In the spatial domain, they
operate with direct manipulation of image pixels, where their values are modified [77].
Linear filters are applied using convolution, i.e., the new value of each pixel is calculated
based on the pixel values in the neighboring region of the original pixel and the kernel
coefficients of the operator, which is usually a square matrix of values with an odd number
of rows and columns [98]. A common operation leading to image enhancement is noise
reduction, in which, for example, a Gaussian filter is usually applied, which belongs to the
group of linear filters and reduces noise very effectively by smoothing the image at the
expense of fine details [66,78]. The main representative of nonlinear filtering techniques is
the median filter [94], which replaces the value of each point of the original image with
the median of the values of the points that surround it, thus eliminating isolated noise
points [103]. The median filter has a very strong effect on suppressing salt and pepper
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noise [85,104]. The image can also be modified in the frequency domain, using Fourier [70],
wavelet [105], and cosine transforms [106,107] to convert the image to a signal. Ahrari et al.
and Bombrun et al. applied wavelet transformation to reduce image noise, where the
noise values took on different frequencies compared to other points; then, the unwanted
frequencies were eliminated using low-pass and high-pass filters [88,108].

The application of thermal contrast-based methods using infrared thermography
usable for identification of defects in the observed object must also be mentioned. Classical
thermal contrast values correspond to the difference between the temperature of the pixel
under investigation or the average temperature of a group of pixels and the temperature of
the sound area, which is the reference non-defective region of the object at a given time.
However, the determination of the sound area is difficult to define; its localization depends
on the occurrence and recognition of the non-defective parts of the object, whose existence
may not be known in advance. The limitations concerning Sa cease with the introduction
of the differential absolute contrast method, which is based on a 1D solution of the Fourier
diffusion equation for semi-infinite surfaces subjected to thermal excitation by a Dirac
pulse [109].

Another computer-based image processing method is mathematical morphology. The
exemplary thought of image processing morphology is that the image is considered as
a set (binary images) or a function (intensity images). The basic concept is a structuring
feature that is applied to an input image, and then an output image is generated. The
basic morphological operations are erosion, dilation, and morphological opening. The
above operations are applied to thermograms originating from a sequence of thermal
images. Background estimations of the next image processing procedure are carried out
to detect defects in the following images of the investigated physical object. Among its
advantages are the complex operations associated with the analysis of the shape and
relative arrangement of the object existing in the analyzed image [110].

The dual-domain data processing algorithm used in thermal nondestructive eval-
uation analyzes a sequence of thermograms in both the image and time domains and
also cannot be omitted. At the beginning of the algorithm, mathematical morphology or
contrast filtering is applied to remove nonuniform temperature distribution on the surface
of the examined body. The same approach is then used to segment motion detection using
global or local thresholding methods. In the next stages of image processing, the number
of defects is determined. Depths and characteristics are automatically estimated in relation
to the underlying material [111].

4.2. IRT Image Segmentation

The basic method of image segmentation is thresholding, where an image is extracted
based on a specified threshold value [58], the size of which can be determined in different
ways, for example, by direct selection [64] or by finding the intersection of approximations
of histogram values by normal distribution functions with peaks corresponding to the
two highest histogram values [67]. Wasilewska et al. used thresholding to isolate the
object from the background. They further conducted segmentation based on a multivariate
co-occurrence matrix of attributes such as brightness level or brightness gradient [79]. For
image binarization, i.e., for segmenting points into two categories, the Otsu method is often
applied, which automatically finds the optimal threshold by adjusting the distribution
of gray levels (brightness) into two classes with minimum within-class variance and
maximum between-class variance [65,88,89]. Fleuret et al. consider this method to be
of reasonable quality to determine the background image [100]. A binary image can
also be obtained in the case of setting a threshold in the form of a condition instead
of a specific value [74]. D’huys et al. used triangular thresholding to binarize images,
where for each histogram point between the peak and the end value, the distance to
the line passing through the peak and the end point were calculated, and where the
threshold was determined as the position at which the distance between the histogram
points and the line is maximum [95]. K-means segmentation algorithm is used in IRT
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image processing to reduce the number of colors by dividing them into K categories;
thereby, the image is segmented into clusters representing the selected categories [78].
At the beginning of segmentation, points are randomly assigned to clusters; then the
clusters are continuously updated, and points are reassigned between clusters so that
the similarity of point values increases within the same cluster and decreases between
different clusters [94]. The number of clusters can be quite low, for example, three [112],
four [113], or six [80]. Knapik and Cyganek used K-means segmentation to reduce the
number of prototype symptom descriptors [63]. Another type of segmentation method
is edge detection [92], with its typical examples including Sobel, Prewitt, or Canny edge
detectors [66,114]. Li et al. incorporated a phase matching-based edge detector into their
algorithm for automatically matching infrared and visible images [84]. Edge detection can
be followed up by detecting straight lines or circles with the Hough transformation, which
is not prone to noise and missing image data [71,90].

