
applied
sciences

Article

Scalable Fog Computing Orchestration for Reliable Cloud
Task Scheduling

Jongbeom Lim

����������
�������

Citation: Lim, J. Scalable Fog

Computing Orchestration for Reliable

Cloud Task Scheduling. Appl. Sci.

2021, 11, 10996. https://doi.org/

10.3390/app112210996

Academic Editor: Jinho Kim

Received: 29 September 2021

Accepted: 17 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Smart Contents Major, Division of ICT Convergence, Pyeongtaek University, 3825, Seodong-daero,
Pyeongtaek-si 17869, Korea; jblim@ptu.ac.kr

Abstract: As Internet of Things (IoT) and Industrial Internet of Things (IIoT) devices are becoming
increasingly popular in the era of the Fourth Industrial Revolution, the orchestration and management
of numerous fog devices encounter a scalability problem. In fog computing environments, to embrace
various types of computation, cloud virtualization technology is widely used. With virtualization
technology, IoT and IIoT tasks can be run on virtual machines or containers, which are able to
migrate from one machine to another. However, efficient and scalable orchestration of migrations for
mobile users and devices in fog computing environments is not an easy task. Naïve or unmanaged
migrations may impinge on the reliability of cloud tasks. In this paper, we propose a scalable
fog computing orchestration mechanism for reliable cloud task scheduling. The proposed scalable
orchestration mechanism considers live migrations of virtual machines and containers for the edge
servers to reduce both cloud task failures and suspended time when a device is disconnected due
to mobility. The performance evaluation shows that our proposed fog computing orchestration is
scalable while preserving the reliability of cloud tasks.

Keywords: fog computing; IoT; IIoT; cloud computing; resource management; scheduling

1. Introduction

Fog computing is a computing architecture that extends cloud computing by enabling
data processing at the network edge instead of the central cloud computing server for
small and tiny devices, also known as Internet of Things (IoT) devices [1,2]. IoT and
Industrial Internet of things (IIoT) devices are increasing by 35% annually, and IoT and IIoT
businesses will be worth around USD 7.1 trillion to the United States and EUR 1.2 trillion
to Europe by 2030 [3].

To support the ever-increasing number of devices and amount of data generated
in IoT and IIoT computing environments, cloud computing provides service offload
and virtual machine migration capabilities at the network edge level (edge server) [4,5].
However, the inherited characteristics of IoT and IIoT devices hinder reliable cloud task
computation [5–7]. In other words, devices in fog computing environments can move
around a field, and when a device moves from one spot to another, the device can be
disconnected from the edge server [8,9].

In this case, the device that disconnected from the edge server should try to connect
to another edge server nearby. If the device cannot access another edge server, the cloud
tasks of the device cannot be completed [10–12]. Even when the device is able to access
another edge server nearby, the cloud tasks of the device can be suspended until data
and virtual machine migrations are complete. This will worsen the reliability of cloud
tasks when multiple mobile users perform them simultaneously in IoT and IIoT computing
environments [13,14].

Figure 1 shows an IoT and IIoT computing architecture with an edge cloud. There are
three layers in the architecture: the central cloud center, edge servers and containers, and
IoT applications (tuple). As far as migrations of services and applications are concerned,

Appl. Sci. 2021, 11, 10996. https://doi.org/10.3390/app112210996 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8954-2903
https://doi.org/10.3390/app112210996
https://doi.org/10.3390/app112210996
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210996
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210996?type=check_update&version=2

Appl. Sci. 2021, 11, 10996 2 of 13

edge servers should cooperate with the central cloud center and other nearby edge servers.
When unconsidered scheduling and migration algorithms trigger migrations, tuples or
related data can be lost.

Figure 1. IoT and IIoT computing architecture with an edge cloud.

To mitigate the reliability issues of cloud tasks in IoT and IIoT computing environ-
ments, in this paper, we propose a scalable fog computing orchestration mechanism for
reliable cloud task scheduling. The proposed scalable orchestration mechanism considers
live migrations of virtual machines and containers for the edge servers to reduce both
cloud task failures and suspended time when a device is disconnected due to mobility.
Furthermore, we use information about the distance between a user and nearby edge
servers in order to optimize task scheduling and migration decisions.

