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Abstract: In medical image processing, magnetic resonance imaging (MRI) and computed tomog-
raphy (CT) modalities are widely used to extract soft and hard tissue information, respectively.
However, with the help of a single modality, it is very challenging to extract the required pathological
features to identify suspicious tissue details. Several medical image fusion methods have attempted
to combine complementary information from MRI and CT to address the issue mentioned earlier
over the past few decades. However, existing methods have their advantages and drawbacks. In
this work, we propose a new multimodal medical image fusion approach based on variational mode
decomposition (VMD) and local energy maxima (LEM). With the help of VMD, we decompose
source images into several intrinsic mode functions (IMFs) to effectively extract edge details by
avoiding boundary distortions. LEM is employed to carefully combine the IMFs based on the local
information, which plays a crucial role in the fused image quality by preserving the appropriate
spatial information. The proposed method’s performance is evaluated using various subjective and
objective measures. The experimental analysis shows that the proposed method gives promising
results compared to other existing and well-received fusion methods.

Keywords: MRI; CT; Image fusion; intrinsic mode functions (IMFs); LEM; VMD

1. Introduction

Medical image analysis plays a crucial role in clinical assessment. However, the
success rate of the diagnosis depends upon the visual quality and the information present
in medical images [1]. In real-world medical imaging, denoising [2,3] or texture information
processing [4,5] is a necessary preprocessing step to improve the fused image’s visual
quality further.

Nowadays, several imaging modalities are available to capture specific medical in-
formation of a given organ [6-8]. X-ray, MRI, CT, positron emission tomography (PET),
and single-photon emission computed tomography (SPECT) of a human brain displayed
in Figure 1 are crucial medical imaging modalities among them. For example, the magnetic
resonance imaging (MRI) modality captures the anatomical information of the soft tissue.
In contrast, computed tomography (CT) significantly provides hard tissue information
such as bones structures and tumors [8]. Moreover, for clinical needs, the information
provided by a single modality may not be sufficient, especially during the diagnosis of dis-
eases [9]. The image fusion mechanism can effectively address this problem, enhancing the
information by combining the complementary details provided by two or more modalities
into a single image.

Appl. Sci. 2021, 11, 10975. https://doi.org/10.3390/app112210975

https:/ /www.mdpi.com/journal/applsci


https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3751-0453
https://doi.org/10.3390/app112210975
https://doi.org/10.3390/app112210975
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210975
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210975?type=check_update&version=2

Appl. Sci. 2021, 11, 10975

20f16

HUMAN HEAD
>

S ——
= 3
. "

—

SCANNERS

MODALATIES

Figure 1. Illustration of the classification of different medical brain imaging modalities.

Image fusion can be categorized into spatial and transform domain techniques [10].
In spatial domain methods, the fusion takes place between the pixels of the source images
directly. The maximum, minimum, average, weighted average and PCA are examples of
the spatial domain fusion methods, which are easy to implement and computationally
efficient. Direct pixel-based fusion methods use a weighted pixel of input images to form a
fused image [11]. The activity level of the pixels determines these weights. In the literature,
various machine learning methods such as neural networks and support vector machines
(SVM) are also used to select the pixels with the highest activity [12,13]. In [14], an iterative
block-level fusion method is proposed. First, the source images are decomposed into small
square blocks, and PCA is computed on those blocks. Next, weights are found using
the average of the PCA components. Finally, a maximum average mutual information
fusion rule is employed for the final blending of input images. In [15], a pixel-level image
fusion method is proposed using PCA. Here, the first PCA components from both the
input images are multiplied individually, and those weighted images are added for fusion.
However, these methods might exhibit spatial color, information loss, and brightness
distortions [16,17].

Image fusion methods based on the transform domain techniques are receiving much
consideration [18]. Pyramid [19], wavelet [20], and multi-resolution singular value de-
composition (MSVD) are examples of traditional methods [21] in this category. However,
transform domain fusion methods have a few drawbacks [18]. For example, most pyramid
methods suffer from blocking artifacts and a loss of source information, even producing
artifacts around edges [22]. Wavelets suffer shift sensitivity, poor directionality, an absence
of phase information, poor performance at edges and texture regions, and produce artifacts
around edges because of the shift-variant nature [22]. Despite the reliable quantification
results, MSVD fusion methods might result in poor visual quality [23].