4.3. Classification of Objects in the IRT Image

According to [99], classifying objects based on features is the most common way
for recognizing and understanding image content. They also note that a considerable
number of features such as color, object dimensions, or curve descriptions can be extracted
from segmented objects to facilitate subsequent classification. Classification is usually
implemented using artificial neural networks, of which there is a considerable number of
types. For example, a widely used type is the back propagation neural network, which is a
multilayer network consisting of an input layer, a hidden layer, and an output layer, where
these layers are fully connected to each other, but the neurons of the same layer have no
connection. Individual connections are defined by synaptic weights that can be adjusted as
part of network learning [104,115]. If a neuron’s threshold is reached, i.e., if the sum of the
products of the input values with the corresponding synaptic weights is equal to or greater
than this value, the output signal of the neurons is produced by an activation function
whose prescription is the same for all neurons in a single layer. Within multiple layers,
the activation functions may differ, for example, in [72], a three-layer neural network with
different activation functions was presented, applying a hyperbolic tangent function for
the hidden layer and a linear function for the output layer. In contrast, both Gang et al. and
Wu chose the same activation function, the standard (logistic) sigmoid function, for the
hidden and output layers [104,115]. Kananadze used a Kohonen network containing fully
connected layers, an input layer with a number of neurons equal to the number of image
pixels, and an output layer with five neurons, to analyze the clusters in the image; the
softmax function was chosen as the activation function [73]. The learning of the network
is performed without a teacher and its main advantages include invariance to rotation
and displacement. Izquierdo et al. and Lee et al. focused their research on classification
through convolutional neural networks (CNN), which are among the algorithms in the field
of deep neural networks and are characterized by their ability to select features capable
of finding the context between dependent and independent variables [60,86]. According
to [116], CNN are typically characterized by weight sharing and low link density, which
leads to reduction in the number of parameters in network learning and also reduces
the computational effort. Convolutional neural networks consist of three types of layers,
convolutional, pooling, and classification. Convolutional layers are used to extract features
from the image and are made up of feature maps of the same number as the number of
features, i.e., if the feature maps have size M × N and the number of features is k, the
size of the convolutional layer is M × N × k. Each convolutional layer is followed by a
pooling layer, which reduces the size of the convolutional layer in terms of the size of
the feature maps, thus avoiding network overlearning. So, its size can be expressed as
M/t × N/u × k, where t and u are the number of sectors in the horizontal and vertical
directions, respectively, which each convolutional layer is divided to. The classification
layer takes the form of a fully connected network; its task is to recognize and categorize
the detected objects in the image using the extracted features and their combinations from
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the previous layers [117,118]. CNN can also be applied for image interpolation to higher
resolution in super-resolution methods [62,119].

5. Use of IRT in Livestock Production

The infrared technology is constantly evolving, expanding its use, and being used
as a valuable tool for diagnosing pain and disease in animals and humans. In livestock
production, it is a fast and efficient tool providing information on animal health without
the need for physical contact [52]. In veterinary medicine, thermography can be used as
a diagnostic tool to detect changes in tissues, can be a complementary method to other
diagnostic methods in the physical examination, or can be used for routine monitoring of
animals to detect subclinical problems [120]. One of the main functions of infrared ther-
mography is to detect changes in body temperature and blood flow based on visualizations
of thermographic changes [121,122]. The advantage of IRT is that it can locate the exact site
of injury or inflammation and diagnose the disease before clinical symptoms appear [123],
which usually develop two weeks after changes appear on thermographic images [13].
Infrared thermography was first used in veterinary medicine in 1965 in horses [124] and
over time has become a widely used technique that can be applied to farm, wild, laboratory
animals and animals kept in captivity.