Unlike the previous work related to IoT and IIoT cloud task scheduling [15,16], we
take users’ mobility speed into account so that our scalable fog computing orchestration
can select an optimal destination edge server for the migration. A performance evaluation
based on realistic mobility data (simulation of urban mobility—SUMO [17,18]) shows that
our proposed fog computing orchestration mechanism for a reliable cloud task scheduling
algorithm outperforms previous work in terms of the reliability of cloud tasks while
introducing affordable data traffic on the network. It also shows that our algorithm scales
well in terms of the number of IoT and IIoT users.

The contributions of our study can be summarized as follows.

• We discuss the IoT and IIoT system architectures to show their characteristics and
their limitations in supporting cloud-based mobile applications, which will help both
architects of IoT and IIoT systems and cloud data center administrators.

• We implement two scalable fog computing orchestration algorithms: one is for schedul-
ing and assigning cloud tasks to appropriate edge servers and containers with consid-
erations of signal strength, and the other one is for cloud task migrations that improve
the overall reliability of mobile applications by checking and calculating migratability.

• We validate our proposed algorithms by comparing various performance metrics and
incorporating mobility pattern data obtained from SUMO.

The rest of the paper can be summarized as follows. Section 2 discusses our research
background and related work. Section 3 proposes our scalable fog computing orchestration
algorithm in IoT and IIoT computing environments. Section 4 provides comparative
performance evaluation results to show the efficiency and scalability of the proposed
mechanism. Finally, Section 5 concludes the paper.

Appl. Sci. 2021, 11, 10996 3 of 13

2. Related Work

In this section, we provide a literature review to support the background and moti-
vation of this research. Our scalable fog computing orchestration mechanism is aimed at
optimizing the overall IoT and IIoT task performance by improving the reliability of cloud
scheduling. The proposed method adopts a live migration scheme [19,20] for mobile users,
which generates more network traffic than cold migration [21,22].

For this reason, a few studies have used the live migration scheme in fog computing
environments. Despite the network traffic, our fog computing orchestration mechanism
is able to improve the reliability of cloud tasks by considering users’ mobility and sig-
nal strength.

Martins et al. [23] explored virtual network function [24,25] overheads in fog comput-
ing environments. Specifically, to predict the container migration cost, they used a linear
regression model that is widely used in machine learning and artificial intelligence.

In a container virtualization platform using LXD [26,27], they identified several vari-
ables that affected the performance of container migrations. Then, they provided a mathe-
matical analysis in terms of the processing time and network traffic associated with virtual
network function migrations.

Since that study was focused on virtual network functions from the perspective of
predicting overheads and validating the predictor model, it lacked an overall performance
evaluation in fog computing environments, such as realistic scenarios with multiple mo-
bile users.

To support a stateful container migration in a geometrically distributed fog computing
environment, another work [28] used an open-source file system (OverlayFS [27]) and took
snapshots of containers to reduce network transfer time when migrating.

It achieved a reduced downtime during the container migration when compared to
the baseline (no volume checkpoint). Although it proposed enhanced checkpoint and
migration techniques, no high-level orchestrations, such as task allocation or scheduling
for fog devices, were provided.

Rosário et al. [29] proposed multi-tier (central cloud node, regional fog node, neighbor-
hood fog node, and local fog node) computing node environments in fog computing. Specif-
ically, they supported the quality of experience for multimedia-based mobile applications.

To enhance the quality of experience, the authors designed a service migration from
the central cloud server to multi-tier fog computing nodes based on software-defined
networking for video distribution.

The potential downside of the method was weak generality. In other words, it was spe-
cialized for mobile applications that used multimedia, while our proposed method can be
used in general-purpose mobile applications, including multimedia-related functionalities.

Based on the OpenStack platform [30,31], Puliafito et al. [32] proposed a fog comput-
ing service. It uses a container-based implementation for service migrations to support
the mobility of mobile devices. By implementing a monitoring server for the decision-
making mechanism, it calculates the score of the distance and decides on a migration
scheduling policy.

Although this was closely related to our study, it differed in that our research uses
signal strength instead of distances. In addition, they did not consider multi-user environ-
ments for scalability, unlike the proposed evaluation setup.

To employ a load-balancing feature in fog computing environments, Singh et al. [33]
analyzed a load-balancing algorithm by considering energy consumption. For the energy-
efficient load-balancing mechanism, they considered two main components in fog comput-
ing environments: resource (virtual machines) allocation and scheduling.