To address the issues mentioned above, other transform domain fusion techniques
such as A Trous wavelet transform (ATWT), curvelet transform (CVT), and ridgelet trans-
form are suggested in [24]. These methods provide better results concerning the visual
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aspect, preserving spatial and spectral information. Nevertheless, these techniques suffer
from artifacts around the edges in the fused image [25].

In [26], a new pixel-level image fusion approach using convolutional sparsity-based
morphological component analysis (CS-MCA) is introduced. This method achieves sparse
representation by combining MCA and sparse convolutional representation into the unified
optimization method. This approach might suffer from a spatial consistency problem,
resulting in the degradation of spatial details [27]. An NSST-based fusion scheme is
proposed in [28].This approach used a blend of NSST with weighted local energy (WLE) and
a weighted sum of eight- neighborhood-based modified Laplacian (WSEML) to integrate
MRI and CT images. However, this method is a non-adaptive approach. A summary of
different types of image fusion methods, their advantages and drawbacks are tabulated in
Table 1.

Table 1. Brief summary of the image fusion methods.

Image Fusion Types

Fusion Methods Advantages Drawbacks

Spatial domain

Average, minimum, maximum,

Reduces the contrast, produces

morphological operators [11], Easy to implement. brichtness or color distortions
Principal Component Analysis (PCA) Computationally gt . X
.. May give desirable results for a
[14], Independent Component efficient few fusion datasets

Analysis (ICA) [29]

Transform domain

Pyramidal
methods

Ratio of the low-pass pyramid [31],

May produce artifacts around
edges. Suffer from

Contrast Pyramid [30], Provides spectral

Laplacian [19] information blocking artifacts
E Discrete wavelet transform
u% (DWT) [15] May produce artifacts around
= ’ .
g Shift invariant discrete wavelet Provides directional edgszziif;tsi;hlft
T transform (SIDWT) [32], information . "
< Computationally expensive and
g Dual-tree complex wavelet transform demands laree memor
£ (DexDWT) [20] 8 Y
-3
B o~
qg) 5 Curvelet [24],
o = Contourlet [33], Provides the edges and Loss in t.exture parts, high memory
o .2 Shearlet [34], texture resion requirement, demands high
§ ES Nonsubsampled Shearlet transform & run time.
= S
g (NSST) [28]
=

An adaptive transform-domain fusion technique might provide a better solution
to the challenges mentioned above. In these fusion approaches, the basis function of
the transform technique depends on the source image’s characteristics. With the help of
adaptive wavelets, the image’s crucial features can be highlighted, which helps in the fusion
process. Hence, adaptive wavelets turned out to be a preferable representation compared to
standard wavelets. Similar works based on VMD decomposition-based techniques can be
found in [35,36]. However, this paper proposes a new adaptive multimodal image fusion
strategy based on the combination of variational mode decomposition (VMD) and local
energy maxima (LEM) to address the challenges mentioned above. The highlights of the
proposed method are as follows:

1. VMD is an adaptive decomposition scheme that decomposes the images as band-
limited sub-bands called intrinsic mode functions (IMFs) without introducing boundary
distortions and mode-mixing problems. Indeed, the band-limited sub-bands characterize
the edge and line features of source images. This decomposition technique can effectively
extract the image features from the other transform methods such as wavelet transform
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(WT), bi-dimensional empirical mode decomposition (BEMD), and empirical wavelet
transform (EWT);

2. The LEM fusion rule extracts the local information from decomposed modes
corresponding to two source images pixel by pixel using a windowing operation (3 x 3)
and then measures the maximum information value. Hence, using the LEM fusion rule,
we can preserve the required complementary visual, edge, and texture information in
the IMFs;

3. The proposed approach aims to preserve the information and details of both MRI
and CT images into the fused image using VMD and LEM. From visual perception and
objective assessment of the fusion results, it is evident that our new image fusion method
accomplishes good performance over other existing fusion methods.

The remainder of the paper is arranged as follows: The proposed framework and
its mathematical representation are presented in Section 2. The detailed analysis of the
simulation results and necessary discussion is presented in Section 3. A final note on the
proposed method and future directions is given in Section 4.