Focusing on livestock, the infrared technology can be used, for example, to detect
mastitis in cows [51] and sheep [125], lameness in dairy cows [126] and sheep [127], ectopar-
asites in cattle [128,129], measure surface temperature in ewes during the estrous cycle [130]
or detect estrus and ovulation in cows [131], measure febrile states after vaccination in
pigs [132], diagnose respiratory diseases in pigs [133] and calves [134], assess body surface
temperature in sows and piglets [135], thermographically examine the musculoskeletal
system during race training in young thoroughbreds [136], assess stress in broilers [137],
detect responses to handling stimuli in cattle [138], assess semen quality in bulls [139]; it
can be used as an indicator of meat quality and also to evaluate stressors acting on animals
before slaughter [140]. All in all, IRT can be used to assess the welfare of livestock [141].

Detection of Lameness in Dairy Cows

Lameness in dairy cows is one of the most important diseases because it reduces
animal welfare, causes pain, reduces milk production, and has a negative effect on repro-
duction [142]. The economic losses caused by lameness can be direct, with the cost of hoof
treatment and adjustment, or indirect, associated with the reluctance of the dairy cow to
move and stand due to limb soreness [143]. Hoof disease can either be caused by infectious
inflammation of the skin of the toe, with the development of digital dermatitis, necrobacil-
losis, and thymomas contributing to the development of lameness, or by disease of the
horn capsule to form laminitis, white line disease, or a foot ulcer [143,144]. Early detection
of gait impairment is important in terms of successful treatment and reducing the overall
severity of the disease [145]. Detection of lameness in its early stages is most difficult and
the first step should be to assess the prevalence of lameness in the whole herd [146]. Various
conventional and advanced diagnostic methods and tools exist for lameness detection
and hoof health observation [147], which include assessing animal gait [28], observing
hoof changes during hoof care [148], use of parallel force plates [149,150], determination of
locomotor activity using an ALT pedometer [151], or measurement of acceleration of the
back and leg regions [27].

The most common detection of lameness is visual inspection, which uses a locomotion
score system that has five levels, where a score of 0 corresponds to no lesion; a score of 1 cor-
responds to a hyperemic area with erect pili; a score of 2 corresponds to a moist, exudative,
and hyperemic area with intact epidermis; a score of 3 corresponds to an exudative area,
exposed corium, with no signs of healing; a score of 4 corresponds to an exposed corium,
but in the process of healing, dried-up lesion; and a score of 5 corresponds to a dark brown
scab, completely or almost completely healed lesion [20,152–155]. The disadvantages of
this method are the inconsistencies and subjective views of the observers [156], the time-
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consuming nature of the method, and the presence of lesions on the limb without evidence
of lameness [157]. The use of infrared thermography as a noninvasive diagnostic tool for
the detection of lameness has been increasing in recent years. The infrared technology
helps to detect the localization of areas of increased temperature, which may indicate
inflammation, or conversely, areas of decreased temperature (decreased blood flow), with
thermographic devices being able to detect skin temperature differences of ±0.1 ◦C [49].
This allows early detection of lesions on the extremities before the onset of lameness [158].

Stokes et al. investigated in their study the potential of IRT for rapid screening of
digital dermatitis. Dairy cows with and without lesions present were selected and a thermal
image was taken from the plantar direction of each limb at the supra-forearm. The limbs
assessed were in three groups: soiled, cleaned, and elevated for visual inspection. It
was found that the temperature did not differ significantly between the feet affected by
the lesion and other lesions on the skin or hooves, regardless of whether the feet were
soiled, cleaned, or visually inspected. Because IRT was not sufficiently sensitive to detect a
specific lesion, the temperature threshold above which any lesion causing lameness could
be detected was investigated. Setting the temperature threshold at 27 ◦C for the soiled
limbs identified 80% of the limbs affected by lesions and 73% of the limbs without lesions.
Cleaning the limbs increased sensitivity but decreased specificity. Setting the temperature
threshold to 22 ◦C for cleaned limbs identified 91% of the limbs with lesions but only 54%
of the limbs without lesions. Similarly, for the cleaned and inspected limbs, the temperature
threshold of 21 ◦C helped to correctly identify 93% of lesions but only 49% of the limbs
without lesions. Thus, the best combination of sensitivity and specificity appears to be the
use of a temperature threshold of 27 ◦C for soiled limbs [159].