While the authors analyzed the state-of-the-art load-balancing techniques in fog
computing environments, they did not incorporate a container-based resource allocation
or scheduling, which is a common acceptance in resource virtualization environments.

Appl. Sci. 2021, 11, 10996 4 of 13

Gonçalves et al. [34] proposed a network slicing technique to satisfy the quality of
service requirements and improve network utilization in fog computing environments.
Two aspects of the proposed techniques were container migration and network slicing.

Among the two, network slicing was the major contribution of the study. In other
words, the physical infrastructure of the fog computing network was logically divided
into several slices based on the number of users. With the divided slices, it achieved
the requirements of a specific group or application. However, the number of mobile
users was stationary, and no scalability settings were provided, unlike in the proposed
research method.

3. The Proposed Fog Computing Orchestration Mechanism

In this section, we provide our scalable fog computing orchestration algorithms that
enhance the reliability of cloud tasks. The proposed algorithms are composed of two parts:
a task scheduling algorithm that schedules a new task for IoT and IIoT devices and a task
migration algorithm that transfers existing tasks to another edge server and container.

Figure 2 shows the process and flow of the proposed algorithms. There are eight
stages in the performance of our proposed orchestration schemes. First, task scheduling
is initiated when a new task for IoT and IIoT devices has arrived. Second, when a task is
assigned an edge server and its container, the user’s mobile application is associated with
the edge server. Third, the central cloud center periodically monitors the edge servers and
containers in the cloud computing environment.

Figure 2. The process and flow of the proposed algorithms (c.f., Algorithms 1 and 2).

Fourth, based on monitoring information, the system may trigger task migration in
a reliable fashion. Fifth, the central cloud center collects data and has the target edge
server prepare for migrations. Sixth, the source edge server and destination edge server are
synchronized for migrations. Seventh, the migration data are transferred from the source
edge server to the destination edge server. Finally, the eighth stage is the re-registration
of the user’s mobile application to the destination edge server, which is transparent to
the user.

Algorithm 1 shows the task scheduling algorithm. This algorithm is triggered when
a new task for IoT and IIoT devices has arrived. The input is Tuple_i, and the output is
mapping information for the tuple (Map_i), that is, Tuple_i, Edge_j, and Container_k. The
algorithm uses location and requirement information based on Tuple_i. To compose the

Appl. Sci. 2021, 11, 10996 5 of 13

assign_tuple function, several variables are used: signal_strength, target_edge, target_container,
and found.

It first finds connectable edge servers based on the location. Then, it retrieves the
signal strength (current_signal_strength) of each edge server by iterating the loop. When
current_signal_strength is greater than signal_strength, the signal_strength variable is updated
with current_signal_strength, and that edge server is assigned to target_edge.

After selecting a target edge server, it traverses each container of the target edge
server to check whether Tuple_i can be assigned to an existing container. When one of the
existing containers meets the requirement, it assigns Tuple_i to the container. If it cannot
find a container that meets the requirement, it triggers a new container provision for the
target_edge.

Algorithm 2 shows the task migration algorithm. The input of the algorithm is Map_i,
and the output is New_Map_i. Both Map_i and New_Map_i contain tuple, edge server, and
container information. For the task migration, several variables are initialized (location,
signal_strength, mobility_speed, mobility_property, target_edge, and bool_migration).

Before it schedules the task migration, the check_condition function is called. Note
that the check_condition function is called at a regular interval. The check_condition function
traverses neighbor edge servers of Edge_i. After retrieving signal_target for Edge_i, it
calculates the threshold value for the condition. The threshold value is a result of the
threshold function with three parameters (signal_strength, location, and mobility_speed).
If signal_target is greater than the threshold value (val_threshold), Edge_i is assigned to
target_edge.

Algorithm 1 Task Scheduling Algorithm.

