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Abstract: Numerical models are associated with uncertainties that can be reduced through data
assimilation (DA). Lower costs have driven a recent tendency to use Lagrangian instruments such
as drifters and floats to obtain information about water bodies. However, difficulties emerge in
their assimilation, since Lagrangian data are set out in a moving frame of reference and are not
compatible with the fixed grid locations used in models to predict flow variables. We applied a
pseudo-Lagrangian approach using OpenDA, an open-source DA tool to assimilate Lagrangian
drifter data into an estuarine hydrodynamic model. Despite inherent challenges with using drifter
datasets, the work showed that low-cost, low-resolution drifters can provide a relatively higher
improvement over the Eulerian dataset due to the larger area coverage of the drifter. We showed that
the assimilation of Lagrangian data obtained from GPS-tracked drifters in a tidal channel for a few
hours can significantly improve modelled velocity fields (up to 30% herein). A 40% improvement
in residual current direction was obtained when assimilating both Lagrangian and Eulerian data.
We conclude that the best results are achieved when both Lagrangian and Eulerian datasets are
assimilated into the hydrodynamic model.

Keywords: estuary; hydrodynamic model; Lagrangian assimilation; Eulerian assimilation; residual
currents; OpenDA

1. Introduction

A considerable proportion of estuaries have intermittently open connections to the
ocean, presenting the typical characteristics of Intermittently Closed and Open Lakes and
Lagoons (ICOLLs) [1]. Natural and anthropogenic hazards such as climate change, growing
human populations and increasing urbanisation produce many pressures on estuaries and
have a negative impact on human assets and livelihoods [2,3].

Consistent with effectively managing estuarine systems, monitoring methods have
received attention due to advances in the realism of numerical models, which facilitates
high-resolution simulations of such systems. This monitoring requires two types of in-
formation: (1) a numerical model that describes the hydrodynamics of the system and
(2) measurements used for model simulation that incorporates a more comprehensive
mechanism (i.e., a data assimilation (DA) scheme) to improve model estimates. In response
to decision makers’ requirements to identify the extent of estuarine problems, reliably
measured data are essential to understand system characteristics via numerical modelling.
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Evolution in technologies has led to more extensive and accurate observational datasets,
which have substantially improved the ability to examine model performance [4].

Because observations are approximations to the truth, a befitting combination of obser-
vations and theory is required to replicate the truth as much as is achievable [5]. Although
Gauss was addressing planetary orbits, his declaration also extends to our circumstances.
DA is a process through which a model of a dynamic system is improved by incorporat-
ing observations of the real system to make a suitable combination of observations and
theory [6].

Measured data alone are often insufficient to provide adequate insight into the physics
of the system to support high-quality decision-making in management planning, par-
ticularly with regard to complex waterbodies like estuaries. Due to cost and technical
limitations, field experiments are often restricted to fixed locations and within certain
periods of time. Additionally, observation errors and anomalies can result in the misun-
derstanding of real physical processes, highlighting the importance of merging numerical
modelling with observations to provide valuable flow behaviour information. DA is
an effective tool that allows us to combine mathematical models, data resulting from
instrumental measurements and prior information for the analysis of complex physical
phenomena [7].

Estuarine hydrodynamics are traditionally studied using Eulerian measurements
using fixed-position instruments; these sparse and discrete data have also been used to
estimate boundary conditions of numerical models, in addition to model calibration and
validation [8]. In response to the gap in data density and continuity and in view of these
constraints, Lagrangian drifters (i.e., moving sensors) have recently been introduced for
estuarine applications [9,10]. The most commonly in situ instruments used for measuring
currents are the Acoustic Doppler Current Profiler (ADCP), acoustic doppler velocimeter
(ADV) and conductivity–temperature–depth (CTD) profiler [11,12], which can be deployed
as a fixed-point instrument (anchored). These instruments measure only the temporal
variation of the currents at a certain depth and location; thus, the small control volume of
Eulerian devices, including their inability to sample the spatial structure of large domains,
necessitates the application of a large number of instruments [13].

Lagrangian drifters have been extensively used in oceanic systems [14], largely be-
cause they provide deeper insights into flow dynamics as they carry multiple physical,
chemical, or environmental information of the flow and are more cost-effective than Eule-
rian measurements [15]. Lagrangian DA substantially improves the accuracy of modelled
velocity fields of large water systems and are more effective than fixed-measurements
DA in improving oceanic circulation models, especially with limited instrumentation [16].
Some studies have also indicated that Lagrangian DA can significantly improve model
estimates for small-scale water systems, e.g., rivers [4,15,17]; however, the application of
these data in shallow estuaries and inland waters is in its infancy up to this time.

Despite the value of using Lagrangian drifters to study the hydrodynamics of estuaries,
particularly where fixed sensor availability is limited, there are some major challenges
linked to using these data. Lagrangian drifter motions can be affected by local perturbations
due to physical processes, such as wind-induced currents and turbulence, and they are
restricted to the free water surface [18]. Because these small-scale features cannot be
effectively resolved in hydrodynamic models, data pre-processing is essential prior to
DA [15]. In addition, a key facet of the Lagrangian DA process is the difference between
the observational (Lagrangian) and numerical model (Eulerian) frameworks; this requires
extracting Eulerian velocity from Lagrangian data [16].