Alsaaod et al. measured the surface temperature of the coronal band (CB) and skin
(S) regions of the front and back of the hindlimb. Those affected by digital dermatitis had
higher CB and S temperatures than healthy limbs. Skin temperature was significantly
higher in limbs with infectious lesions compared to limbs without lesions. However, the
probability was not significant in the coronary zone. The prevalence of digital dermatitis
was found to be 44.8% at the cow level and 87.5% at the herd level [145].

In the study by Bobic et al., dairy cows without clinical signs of lameness were selected
for examination. Coronal temperature was measured using a thermal imaging camera
on both fore and hind legs. The results showed that 63% of the dairy cows had tissue
changes in at least one hoof, while 37% remained unchanged; 14% of the dairy cows were
diagnosed with a plantar ulcer, 24%—with interdigital hyperplasia, 62%—with digital
dermatitis [160].

In the study of Arican et al., lame dairy cows were selected, and the thermography
method was compared with other detection techniques. Dairy cows diagnosed with
laminitis by means of other methods showed an increase in temperature at the measured
hoof surfaces. The infrared camera software showed an increased local temperature of
0.5–1.5 ◦C between the normal area and the area with laminitis cases [161].

Wilhelm et al. investigated the suitability of IRT for early detection of subclinical
laminitis and the temperature distribution between the hooves was also examined. In
the second month of lactation, foot bleeding, a sign of subclinical laminitis, was detected.
Thermography showed significant differences between the temperature of the fore and
hind hooves, as well as between the lateral and medial hooves [162].

Cocroft et al. used thermography to diagnose septic arthritis of the right metatar-
sophalangeal joint in heifers, and compared to the healthy limb, the affected limb had a
higher temperature at the site of arthritis localization [163].

Whay et al. performed thermal camera measurements in dairy cows in which hind
limb lameness was detected by monitoring locomotion. The affected dairy cows had
a significantly elevated limb temperature at the coracoid capsule, metatarsal and tarsal
joints [164].

Nikkhah et al. took infrared images of dairy cows affected by sole hemorrhages and
underrun heels. The thermogram was taken from the dorsal view in dairy cows in early
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and mid-lactation or late lactation. The coronal temperature was higher in mid-lactation
cows with the presence of sole hemorrhages compared to the late phase. Underrun heels
were more commonly observed in late lactation phase [165].

According to a study by Munsell et al., there was no temperature difference between
the healthy left and right hind limbs, but there was a significant thermal difference between
the left and right hind limbs when there was a lesion on one of them [166].

Main et al. evaluated the temperature of the hooves prior to treatment using an
inexpensive infrared thermometer. The average temperature of the limbs with lesions was
26.8 ◦C compared to 23.6 ◦C for the limbs without lesions. By observing the maximum
temperature for each limb, it was possible to identify dairy cows with at least one lesion
with a sensitivity and specificity of 78% at a threshold temperature of 25.25 ◦C [167].

Alsaaod and Büscher investigated the potential of IRT for early detection of limb
disabilities by measuring surface temperature of the coronary band and skin in dairy cows
without clinical signs at different stages of lactation. Hoof temperature was two degrees
higher (31.8 ◦C) in early- and mid-lactation dairy cows compared with late-lactation cows
(29.8 ◦C). When data before and after hoof trimming were analyzed, there was a significant
difference in coronary temperature between cows with and without lesions. IRT detected
increased temperature in the limbs with lesions [126].

Renn et al. compared the IRT method with a method for assessing locomotion scores
in dairy cows. The thermograms showed 97% of dairy cows affected by lameness, at least
on one limb, more on the hind limbs, using a threshold temperature of 27 ◦C (139 animals
out of 142 had a temperature greater than 27 ◦C on at least one limb) [168].