Input: Tuple_i
Output: Map_i = (Tuple_i, Edge_j, Container_k)
Initialization: location← get_location (Tuple_i);
requirement← get_requirement (Tuple_i);

1: call assign_tuple (Tuple_i);
2: function assign_tuple (Tuple_i)
3: signal_strength← 0;
4: target_edge← null;
5: target_container← null;
6: found← false;
7: for all Edge_i ∈ Set_Edge (location) do
8: current_signal_strength← get_edge_info (Edge_i, signal);
9: if (current_signal_strength > signal_strength) then
10: signal_strength← current_signal_strength;
11: target_edge← Edge_i;
12: end if
13: end for
14: for all Container_i ∈ target_edge do
15: if (Container_i meets requirement) then
16: target_container← Container_i;
17: assign_info← assign_tuple (Tuple_i, target_edge, target_container);
18: found← true;
19: end if
20: end for
21: if (found == false) then
22: target_container← provision_container (target_edge);
23: assign_info← assign_tuple (Tuple_i, target_edge, target_container);
24: end if
25: return assign_info;
26: end function

Appl. Sci. 2021, 11, 10996 6 of 13

Algorithm 2 Task Migration Algorithm.

Input: Map_i = (Tuple_i, Edge_j, Container_k)
Output: New_Map_i = (Tuple_i, Edge_j, Container_k)
Initialization: location← get_location (Tuple_i);
signal_strength← get_signal_info (Map_i);

mobility_speed← get_mobility_speed (Map_i);
mobility_property← get_mobility_property (Map_i);
target_edge← null;
bool_migration← false;

1: call check_condition (Map_i);
2: if (bool_migration) then
3: call perform_migration (Map_i, target_edge);
4: end if
5: function check_condition (Map_i)
6: signal_target← 0;
7: for all Edge_i ∈ Near_Edge (Map_i) do
8: signal_target← get_edge_info (Edge_i, signal);
9: val_threshold← threshold(signal_strength, location, mobility_speed);
10: if (signal_target > val_threshold) then
11: target_edge← Edge_i;
12: end if
13: end for
14: if (migratability (target_edge, mobility_property)) then
15: bool_migration← true;
16: end if
17: end function
18: function perform_migration (Map_i, target_edge)
19: handoff (Map_i, target_edge);
20: for all Container_i ∈ target_edge do
21: if (Container_i meets requirement) then
22: target_container← Container_i;
23: assign_info← assign_tuple (Tuple_i, target_container);
24: found← true;
25: end if
26: end for
27: if (found == false) then
28: target_container← provision_container (Edge_i);
29: assign_info← assign_tuple (Tuple_i, target_container);
30: end if
31: migrate_tuple (Map_i, target_container);
32: migrate_data (Map_i, target_container);
33: sync (Map_i, target_container);
34: return New_Map_i = (Tuple_i, target_edge, target_container)
35: end function

With target_edge and mobility_property, bool_migration can be true if the migratability
function returns true. When bool_migration is true after calling the check_condition function,
the perform_migration function is called. The perform_migration function does handoff,
container selection, and task migration (tuples and data). Note that the container selection
phase is similar to that of the task scheduling algorithm. The task migration phase calls three
additional functions: migrate_tuple, migrate_data, and sync. Then, it returns New_Map_i.

4. Evaluation

In this section, we provide the performance results of our proposed scalable orchestra-
tion mechanism for improving migration downtime and task reliability. To evaluate the
proposed mechanism in a simulated environment and to measure the network traffic, aver-

Appl. Sci. 2021, 11, 10996 7 of 13

age downtime, total migration time, and tuples lost, we use SUMO mobility data, which
can be used to simulate mobility patterns and network traffics based on realistic scenarios.

4.1. Performance Results

Figure 3 shows the numbers of migrations of the previous and proposed methods.
When the number of users is small (one or two users), the difference between the previous
and proposed methods is relatively small. However, as the number of users increases, the
difference between the previous and proposed methods becomes greater.

Figure 3. The number of migrations with the number of users.

Specifically, when the number of users is 5, the numbers of migrations of the previous
and proposed methods are 14 and 19, respectively, with a difference of 5. If the number of
users is 10, the numbers of migrations of the previous and proposed methods are 19 and
31, respectively, with a difference of 12. This signifies that the proposed method optimizes
the performance of tasks by migrating them appropriately.

Figure 4 shows the network usage of the previous and proposed methods. Note that
the total network usage is the sum of that of the devices and migration, and the baseline
data in the figure indicate when the number of users is 1. The network usage of migrations
accounts for most of the total network usage, which is affordable in recent high-bandwidth
network environments.

Since the proposed method introduces more live migrations than the previous method,
the network usage of the proposed method generates more network traffic than the previ-
ous method.