Methods introduced for DA fall into two general categories: (i) variational methods,
including 3D-VAR and 4D-VAR; (ii) sequential methods, including Kalman filtering and its
variants and particle filtering. Sequential methods are robust techniques for DA in a broad
range of applications [19]. Different DA schemes have been used to assimilate Lagrangian
data into hydrodynamic models; among them, the Ensemble Kalman Filter (EnKF) al-
gorithms are gaining more attention in water systems due to ease of implementation in
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addition to applicability for non-linear systems [16,19,20]. Using the EnKF algorithm, we
can assess the effects of several elements, including the number of ensembles, frequency
of assimilation, and observation density (number of drifters), to obtain an effective DA
system [21].

The two main reasons that constrain the application of Lagrangian DA in estuarine
dynamics studies are the programming effort required and the underestimation of the
value of such assimilation. Herein, we present a flexible and easy-to-implement framework
in which we use OpenDA; an open-source DA software for Lagrangian data assimilation.
OpenDA has been widely used for DA and calibration purposes in lakes, rivers, and
estuaries; however, cost-effective GPS-tracked Lagrangian drifters have not previously
been used in an estuary.

Sediment transport processes in tidal channels usually result in erosion and depo-
sition [22]. Determination of water circulation patterns in estuaries is a key element to
support the sustainable management of these systems [23]. Tidal systems with asymmetric
flow properties induce residual currents that cause net flow migration in either the ebb or
flood direction [24]. It is also evident that, in tidal systems, residual currents are dominant
in one direction; opposite residual currents can occur locally and change the direction
of flow [25]. Residual currents control the exchange of sediments, including adsorbed
nutrients and contaminants with the adjacent coastal zones and consequently impact
geomorphic processes (e.g., stream meandering, bank erosion) and the overall health of
estuarine ecosystems. The direction of residual currents (non-tidal currents) is important
in sediment transport and bank erosion studies in estuaries because residual circulation
and flood/ebb tidal asymmetry are the major mechanisms controlling the transport of fine
suspended sediment [26]. In Currimundi Lake, with an asymmetric behaviour, in addition
to the longshore transport of sand resulting in the migration of the inlet channel, the net
flow direction has a pivotal impact on sand redirection causing bank erosion and entrance
channel migration. Thus, tidal hydrodynamics and entrance behaviour studies of the lake
play a key role in the effective management of the problems that this estuary encounters.

In this paper, we focused on the application of an EnKF to examine the reliability of
Lagrangian DA performance using cost-effective drifters to improve velocity and direction
of residual current estimates in Currimundi Lake. Our aim was to: (i) investigate the
performance of Lagrangian DA, for improving the accuracy of model predictions; (ii) reduce
the programming effort required for assimilation of Lagrangian data into hydrodynamic
models; (iii) examine the effect of Eulerian and Eulerian–Lagrangian assimilation on DA
performance; and (iv) investigate the spatial variation of residual currents in the domain
through identifying five model scenarios increasing the modelling time window from 21 h
to 8 days.

Delft3D flexible mesh in 2D mode was used for hydrodynamic simulations for
five different time windows (i.e., 21 h, one day, two days, four days, and eight days).
We then calculated Eulerian velocities from Lagrangian positions using a pseudo-Lagrangian
approach and assimilated Lagrangian velocities using the EnKF method, embodied in
OpenDA. In the next step, we conducted an extensive study to quantify the efficiency
of EnKF–Lagrangian data assimilation as a function of the number of ensembles, the fre-
quency of assimilation, and the number of drifters, taking into account the uncertainties
associated with the boundary forcing of the model and observations. The performance
of the Lagrangian assimilation was also compared with Eulerian data assimilation (i.e.,
fixed-point velocities), along with assimilating both Lagrangian and Eulerian velocities.
To examine the effect of DA on the residual velocity direction in the lake, we quantified
the variation of residual velocity direction in a situation when the model time window
increased while a constant assimilation window was adopted.

The paper is organised as follows: in Section 2, we describe the materials and methods;
in Section 3, we provide a brief introduction to the DA environment (OpenDA) and
its EnKF module and DA set up, along with describing a post-processing method to
remove fluctuations from drifter data. The DA experiments and monitoring network used
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to investigate the DA performance are presented in Section 4, followed by results and
discussion in Section 5. Finally, we present a detailed summary of the study and the
conclusions from the simulation results in Section 6.

2. Materials and Methods
2.1. Study Area

The field study location was the main channel of Currimundi Lake. Currimundi Lake
(longitude 153◦8′10” E, latitude 26◦45′40” S) is a micro-tidal estuary located in south-east
Queensland characterized as a mixed tide with a predominantly semi-diurnal tidal pattern
and is a micro-tidal estuary with a spring tidal range limited to 0.8 m [27]. The depth
of the mid-channel varies between 3 to 5 m and the width varies from 70 to 300 m be-
tween upstream and downstream (Figure 1). Lake Kawana discharges freshwater into the
Currimundi Lake system through a weir (0.65 m above the AHD) located 3.6 km from
the channel mouth. When the inlet is open, the average discharge rate is 80 ML/day to
maintain the water level upstream. The main channel of Currimundi Lake is connected
and generally open to the ocean whilst the main tributaries and man-made water bodies
are located upstream (Figure 1).
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Figure 1. (a) Aerial view of Currimundi Lake main channel including instruments and observation locations. Drifters were
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2.2. Field Experiment Descriptions and Instrumentation

The field experiment covered 2 km of a relatively straight channel reach downstream
from the pontoon (Figure 1) for a 21 h period during both ebb and flood conditions
(27–28 April 2015). Key environmental forcings include wind, tide, and discharge (Table 1).
To obtain the flow velocity at the near-surface, both GPS-tracked floating drifters and fixed
ADV were used.