In the study by Redaelli et al., the limbs of dairy cows were diagnosed by a veterinarian
and thermographic measurements. The results showed a sensitivity of 93% and specificity
of 38% for hind limbs and a sensitivity of 50% and specificity of 93% for forelimbs [122].

Wood et al. proved that thermography using a handheld laser thermometer has the
ability to detect the presence of elevated temperature associated with extremity lesions.
Monitoring of foot temperature over a period of time showed an elevated temperature
six weeks prior to lesion diagnosis and also a noticeable decrease in the average foot
temperature six weeks after treatment, following lesion removal [169].

Rodríguez et al. evaluated the effectiveness of IRT in dairy cows with different mobility
scores and found that higher hoof temperatures measured with a thermal imaging camera
were only recorded in cows with a locomotion score (mobility score) of 3 or higher [170].

Gianesella et al., using IRT, examined healthy and affected dairy cows suffering from
white line disease, sole hemorrhages, foot ulcers, horizontal and axial lacerations. In both
healthy and affected dairy cows, higher temperature was noted at the mid- and interdigital
region of the hind foot. Dairy cows with affected limbs showed higher temperatures
additionally at the lateral and medial hoof of the hind leg [171].

6. Discussion

Based on research of scientific articles dealing with IRT in animal production, the
claim that IRT allows detecting problem areas noninvasively with a high level of reliability
can be made. Table 2 is an overview of the basic parameters necessary for a correct
evaluation of the thermogram, which have been analyzed in these articles. When evaluating
thermograms, it is essential to follow the principles of thermographic measurement. A key
element of the measurement is the determination of emissivity.

Emissivity values in the range of 0.93–1.00 appear in published texts [126,162,171].
The large range of emissivity values corresponds to monitoring the surface temperature
of different regions of the cow’s foot. The claw of the leg has a different emissivity, and
the surface of the leg has a different emissivity. The high emissivity value of 0.98 [126]
when measuring the lateral claw and the medial claw corresponds to a similar emissiv-
ity value achieved by black matte surfaces, which the claws are close to in appearance.
For the surrounding areas, such as the interdigital area, a different emissivity setting is
inherently necessary. It is not possible to evaluate them simultaneously as the authors
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of the study [126] did. An emissivity value of 1.00 [162], which would correspond to an
absolute blackbody, is strongly questionable. Not specifying the emissivity in [159,172] at
all in an experimental measurement is a major obstacle to the possible validation of the
data and leads to the unreliability of the published data. For measurements with the least
measurement uncertainty, one of the two most commonly used methods for experimental
determination of emissivity can be recommended.

Table 2. Overview of parameters affecting thermographic evaluation in previous studies.

Reference Emissivity Distance (m) Range of
Temperature (◦C)

Reflected Air
Temperature (◦C)

Object Observed with the Thermal
Imaging Camera

[159] N/A N/A N/A N/A Plantar aspect of the pastern taken in a
dirty standing foot

[145] 0.95 0.5 9.6–14.7 11.3 Right rear foot of a 5-year-old cow
(lateral aspect)

[165] 0.93 1.5–2.0 16.5–36.5 N/A Dorsal front hoof

[126] 0.98 0.5 16.0–34.0 N/A Plantar left hind hoof with one lesion
obtained before claw trimming

[172] N/A various various various A dairy cow with inflammation of the
right forelimb

[171] 0.98 0.7 10.0–40.0 20.0
Hind foot of a dairy cow (central area,

interdigital area, lateral claw,
medial claw)

[162] 1.00 0.3 N/A N/A Ground contact area of the left front limb

N/A—not available.

For the purpose of measurements in dairy cows, which can be carried out by techni-
cians without extensive knowledge of infrared thermography, the procedure of determining
emissivity by comparative measurement with a contact thermometer can be recommended.
First, the reflected radiation is determined, and this value is set in a thermal imager. The
temperature of the object to be measured is measured using a contact thermometer. The
surface temperature is then measured using a thermal imager in which an arbitrary emis-
sivity value is set. The difference between the measured temperatures from the contact
measurement and the thermal imager is due to an incorrect emissivity setting. As the
emissivity setting changes, the measured temperature changes. This is performed until the
thermal imager measures the same value with the contact measurement. At that point, the
set emissivity corresponds to the emissivity of the surface of the measured object.