In a multi-user environment (when the number of users is 5), the difference in network
usage between the previous and the proposed methods is about 1 GB. Although the
proposed method incurs more network traffic, it improves the overall performance in terms
of downtime and the reliability of tasks.

To figure out the performance of time-related metrics, we measure the average down-
time and the total time of migration (c.f., Figure 5). As in Figure 4, we refer to the baseline
performance in Figure 5 for comparison purposes. In terms of the average downtime, the
proposed method outperforms the previous method. Specifically, the proposed method
has only about 19% of the downtime seen in the previous method.

This means that our method is more than five times better than the previous method
in terms of downtime. When we compare the total time of migration, our method takes
longer than the previous method, since our method incurs more live migrations than the
previous one. Note that the proposed method does not generate meaningful overhead as
the number of users increases.

As for the task reliability, we measure the percentages and the numbers of Tuples lost
for the previous and proposed methods (c.f., Figure 6). Figure 6a shows the percentages of
tuples lost. For the previous method, the percentages of tuples lost are 3.580%, 3.769%, 7.399%,
8.002%, 7.919%, and 6.194% when the numbers of users are 1, 2, 3, 4, 5, and 10, respectively.
For the proposed method, the percentages of tuples lost are 0.027%, 0.033%, 0.038%, 0.041%,
0.041%, and 0.041% when the numbers of users are 1, 2, 3, 4, 5, and 10, respectively.

Appl. Sci. 2021, 11, 10996 8 of 13

Figure 4. Network traffic usage in MB. (a) The number of users: 2. (b) The number of users: 3. (c) The
number of users: 4. (d) The number of users: 5.

Appl. Sci. 2021, 11, 10996 9 of 13

Figure 6b shows the numbers of tuples lost. For the previous method, the numbers of
tuples lost are 87,078, 136,802, 376,588, 547,976, 666,795, and 979,050 when the numbers of
users are 1, 2, 3, 4, 5, and 10, respectively. For the proposed method, the numbers of tuples
lost are 762, 1416, 2637, 4029, 4875, and 13,661 when the numbers of users are 1, 2, 3, 4, 5,
and 10, respectively.

Compared to the previous and proposed methods, the proposed method generates
0.875%, 1.035%, 0.700%, 0.735%, 0.731%, and 1.395% of the tuples lost compared with the
previous method when the numbers of users are 1, 2, 3, 4, 5, and 10.

On the whole, the proposed method improves the overall performance for cloud
tasks of IoT and IIoT devices in fog computing environments by optimizing the average
downtime and the reliability of cloud tasks while generating affordable network traffic for
live migrations.

Figure 5. Cont.

Appl. Sci. 2021, 11, 10996 10 of 13

Figure 5. The average downtime and the total time of migration in milliseconds. (a) The number of
users: 2. (b) The number of users: 3. (c) The number of users: 4. (d) The number of users: 5.

Figure 6. Percentages and numbers of tuples lost. (a) Percentages of tuples lost. (b) The numbers of
tuples lost.

Appl. Sci. 2021, 11, 10996 11 of 13

4.2. Discussion

The proposed task scheduling and task migration algorithms are designed to carefully
assign and migrate users’ tuples in terms of reliability. To this end, we considered various
criteria (location, signal strength, mobility speed, and mobility properties) for tuple migra-
tions. Table 1 shows the comparison of cloud task management schemes. Recent studies
have shown that the live migration feature in IoT and IIoT computing environments is
encouraging, since it helps increase the task throughput and reduces the overall downtime.

Table 1. Comparison of cloud task management schemes. (#: considered,4: partially considered, and ×: not considered).

Study Scalability Mobility Support Live Migration Migration Criteria Optimized for
Task Reliability

[23] × × #
Migration time

Data transferred ×

[28] # # 4
Geo-distribution

Migration downtime
Disk usage

×

[29] × # Service migration Quality of experience
Video distribution ×

[32] 4 # #
Round-trip latency

Migration downtime ×

[34] 4 # # User speed 4

Proposed # # #
Location

Signal strength
Mobility speed and properties

#

However, a few studies thoroughly analyzed and evaluated IoT and IIoT resource
management schemes, including live migrations, in terms of scalability and task reliability.
For this matter, we developed task scheduling and migration algorithms to improve the
scalability and task reliability. Even when the number of users increases, the tuples lost are
below 1% on average compared to the previous method.