Table 1. Overview of environmental conditions and instrumentation.

Inlet
Condition Date Tide Tidal

Range (m)

Water
Elevation

(m)

Discharge
Range
(m3/s)

Wind
Speed
Range
(m/s)

Instrument
Deployed

Sample
Frequency

(Hz)

Open 27 April
2015 Ebb 0.4 0.2 0.6–17 0–4.0

ADV- Sontek-2D
side-looking

(16 MHz)
50

Open 28 April
2015 Flood/Ebb 0.6 0.7 0.15–30 0–4.0 LR, low cost drifter 1

Drifters utilised in this study were low-cost, low-resolution, cylindrical PVC pipes:
4 cm diameter and 50 cm long with similar physical configuration as the high-resolution
drifters described in Suara, Wang [9]. The drifters were ballasted to achieve a ~47 cm
submerged height. These drifters have an absolute horizontal position accuracy between
2 and 3 m and were sampled at 1 Hz. A fleet of 18 drifters was launched in Currimundi
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Lake on 28 April 2015 in clusters of four; they floated in the main channel for three hours
from 13:00 to 16:00. Four drifters were either lost or experienced logging errors, thus
data from 14 drifters were used in this study. The distance travelled by drifters between
the bridge (point A) and pontoon (point B) is shown (Figure 1). The ADV was mounted
0.5 m below the water surface at the pontoon (B) and sampled continuously at 50 Hz
during the entire experiment period from 19:00 on 27 April to 16:00 on 28 April (Figure 1).
Further details about environmental conditions, instrumentation and quality control for
this experiment are explained in [28].

2.3. Hydrodynamic Model

Hydrodynamic simulations were conducted using Delft3D FM, an open-source hydro-
dynamic model developed by Deltares, Netherlands. The model was run in depth-averaged
2D mode. The model solves the Navier–Stokes equations for an incompressible fluid, using
the shallow water equations and the Boussinesq assumptions. To ensure that the model
output is independent of the grid resolution, a grid independence test was carried out.
Five different grids were constructed ranging from 25 m down to 2 m. The cross-sectional
average velocity at the middle of the domain (Point C in Figure 1a) was used to test the
mesh convergence. The results show that the average velocity was not sensitive to further
refinement beyond a minimum grid size of 5 m. However, an increase in the minimum grid
size caused an increase in the cross-sectional average velocity. Courant–Friedrichs–Lewy
(CFL) condition for this model was (CFL≤ 1). A detailed model description can be accessed
through the manual [29].

Modelling at Currimundi Lake used an unstructured grid with a spatial resolution
of 5 m following the channel morphology; the time series of discharge obtained from
an ADV and the water level obtained from a gauging station were used for upstream
and downstream boundaries, respectively. The downstream boundary was forced with
water level data obtained from the tidal gauge within the main channel and sampled at
an interval of five minutes. Therefore, the diurnal, semi-diurnal and higher frequency
tidal constituents are included in the boundary. The simulation time step was 1 min over
the simulation period of 21 h plus a 21 h spin-up time for initial condition propagation.
A spatially constant bottom friction was defined by applying Manning’s coefficient
n = 0.025 obtained through model calibration.

The model calibration process is a pivotal prerequisite to the DA process because
DA algorithms are mainly bias-blind [30] and erroneous parameters can lead to signif-
icant uncertainties in the DA process. The calibration of the hydrodynamic model was
performed with two sets of data: Eulerian calibration using 70% of velocity measurements
collected from a fixed-instrument (ADV) and Lagrangian calibration using 70% velocities
from GPS-tracked drifters. Both calibrations used Root Mean Square Error (RMSE) and
correlation (R2) between observed and simulated velocities and aimed to adjust the bed
roughness coefficient through Manning’s coefficient (n). The optimum Manning coefficient
(n = 0.025) attained through Lagrangian calibration was equivalent to that observed via
Eulerian calibration. Thus, Lagrangian data has the potency to be used in hydrodynamic
model calibration in such environments. After the calibration, modelled and observed
velocities correlated very well (R2 = 0.94) and root mean square error was reasonably low
(RMSE = 0.019 m/s), suggesting that the calibration successfully reduced systematic model
errors. The calibrated model was then validated by comparing simulated velocities with
30% of the measurements for both Eulerian and Lagrangian velocities. The RMSE and R2

values through this validation reflected a successful calibration of the model. The calibra-
tion and validation of the hydrodynamic model are presented in full detail in [28].

To investigate the effect of DA on the direction of residual currents in the main channel,
we used our calibrated model to simulate the dynamics of Currimundi Lake for longer
durations of one day, two days, four days and eight days. Upstream and downstream
boundary forcings (i.e., discharge and water level) used in the hydrodynamic model for
longer temporal simulations were obtained by developing a stage-discharge relationship
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and gauging station data measurements. Details of the tidal discharge rating curve used
to predict flow discharge as well as calibration and validation of the model can be found
in [31]. We performed the Lagrangian assimilation over a period of three hours for our
four model scenarios with different boundary forcing temporal variations (i.e., one day,
two days, four days and eight days). We then calculated the residual currents by averaging
over a complete tidal cycle (12 h 25 min), considering the predominantly semi-diurnal tidal
pattern in Currimundi Lake. The impact of DA on the direction of residual currents for
each of the model scenarios was based on Root Mean Square Deviation (RMSD). This was
then compared to identify the best DA performance when the model period increased from
one to eight days whilst the assimilation period remained fixed at three hours.