The emissivity can also be determined by comparative measurement with the thermal
imager itself. First, the reflected radiation is determined, and this value is entered into the
thermal imager. A tape with the defined emissivity is stuck on the surface of the body. After
a short period of time for the temperature to settle, the temperature of the tape adhered
to the surface of the object to be measured is measured. The emissivity of the adhesive
tape must be set in the thermal imager. This temperature is the reference temperature. The
emissivity setting is then adjusted until the thermal imager measures the same temperature
as the reference temperature on the surface without adhesive tape.

Another key element is the determination of the reflected radiation temperature. It is
advisable to remove all possible sources of interference in the vicinity of the object to be
measured that may affect the measurement. It can then be determined that the reflected
radiation temperature is equal to the ambient temperature. The ambient temperature can be
determined with a contact thermometer. In selected studies [145,171], the authors reported
this value, which can be considered evidence of erudition in thermographic measurements.
Unfortunately, in most articles [126,159,165,172], this value is absent.

Atmospheric attenuation can be compensated for by keeping the distance of the ther-
mal camera from the object to be measured as short as possible. This principle corresponds
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to a range of distance interval values from 0.15 to 0.70 m, which can be traced, when
reported, in selected studies [126,145,162,165,169,171]. A value of 1.5–2.0 m [165] clearly
stands out from the relevant interval and can be considered inappropriate due to its high
value. In the case of assessing the surface temperature of the limb of a dairy cow, it is
advisable to focus only on the area of interest and avoid having the whole body of the
animal in the picture [172]. When comparing thermograms, it is essential to keep the same
distance for each image.

An often-neglected measurement parameter is relative atmospheric humidity. Many
authors do not mention it at all [126,145,159,165]. It is necessary to work with this variable
and put it into the thermal camera after it has been determined by a calibrated sensor.

To be able to compare thermograms qualitatively, it is necessary to follow the
manual setting of the temperature scale [126,145,165,171]. If the automatic scale is cho-
sen [159,162,169,172], one can only talk about a feelings-based observation of the surface
temperature distribution of the observed object without a deeper analysis. The scale range,
i.e., the minimum and the maximum values, should be defined as the smallest possible
interval [145] in order to observe the differences of the individual regions.

7. Conclusions

1. Stable ambient conditions are important for infrared measurements. The climate, the
objects around the measured body, and all other influencing factors should not change
during the measurement. Thus, it is a big challenge to implement thermographic
measurements in real practice at dairy farms, where it is very difficult to ensure stable
ambient conditions with an unchanging measurement methodology.

2. The ideal measurement conditions are stable weather, cloudy sky before and during
the measurement (when measuring in the open air), no direct sunlight during and
before the measurement, no precipitation, dry thermally available surfaces of the
measured object, no wind, no drafts, no sources of interfering radiation in the vicinity
of the measured object and in between the object and the thermal camera. If possible,
it seems ideal to perform thermographic measurements in the interior of the breeding
facility, where the influence of outdoor weather conditions can be avoided.

3. The surface of the object to be measured should ideally be of high and accurately
known emissivity, with ambient temperature and relative humidity being measured,
at a suitable distance from the object of measurement, with a fixed and suitably chosen
scale. From the experience of practical measurements, it appears that a major obstacle
to meeting these requirements is the variable cleanliness of the legs of dairy cows.

4. Many methods are used for IRT image processing, ranging from basic histogram
adjustment and linear filters to very advanced segmentation algorithms. Image
adjustments are implemented in both the spatial and frequency domains, with Fourier
and cosine transformations being common methods used to convert the image to
a signal. The most advanced and nowadays increasingly applied technique uses
deep neural networks, especially convolutional neural networks, allowing automatic
classification of observed objects in the image. These methods represent modern
approaches to automation and algorithmization of thermographic measurements
for the detection of diseases in dairy cows, including lameness and hoof diseases,
implementable within precision agriculture methods.
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