The downside of the proposed orchestration technique is that it generates more
network traffic for live migration data. The network traffic and other performance metrics
(downtime and tuples lost) are in a trade-off relationship. To improve the task reliability, we
went for the overall performance metrics rather than the network traffic. The performance
results show that our scheme introduces more network traffic than the previous method.

To mitigate network overheads, one can use state-of-the-art network chipsets (e.g.,
WiFi 6 [802.11 ax]). Since WiFi 6 is capable of a maximum throughput speed of 9.6 Gbps,
the network transmission time for live migration data can be reduced. We conjecture that
as network technology evolves, the network overheads can be drastically reduced.

5. Conclusions

When IoT and IIoT devices’ tasks are provisioned to a cloud computing environment,
fog computing orchestration may encounter bottleneck problems and cause the unrelia-
bility of cloud tasks. In this paper, we proposed a scalable fog computing orchestration
mechanism for reliable cloud task scheduling. The proposed scalable orchestration is
designed to reduce both cloud task failures and suspended time when a device is discon-
nected due to mobility. Even when the number of users increases, the tuples lost are below
1% on average compared to the previous method. Specifically, we take various migration
criteria (location, signal strength, mobility speed, and mobility properties) into account
in our algorithms for task reliability. Although our method introduces more network
traffic than the traditional orchestration mechanism, the overall performance, including
the downtime and tuples lost, is satisfactory. Since current network environments support
high bandwidths (e.g., the fifth-generation mobile network and WiFi 6 [802.11 ax]), the
overhead of additional network traffic is negligible. Future work will include the adoption

Appl. Sci. 2021, 11, 10996 12 of 13

of artificial intelligence techniques to manage and schedule virtualized resources in IoT
and IIoT computing environments.

Funding: This research was supported by a grant from the National Research Foundation of Korea
funded by the Korean Government (NRF-2021R1F1A1063307).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We thank the anonymous reviewers for their careful reading and insightful
suggestions to help improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gadasin, D.V.; Shvedov, A.V.; Ermolovich, A.V. The concept “fog computing”—The evolutionary stage of development of

infocommunication technologies. In Proceedings of the 2018 Systems of Signals Generating and Processing in the Field of on
Board Communications, Moscow, Russia, 14–15 March 2018; pp. 1–3.

2. Karagiannis, V.; Schulte, S. Comparison of Alternative Architectures in Fog Computing. In Proceedings of the 2020 IEEE 4th
International Conference on Fog and Edge Computing (ICFEC), Melbourne, Australia, 11–14 May 2020; pp. 19–28.

3. Tange, K.; De Donno, M.; Fafoutis, X.; Dragoni, N. A Systematic Survey of Industrial Internet of Things Security: Requirements
and Fog Computing Opportunities. IEEE Commun. Surv. Tutorials 2020, 22, 2489–2520. [CrossRef]

4. Mostafa, G.-A.; Alireza, S.; Rahmanian, A.A. Resource Management Approaches in Fog Computing: A Comprehensive Review.
J. Grid Comput. 2020, 18, 1–42. [CrossRef]

5. Joshi, V.; Patil, K. A Survey on Energy-Efficient Task Offloading and Virtual Machine Migration for Mobile Edge Computation BT—Data
Management, Analytics and Innovation; Sharma, N., Chakrabarti, A., Balas, V.E., Bruckstein, A.M., Eds.; Springer: Singapore, 2022;
pp. 333–347.

6. Paniagua, C.; Delsing, J. Industrial Frameworks for Internet of Things: A Survey. IEEE Syst. J. 2021, 15, 1149–1159. [CrossRef]
7. Liu, P.; Liu, K.; Fu, T.; Zhang, Y.; Hu, J. A privacy-preserving resource trading scheme for Cloud Manufacturing with edge-PLCs

in IIoT. J. Syst. Archit. 2021, 117, 102104. [CrossRef]
8. Kabbaj, S.; Rahman, A.U.; Malik, A.W.; Baba, A.I.; Ravana, S.D. Time-bound single-path opportunistic forwarding in disconnected

industrial environments. Veh. Commun. 2021, 27, 100302. [CrossRef]
9. Chen, P.-Y.; Bhatia, L.; Kolcun, R.; Boyle, D.; McCann, J.A. Contact-Aware Opportunistic Data Forwarding in Disconnected

LoRaWAN Mobile Networks. In Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems
(ICDCS), Singapore, 29 November–1 December 2020; pp. 574–583.