3. Data Assimilation

To enable flexibility and reasonable computational cost, we utilised a variant of the
Kalman filter, namely an Ensemble Kalman Filter (EnKF). The main procedure was the
recursive computation of the means and covariance matrices of the ensemble system state.
Since its first introduction by Evensen [32], the EnKF has been widely used in different
geoscience disciplines such as oceanic [33], riverine [34], and estuarine [35] studies. The full
theoretical formulation for the EnKF framework is presented in Evensen [36].

3.1. Data Assimilation Platform

OpenDA is an open-source tool, enabling the incorporation of random numerical
models and observations through assimilation algorithms. It can be utilised to min-
imise the programming effort by enabling flexible software implementation among users
(http://www.openda.org (accessed on 1 December 2020)). The OpenDA framework is
validated by performing both real and synthetic DA that supports the potency of this
relatively new framework launched in 2010 (OpenDA). Three main data assimilation
components in OpenDA include: (i) a stochastic observer for specifying observation data
used in the application and information about data uncertainty; (ii) an algorithm that
itemizes the input parameters required by DA; and (iii) a stochastic model in which users
identify model-related information. The complete source code is accessible via GitHub
(https://github.com/OpenDA-Association/OpenDA (accessed on 1 December 2020)).

This environment supports assimilation of the available observations through the
use of filtering techniques such as EnKF and particle filters. These algorithms have been
successfully applied in different areas like DA of currents and salinity profiles [37], flood
forecasting [38] and more recently in DA for accurate estimation of sea level anomalies
(SLA) and residual currents [39,40]. These diverse applications demonstrate the efficacy of
OpenDA as a generic toolbox for DA.

3.2. Data Assimilation Algorithm

At each time step, the flow model (Delft3D FM) receives real velocity data from the
drifters and the shallow water model equations produce a collection of states (ensembles)
representing the evolution of the processed inputs. The EnKF compares these real data to
the estimated outputs to provide the best estimation of the flow state in the field.

Below, we explain the fundamentals behind the EnKF algorithm in Equations (1)–(7).
The true model state based on the physical state of the lake at time t is defined as At (in our
case, velocity for the entire model grid), M is the nonlinear lake system operator, ω is the
noise, and U is the hydrodynamic forcing vector (here discharge and water level) for time t:

At= Mt (St−1 , Ut−1) + ωt−1. (1)

The state-space vector, noted Â is an approximation by the hydrodynamic model
Delft3D-FM of the true state S. The noise is added to the forcing term ω.

The forecast state is specified by Ŝ f and the analysis state acquired after DA is Ŝa:

Â f
t = Ht

(
Âa

t−1 , Ut−1). (2)

http://www.openda.org
https://github.com/OpenDA-Association/OpenDA
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The observation (y) equation is described as:

yt= Ht (At ) + ξt. (3)

where H is an operator connecting the state of the system to the observation and ξ is
measurement noise.

The observation prediction equation is:

ŷt= Ht

(
Â f

t

)
. (4)

and the state estimation of the system obtained from DA which will be used in the next
sequence as an initial condition is:

Âa
t= Â f

t +Kt (yt− ŷt) (5)

K is a weighting factor called Kalman gain and is considered as a balance between
model and observation uncertainties [41]. K tends to decrease the error covariance of the
state estimate during the analysis time:

Kt= P f
t HT

t

(
HtP

f
t HT

t + Rt

)−1
. (6)

where Rt and P f are the measurement error covariance matrix and a priori state error
covariance matrix, respectively.

The EnKF is able to compute a time-varying covariance error based on the dynamics
of the system. For an ensemble of forecasts (j = 1, . . . , N), each prone to some level of
uncertainty in model processes, forcing, or initial conditions, P is:

P f
t =

1
N − 1∑N

j=1(A f
t,j − A f

t )
(

A f
t,j − A f

t

)T
. (7)

where P f
t is the forecast error covariance.

3.3. Data Assimilation Setup

The purpose of DA is essentially to characterize uncertainties [42]. The hydrodynamics
of a system is modelled based on deterministic equations and the model initial conditions.
However, boundary conditions are associated with uncertainties that adversely affect the
performance of any calibrated model [19]. To address this issue, we included stochasticity
and added noise to both velocity components as well as the water level in boundary
conditions. Observations (i.e., velocity) to be assimilated were perturbed at observation
locations to support the measurement errors. Ensemble forecasting produces a number of
model realizations from stochastic perturbations applied to model boundary forcings and
observations. These model realizations are then propagated using available observational
information, which is required to reduce model uncertainty and improve its accuracy.

We introduced stochasticity to the deterministic model by using the OpenDA noise
model. To fully capture the model uncertainty, an ensemble was created with a reasonably
wide spread [43]; to this end, error statistics (Table 2) were designated to sufficiently spread
the ensemble members.
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Table 2. Noise model parameters.

Parameter Description Value

σWl (m) Water level standard deviation 0.05

σDischarge
(
m3/s

)
Discharge standard deviation 1

ρWl (h) Water level temporal correlation 6

ρDischarge(h) Discharge temporal correlation 6

3.4. Pseudo- Lagrangian Assimilation

A common problem when assimilating Lagrangian data is that there is a nonlinear
relationship between the observed variables (i.e., the positions r) and the model variables
to be modified (i.e., the Eulerian velocities u). This problem can be circumvented by
approximating u as the finite difference of successive positions, u ≈ ∆r/∆t (∆r = position
displacement and ∆t = sampling period). This method, known as pseudo-Lagrangian
assimilation, works well when the sampling period is much smaller than the Lagrangian
correlation time scale [16]. For this study, the drifters were sampled at a frequency of
1 Hz resulting in a sampling period that is at least one order of magnitude less than the
Lagrangian correlation scale (50 s) in a channel with similar physical characteristics as
Currimundi Lake [9].

3.5. Trajectory Filtering

In the case of experimental flows (real data), estimated velocity (u ≈ ∆r/∆t) cannot be
used directly in the data assimilation system. To resolve this issue, a statistical description of
individual trajectories in the form of a space–time averaging filter is applied. Vaveraged (x, t)
is defined as the mean velocity observed at time t and location X in a space-time window W
= Wt ×Ws, where Wt is a temporal window around t and Ws is the spatial neighbourhood
of X(t).

In Figure 2, the spatial window (red box) is indicated, representing the location of
Lagrangian drifters from time t1 to time t2. As drifters move along the water, some of them
enter and depart from this spatial window during the corresponding time of the window
(Wt). We “average out” the velocities of all the drifters traveling through the specific spatial
window during a given time interval (Vaveraged (x, t), green arrow in Figure 2. This filtered
velocity represents the local flow velocity at a specified time and is subsequently used in
the flow computations.

Depth averaged velocity is obtained from the drifter surface velocities using a correc-
tion factor of 0.85 following the logarithmic-law-of-the-wall for velocity profiles measure-
ment in open channels [44].
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4. DA Experiments

In this section, a base experiment (i.e., Base-Test) used as a benchmark is presented first
and the rigour of the results of the Base-Test is then tested using a sensitivity analysis by
varying the parameters of DA: the ensemble size, the number of the drifters and sampling
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period. These parameters are adjusted in an appropriate range to provide guidance for
applications in real cases.

A comparison between the performance of the Lagrangian assimilation with respect
to the Eulerian assimilation and Lagrangian plus Eulerian assimilation using the “pseudo-
Lagrangian” scheme was conducted. Finally, the difference in the residual current direction
realised by DA in terms of RMSD is presented.

4.1. Experiment Characteristics

Six different experiments were conducted to assess DA performance:

• Free-Run: Model simulation without assimilation;
• Base-Test: The assimilation of the Eulerian velocities obtained from eight Lagrangian

drifter data released within the straight section of the channel between points A and B
(Figure 1). The assimilation process initiates with a sampling period ∆t = 1 min, which
corresponds to the time step of the model, so the assimilation is undertaken at each
model time step. This experiment is designed to study the DA performance on the
velocity estimates subject to the availability of velocity information during the drifter
travel time;

• Ensemble-Test: To assess the impact of the number of ensemble members, five values
for ensemble size were analysed: 5, 10, 25, 50 and 100. Various ensemble sizes were
selected to gain the optimum size considering a trade-off between computational cost
and accuracy;

• Frequency-Test: A series of experiments was performed maintaining the same config-
uration as in Base-Test, using sampling period ∆t varied as 1, 2, 5 and 10 min.

• Density-Test: To examine the effect of the number of drifters deployed, two experi-
ments, in addition to Base-Test, were performed with four and two drifters released in
the straight section of the lake;

• Validation-Test: To validate the DA performance with a different set of data (i.e., six
non-assimilated drifters).

4.1.1. Monitoring Configurations

Depending on the availability of velocity data at various locations in the domain of
interest, estimates of how the velocity improved using DA varied. By identifying two
velocity monitoring configurations, we argue that increasing the density (i.e., number)
and the distribution (i.e., spatial coverage) of observations in the channel will lead to
improvement of velocity and residual currents results in our domain. To assess DA
performance, two monitoring Set-Ups were used in addition to the Base-Test:

Set-Up I: Using one fixed ADV deployed 0.5 m below the surface at the pontoon (Figure 1).
This set-up investigated the impact of DA on velocity estimates, assimilating 21 h of velocity
data at ten-second intervals.
Set-Up II: A combination of Base-Test and Set-Up I, using both drifters and ADV velocity
data simultaneously. Table 3 summarises the characteristics of the DA experiments and
monitoring network used for evaluating the DA performance.

Table 3. Characteristics and Parameters of the Experiments.

Experiment Assimilation Type Measurement
Type and Number Measurement Location

Assimilation
Duration and

Frequency

Free-Run x x x x

Base-Test Pseudo Lagrangian 8 drifters From point A to B in Figure 1 3 h */1 min

Ensemble test Pseudo Lagrangian 8 drifters From point A to B in Figure 1 3 h/1 min

Frequency test Pseudo Lagrangian 8 drifters From point A to B in Figure 1 3 h/1 min

Density test Pseudo Lagrangian 8 drifters From point A to B in Figure 1 3 h/1 min
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Table 3. Cont.