10. Ma, S.; Song, S.; Yang, L.; Zhao, J.; Yang, F.; Zhai, L. Dependent tasks offloading based on particle swarm optimization algorithm
in multi-access edge computing. Appl. Soft Comput. 2021, 112, 107790. [CrossRef]

11. Wang, X.; Ning, Z.; Guo, S. Multi-Agent Imitation Learning for Pervasive Edge Computing: A Decentralized Computation
Offloading Algorithm. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 411–425. [CrossRef]

12. Chen, S.; Li, Q.; Zhou, M.; Abusorrah, A. Recent Advances in Collaborative Scheduling of Computing Tasks in an Edge
Computing Paradigm. Sensors 2021, 21, 779. [CrossRef]

13. Rejiba, Z.; Masip-Bruin, X.; Marín-Tordera, E. A survey on mobility-induced service migration in the fog, edge, and related
computing paradigms. ACM Comput. Surv. 2019, 52, 1–33. [CrossRef]

14. Zhang, G.; Ni, S.; Zhao, P. Learning-based Joint Optimization of Energy-Delay and Privacy in Multiple-User Edge-Cloud
Collaboration MEC Systems. IEEE Internet Things J. 2021, 1, 8607. [CrossRef]

15. Shakarami, A.; Ghobaei-Arani, M.; Masdari, M.; Hosseinzadeh, M. A Survey on the Computation Offloading Approaches in
Mobile Edge/Cloud Computing Environment: A Stochastic-based Perspective. J. Grid Comput. 2020, 18, 639–671. [CrossRef]

16. Chen, S.; Zheng, Y.; Wang, K.; Lu, W. Delay Guaranteed Energy-Efficient Computation Offloading for Industrial IoT in Fog
Computing. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China,
20–24 May 2019; pp. 1–6.

17. Krajzewicz, D. Traffic Simulation with SUMO—Simulation of Urban Mobility BT—Fundamentals of Traffic Simulation; Barceló, J., Ed.;
Springer: New York, NY, USA, 2010; pp. 269–293. ISBN 978-1-4419-6142-6.

18. Acosta, A.F.; Espinosa, J.E.; Espinosa, J. Application of the SCRUM Software Methodology for Extending Simulation of Urban Mobility
(SUMO) Tools BT—Simulating Urban Traffic Scenarios; Behrisch, M., Weber, M., Eds.; Springer International Publishing: Cham,
Switzerland, 2019; pp. 3–15.

19. Roig, P.J.; Alcaraz, S.; Gilly, K.; Juiz, C. Modelling VM Migration in a Fog Computing Environment. Elektron. Elektrotechnika 2019,
25, 75–81. [CrossRef]

20. Osanaiye, O.; Chen, S.; Yan, Z.; Lu, R.; Choo, K.-K.R.; Dlodlo, M. From Cloud to Fog Computing: A Review and a Conceptual
Live VM Migration Framework. IEEE Access 2017, 5, 8284–8300. [CrossRef]

http://doi.org/10.1109/COMST.2020.3011208
http://doi.org/10.1007/s10723-019-09491-1
http://doi.org/10.1109/JSYST.2020.2993323
http://doi.org/10.1016/j.sysarc.2021.102104
http://doi.org/10.1016/j.vehcom.2020.100302
http://doi.org/10.1016/j.asoc.2021.107790
http://doi.org/10.1109/TPDS.2020.3023936
http://doi.org/10.3390/s21030779
http://doi.org/10.1145/3326540
http://doi.org/10.1109/JIOT.2021.3088607
http://doi.org/10.1007/s10723-020-09530-2
http://doi.org/10.5755/j01.eie.25.5.24360
http://doi.org/10.1109/ACCESS.2017.2692960

Appl. Sci. 2021, 11, 10996 13 of 13

21. Puliafito, C.; Virdis, A.; Mingozzi, E. The Impact of Container Migration on Fog Services as Perceived by Mobile Things. In
Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 14–17 September
2020; pp. 9–16.