Experiment Assimilation Type Measurement
Type and Number Measurement Location

Assimilation
Duration and

Frequency

Validation test Pseudo Lagrangian 6 drifters From point A to B in Figure 1 3 h/1 min

Set-Up I Eulerian 1 ADV Point C near bridge in Figure 1 18 h/1 min

Set-Up II Eulerian + Pseudo
Lagrangian 8 drifters + 1 ADV From point A to B and Point C in

Figure 1 21 h/1 min

* Time that drifters travelled in channel.

4.1.2. DA Performance Evaluation

The success of the assimilation in the experiments and Set-Ups is evaluated. Different
measures for evaluating and comparing the results of various scenarios employed in this
study are used as benchmark indicators. The velocity estimates obtained by Free-Run and
Base-Test were compared with the drifter measurements in terms of RMSE at any station
or location that observations were available.

Root mean square error (RMSE) is estimated as:

RMSE =

√
1
n ∑n

i=1(Vsimulated −Vobserved)
2 (8)

To quantify the improvement gained by the DA, we defined percentage improvement as:

% Improvement = [1− [RMSEFree Run/RMSEEstimate]]× 100 (9)

Absolute Accuracy Error is calculated as:

AAE = |Vsimulated −VObserved| (10)

Mean Absolute Error is calculated as:

MAE =
1
n ∑n

i=1|Vsimulated −VObserved| (11)

Deviations between simulated velocities before and after assimilation (i.e., Free-Run
and DA experiments) were used to compare the performance of DA for both Eulerian and
Lagrangian assimilations (i.e., Root Mean Square Deviation (RMSD)).

The velocities in the model state are described in terms of north/east (Vx and Vy)
components. The results here are presented in terms of the magnitude and direction of
the currents because, operationally, these are the parameters of interest. The velocity
magnitude and direction (θ) are obtained as:

Vmag =
√

Vx2 + Vy2 (m/s) (12)

θ =
tan−1

(
Vy
Vx

)
π

× 180 (degrees) (13)

5. Results and Discussion
5.1. Ensemble Size

To employ a statistical sample of the state of the system, the EnKF functions by
integrating ensembles of states that are independent of each other; therefore, the model is
run N (number of ensembles) times. The ensemble size is generally identified empirically
and is based upon a compromise between a reasonable representation of the state and
computation cost [19]. Increasing the size of the ensemble (N) decreases the errors in the
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Monte Carlo sampling at the rate of 1√
N

[36]. We determined ensemble size by performing
a sensitivity analysis using ensemble sizes of 5, 10, 25, 50 and 100.

With respect to our Base-Test (Section 4.1), the results indicate that for an increasing
number of ensembles the analysis error reduces. Figure 3 provides RMSE for both velocity
components when the size of the ensemble varies. The most striking improvement in
RMSE occurs when we increase N up to 25. Further increases in the ensemble size had
no significant improvement; hence, we conclude that the best improvement was achieved
with 25 ensemble members.
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5.2. Assimilation Frequency

An important physical parameter to consider in DA is the frequency at which data are
assimilated into our model. To test the sensitivity of our DA approach to the assimilation
frequency, we performed a series of experiments maintaining the same configuration as in
the Base-Test with eight drifters but altering the value of the frequency (∆t) at which drifter
velocities were assimilated into the model. Error estimates in terms of RMSE for both
velocity components are presented in Figure 4. For assimilation intervals <2 min, our model
remains less sensitive to the specific interval used, likely due to data correlation effects.
However, increasing the assimilation interval beyond 2 to 10 min shows a high degradation
in DA performance. This infers that DA performance is highly responsive to the frequency
of data assimilation. Assimilating drifter data every 1 min resulted in ~27% improvement
while assimilating every 10 min produced essentially no improvement in model output.
Performing assimilations every 5 min provided an 11% and 13% improvement in Vx
and Vy, respectively, notably less than the improvement gained in the Base-Test, with an
assimilation frequency of 1 min. However, an assimilation frequency of 2 min led to a
slight degradation in DA performance improvement compared to the Base-Test. In fact,
increasing the time interval beyond the Lagrangian integral time scale of the lake (here,
~50 s) causes some important spatiotemporal velocity information to be lost, leading to
deterioration in the model performance [16]. In general, the results denote that using
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a DA time interval close to the Lagrangian integral time scale of the domain leads to
better outcomes.
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5.3. Number of Drifters

Determining the optimal number of drifters to be deployed is an important aspect
of our Lagrangian DA assessment. To this end, four experiments in addition to the Base-
Test were conducted with 2, 4, 12 and 14 drifters while keeping other parameters the
same as those in the Base-Test (Table 3). Error assessments in terms of RMSE for both
velocity components are shown in Figure 5. A major improvement in the RMSE occurs
when 14 drifters are used. However, the optimum value is attained with eight drifters
because this results in the maximum improvement in RMSE with the fewest number of
drifters. When the number of drifters exceeds eight, the error reduces marginally by ~2%.
The optimum value of eight drifters determined here supports the selection in the Base-Test
(Table 3). In all cases, DA is effective even when a limited number of drifters were used
(i.e., two drifters), which affirms the value of assimilating minimal Lagrangian drifter data
to improve model estimates, possibly for locations poorly covered by observation systems.
This indicates that a small number of drifters can result in a significant improvement to
model predictions. With more observations, our analysis shows better improvement and
is, therefore, less likely to have unrealistic features in our hydrodynamic model outputs
that can appear when a sparse network of observations is analysed. Although it would
be more beneficial to record more data, this optimum number of drifters is dependent on
many factors including the flow domain being modelled (e.g., eddy dominant or quiescent
(slack) sections of the domain) [21].
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5.4. Model Validation

We validated the model using independent data, that is, data that were not assimilated
by the system. We validated the DA process by comparing modelled velocity estimates
when data from eight drifters were assimilated with non-assimilated observations (i.e., six
drifters). It is noted that the velocity output from model simulations that was compared
with measured velocities were based on the actual drifter trajectories with 1 min interval
(∆t = 1). A scatter plot of observed versus simulated horizontal velocities shows good
agreement (R2 = 0.90) between velocities derived from the model at drifter locations and
velocities of non-assimilated drifters (Figure 6). This agreement is significantly higher
than the correlation obtained between model velocity without assimilation and drifter
velocities (R2 = 0.56) [28]. The result here further determines a reliable DA performance and
shows that the integration of Lagrangian data significantly improves the hydrodynamic
model prediction.
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5.5. Improvement of Velocity Estimates at Observed Locations

DA improvement of the model estimates of velocity at all observed locations was
tested. To evaluate the impact of velocity data on the efficiency of assimilation, an absolute
error indicator was used. Figure 7a examines the observation minus modelled velocity
components in the domain that was covered by drifters and for the x (left panels) and y
components (right panels). The absolute error between observations (i.e., drifter velocities)
and modelled velocities derived from the Free-Run (i.e., model without assimilation)
is plotted in the top panel and the absolute error between observations and modelled
velocity after assimilation (i.e., Base-Test) is shown in the bottom panel. Clearly, the DA
enhanced model performance with most of the error values near zero after assimilation.
The Free-Run appears to have a higher error at observed locations while the assimilation
appears to have reduced this error significantly, bringing the modelled velocity close to the
observed velocity. To better exhibit the general performance of the DA, Figure 7b shows
the time series of absolute error for the modelled velocity with and without assimilation
(i.e., Base-Test and Free-Run, respectively) with respect to drifter velocity. It is evident that
assimilation of drifter velocities can successfully reduce the errors in the modelled velocity
during the assimilation period.
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5.6. Impact of DA Observation Types on the Model Performance

The assimilation runs were conducted for the Set-Up I and II in addition to the Base-
Test which assimilated pseudo-Lagrangian drifter data. Set-Up I assimilated the Eulerian
data while Set-Up II assimilated both the pseudo-Lagrangian dataset used in the Base-Test
and the Eulerian dataset used in Set-Up I. DA performance with respect to the differences
between model estimates with and without assimilation was examined. Velocity magnitude
for the Free-Run simulation is shown in Figure 8a. The RMSD between Free-Run modelled
velocities and DA modelled velocities in the Base-Test, Set-Up I and Set-Up II for all grid
points was calculated. The special variation of RMSD for the Base-Test shows that DA
remarkably improved the model results of Lagrangian drifter data assimilation, specifically
in the sections of the lake where the drifters traversed (Figure 8b). These findings suggest
that DA performance is highly dependent on the spatial coverage of drifters. Large RMSD
values were observed in a small area in the vicinity of downstream boundary where no
observations were available. Errors are likely due to sparse data.

The spatial variation of RMSD (i.e., the deviation between Free-Run and Set-Up I)
for the assimilated velocity was then calculated. This statistical measure shows that a
single sensor at a certain location can contribute to improvement in the model results
through DA (Figure 8c). We found distinct differences between the model before and after
assimilation. The difference between the assimilated Lagrangian and Eulerian velocity
(Set-Up II) and Base-Test velocity, suggests that including both sets of data (i.e., Lagrangian
and Eulerian) concurrently results in larger RMSD in the domain compared to when the
Base-Test or Set-Up I is examined independently (Figure 8d). The model is strongly affected
by DA as observed from the three cases examined, although the impacts are not identical
in terms of magnitude or with respect to location. RMSE and R2 values before and after
DA for Lagrangian, Eulerian and Both Lagrangian and Eulerian DA indicate significant
improvements over the Free-Run simulation (Table 4 and Figure 9).
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Figure 8. DA effect on velocity magnitude in the entire domain. (a) Model without assimilation, (b) the difference between
model estimates with and without assimilation according to Base-Test configuration, (c) using configuration Set-Up I and
(d) Set-Up II.
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Table 4. Summary of the data assimilation performance (RMSE).

Free-Run
No Assimilation

Base-Test
DA with Lagrangian

Data

Set-Up I
DA with Eulerian

Data

Set-Up II
DA with Lagrangian

& Eulerian Data

RMSE (m/s) 0.07 0.05 0.059 0.043

R2 0.56 0.95 0.92 0.97

Improvement (%) 28 16 39
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Figure 9. Scatter plots of modelled versus observed velocity (m/s) for Lagrangian (Base-Test), Eulerian (Set-Up I) and
Lagrangian and Eulerian (Set-Up II) assimilation.

5.7. Spatial Variation of Residuals Currents (Direction of Residual Currents)

Tidal hydraulics and entrance dynamics along with bank erosion and water quality
are dominant issues with high priorities that need to be addressed for Currimundi Lake.
The hydrodynamic and residual transport patterns emerging from tidal motion have
important consequences for the transport of sediments, water quality and bank erosion;
thus, an accurate estimation of residual currents is very important in this setting.