22. Puliafito, C.; Vallati, C.; Mingozzi, E.; Merlino, G.; Longo, F.; Puliafito, A. Container Migration in the Fog: A Performance
Evaluation. Sensors 2019, 19, 1488. [CrossRef]

23. de Martins, R.J.; Both, C.B.; Wickboldt, J.A.; Granville, L.Z. Virtual Network Functions Migration Cost: From Identification to
Prediction. Comput. Netw. 2020, 181, 107429. [CrossRef]

24. Ponmagal, R.S.; Karthick, S.; Dhiyanesh, B.; Balakrishnan, S.; Venkatachalam, K. Optimized virtual network function provisioning
technique for mobile edge cloud computing. J. Ambient Intell. Humaniz. Comput. 2021, 12, 5807–5815. [CrossRef]

25. Yu, H.; Yang, J.; Fung, C. Fine-Grained Cloud Resource Provisioning for Virtual Network Function. IEEE Trans. Netw. Serv. Manag.
2020, 17, 1363–1376. [CrossRef]

26. Ma, J.; Kim, H.; Kim, Y. The Virtualization and Performance Comparison with LXC-LXD in ARM64bit Server. In Proceedings of
the 2016 6th International Conference on IT Convergence and Security (ICITCS), Prague, Czech Republic, 26–29 September 2016;
pp. 1–4.

27. da Cunha, H.G.V.O.; Moreira, R.; de Oliveira Silva, F. A Comparative Study Between Containerization and Full-Virtualization of
Virtualized Everything Functions in Edge Computing BT—Advanced Information Networking and Applications; Barolli, L., Woungang, I.,
Enokido, T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 771–782.

28. Junior, P.S.; Miorandi, D.; Pierre, G. Stateful Container Migration in Geo-Distributed Environments. In Proceedings of the 2020
IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Bangkok, Thailand, 14–17 December
2020; pp. 49–56.

29. Rosário, D.; Schimuneck, M.; Camargo, J.; Nobre, J.; Both, C.; Rochol, J.; Gerla, M. Service Migration from Cloud to Multi-tier Fog
Nodes for Multimedia Dissemination with QoE Support. Sensors 2018, 18, 329. [CrossRef]

30. Kristiani, E.; Yang, C.-T.; Huang, C.-Y.; Wang, Y.-T.; Ko, P.-C. The Implementation of a Cloud-Edge Computing Architecture Using
OpenStack and Kubernetes for Air Quality Monitoring Application. Mob. Netw. Appl. 2021, 26, 1070–1092. [CrossRef]

31. Benomar, Z.; Longo, F.; Merlino, G.; Puliafito, A. Cloud-Based Network Virtualization in IoT with OpenStack. ACM Trans. Internet
Technol. 2021, 22, 1–26. [CrossRef]

32. Puliafito, C.; Vallati, C.; Mingozzi, E.; Merlino, G.; Longo, F. Design and evaluation of a fog platform supporting device mobility
through container migration. Pervasive Mob. Comput. 2021, 74, 101415. [CrossRef]

33. Singh, S.P.; Kumar, R.; Sharma, A.; Nayyar, A. Leveraging energy-efficient load balancing algorithms in fog computing. Concurr.
Comput. Pract. Exp. 2020, e5913. [CrossRef]

34. Gonçalves, D.; Puliafito, C.; Mingozzi, E.; Rana, O.; Bittencourt, L.; Madeira, E. Dynamic Network Slicing in Fog Computing
for Mobile Users in MobFogSim. In Proceedings of the 2020 IEEE/ACM 13th International Conference on Utility and Cloud
Computing (UCC), Leicester, UK, 7–10 December 2020; pp. 237–246.

http://doi.org/10.3390/s19071488
http://doi.org/10.1016/j.comnet.2020.107429
http://doi.org/10.1007/s12652-020-02122-8
http://doi.org/10.1109/TNSM.2020.2986223
http://doi.org/10.3390/s18020329
http://doi.org/10.1007/s11036-020-01620-5
http://doi.org/10.1145/3460818
http://doi.org/10.1016/j.pmcj.2021.101415
http://doi.org/10.1002/cpe.5913

	Introduction
	Related Work
	The Proposed Fog Computing Orchestration Mechanism
	Evaluation
	Performance Results
	Discussion

	Conclusions
	References