A previously developed tidal rating curve was used to predict a long time series
of discharges by measuring the water level at a gauging station. This relationship was
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validated by investigating the correlation between the predicted and observed discharge,
along with examining the comparison between model outputs using observed and pre-
dicted discharge boundary conditions [31]. The residual currents were derived from tidal
velocities during 8-day, 4-day, 2-day and 1-day periods in which full tidal cycles prevailed.
These non-tidal currents driven by wind are important in estuaries because they are the
principal means of transport for dissolved and suspended matter [45,46]. In addition,
the lack of consistent current measurements in these areas begs the need for accurate
current estimations. The effect of DA on the direction of residual currents in terms of
RMSD is shown in Figure 10. While the assimilation window is kept constant at 3 h, the
time window of residual velocity changes. A significant difference between the model
without assimilation and Set-Up II for time windows of 1, 2, 4, and 8 days was observed
(Figure 10a–d, respectively). The deviation is particularly larger in the 1-day window of
residual velocity and especially in shallow sections of the lake mostly driven by wind
(close to downstream boundary) and the section where drifters made their way through
as expected from DA performance analysis results. Given that the assimilation period is
constant, as the time window of residual velocity increases, the deviation between model
results without assimilation and Set-Up II decreases, which shows the effect of the ratio of
residual velocity period to assimilation period on the DA performance (Figure 11).
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6. Conclusions

Drifters have a long history of use in oceanographic, climate research and weather
forecasting; however, they have only been introduced into estuarine environments in
the last few years. Accordingly, many drifter types exist. Recently, drifters with Global
Positioning System (GPS) receivers have drawn considerable attention due to their ability
to obtain data with a large spatiotemporal coverage at a relatively lower cost compared to
traditional Eulerian instruments. This work provides the first examination into the use of
low-cost, low-resolution Lagrangian drifters for improving the accuracy and understanding
of flow field dynamics of a micro-tidal estuary (Currimundi Lake) through data assimilation
into a hydrodynamic model.

The real velocities derived from the Lagrangian drifter data in addition to Eulerian
velocities were assimilated into a two-dimensional version of Delft3D-FM which solves
shallow water equations through a finite element method. Assimilation experiments were
conducted for 3 h, using the flow data collected during the 28 April 2015 experiment.
The EnKF was applied through the OpenDA assimilation toolbox. We tested the system for
different data configurations and model setups. The problem of assimilation of Lagrangian
drifter data in Eulerian models is circumvented by applying a pseudo-Lagrangian approach
through which the corresponding Eulerian velocity is constructed. OpenDA, which is an
open interface standard, was used to evaluate the efficiency of an Ensemble Kalman Filter
(EnKF) data assimilation scheme to improve the velocity field and residual currents of the
study domain.

The pivotal elements influencing DA performance were examined. The robustness
of the EnKF method was assessed by varying several parameters, such as the number of
ensembles, frequency of assimilation and number of drifters. We found that the ensemble
size plays a key role in reducing model error. The results also show that DA performance
is highly sensitive to the assimilation time interval, where a more frequent DA time
interval of 1 min led to the largest improvement (i.e., 28%). Increasing the time interval to
10 min showed nearly no improvement because of velocity information loss. Assimilation
of Lagrangian drifter data, even with a limited number of drifters, improves velocity
estimates. Therefore, even a small number of Lagrangian sensors can be effective for
collecting water flow information to be used in an EnKF-driven assimilation process.

The Lagrangian assimilation algorithm was examined by conducting a series of DA
experiments. A base experiment (Base-Test) was performed using data from eight drifters
in the model. The results obtained by Lagrangian assimilation were compared with
Eulerian and Lagrangian plus Eulerian assimilation. Results demonstrated the efficacy of
DA performance because a significant deviation was gained in velocity maps before and
after assimilation. We found that both Lagrangian and Eulerian data improve assimilation
of our system dynamics with Lagrangian data being the most important. The results also
indicate that concurrent assimilation of Lagrangian drifter and Eulerian ADV velocities
lead to a higher deviation between assimilated and non-assimilated models.

Our results suggest that a desirable alternative to fixed Eulerian devices such as ADVs
and ADCPs are drifters. Furthermore, drifters can be promptly deployed in any specific
domain under study, particularly in the case that unforeseen events occur. Lagrangian
measurements are especially beneficial in the areas where Eulerian instruments are ei-
ther sparse or unreliable. It is evident, however, that directly assimilating Lagrangian
positions is relatively difficult in Eulerian-based hydrodynamic models because of the
differences in data and model frameworks. In addition, raw Lagrangian data are rather
challenging to use because particle flow is generally affected by local flow perturbations,
which are induced by different physical processes, such as turbulence and surface wind.
Despite these inherent challenges, the work showed that the use of low-cost, low-resolution
drifters provided relatively higher improvement in the model prediction over the Eulerian
data set due to a larger area coverage.

Using a discharge-rating curve, we predicted discharge for the period of 1, 2, 4, and 8
days, which was then applied to model the domain for these time periods. The direction
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of residual currents was calculated over the full tidal cycles, which showed better results
(i.e., the deviation between model before and after assimilation) when the time window
of assimilation decreased from 8 days to 1 day and demonstrated large differences in the
shallow areas as well as the section captured by drifters. Having an open connection with
the ocean, these non-tidal currents are not necessarily initiated internally but are often
propagated from the ocean. Depending on the availability of estuary stage data, this study
can be conducted during major tidal periods and therefore can act as a guidance platform
for assessing the role of DA in improving the modelled currents for the entire spatial
extension of the domain.
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