2. Proposed Methodology

Our proposed work aims to integrate the details of the soft tissue and dense bone
structure provided by MRI and CT medical imaging technologies into a unique image. For
this, we have proposed a multimodal medical image fusion based on a blend of VMD and
LEM, as shown in Figure 2.
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T
IMF2-6
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Figure 2. Proposed MRI-CT medical image fusion scheme.

The main steps involved in our fusion methodology are:

A.  VMD-based image decomposition;
B. A fusion strategy depending on the LEM;
C.  Synthesizing the fused image.

A. VMD-Based Image Decomposition

The traditional decomposition approaches, such as wavelets [37,38], BEMD [39], and
EWT [40], suffer from various problems such as boundary distortions and mode-mixing.
With these issues, we may fail to achieve an appropriate fusion result. To address these
problems, we employed VMD [41], a robust adaptive decomposition approach, highlighting
meaningful details in the form of sub-images.

The VMD finds applications in image denoising [42] and texture decomposition [43].
VMD is a non-stationary and adaptive signal processing technique. Unlike EMD and its
variants, VMD is not a recursive analysis approach, and it decomposes the signal/image
into bandlimited sub-bands based on its frequency content. This work uses VMD to obtain
distinct and significant IMFs from the source images (MRI and CT). The derived IMFs
reduce mode-mixing and boundary distortions, which are the major concerns in the above
mentioned transform domain methods. With this VMD decomposition, we can extract
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prominent edge information. Initially, we decomposed the input images into six IMFs,
which are illustrated in Figure 3.

Figure 3. IMFs obtained after VMD decomposition: (a) MRI image, (b) and (c-g) are approximation and detail images of (a),

respectively. (h) CT image, (i) and (j—n) are approximation and detail images of (h), respectively.

From Figure 3, it can be observed that the first IMF ((b) and (i)) captures prominent
information from the source images, whereas the remaining IMFs encompass the line and
edge information. We can note from Figure 3 that as the mode number increases, the visual
details are not significant.

Mathematical Details of VMD:

The main goal of VMD is to subdivide an input signal () into a specific number of
sub-bands (IMFs or Modes) (b;), and each sub-band is bandlimited to specific frequencies
in the spectral domain (Fourier domain) by maintaining sparsity. Each of the sub-bands
is bandlimited to its center frequencies. VMD involves the following steps to get the
bandlimited sub-bands [41]:

1. For each sub-band, its analytical counterpart needs to be computed using Hilbert
transform to get the one-sided frequency spectrum;

2. An exponential is used to mix with each mode to shift its frequency spectrum to
the baseband,;

3. Finally, the bandwidth of the mode estimates using the squared L?-norm of the
gradient. The constrained variational problem can be represented as below.

{bgi{g}l}{; o[ (50 + ) + bz<t>]e-fwlf||§} "
{b;} and {w,}

where I indicates the I!" sub-band and its center frequency, respectively. J(t) represents
the Dirac distribution, * is the symbol of the convolution.

The constrained problem in Equation (1) is solved using the quadratic penalty term
and Lagrangian multipliers A to make it an unconstrained problem given in Equation (2).

LU} ), 2) = 19| (50) + 2 ) )| 13+ ()~ E o+ <A,x(t> . ;bz<t>> @

where L represents augmented Lagrange matrix function, « is the penalty factor parameter,
A indicates the Lagrange multiplier, and x(t) is the input signal.
Now the solution of Equation (1) can be computed as the saddle point of Equation (2)
using the method called an alternating direction method of multipliers (ADMM).
Equation (3) can be further solved using an alternating direction method of multipliers
(ADMM) [41]. Finally, the estimate of the / th sub-band is computed as [44]:
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Similarly, the center frequency is updated as:
o 2
Jw bl(w)‘ dw
Wit = e — )
J l(w)‘ dw
0

In this work, we used the two-dimensional (2D)-VMD [45] method to decompose the
MRI and CT images. As stated above, 2D-VMD is a helpful method in extracting useful
information such as edges and curves from the source images. Furthermore, VMD is a
reliable method to deal with noisy images. Therefore, it can improve the quality of the
fusion process even without employing additional preprocessing techniques.

B. Fusion Strategy Depending on LEM

As discussed before, the VMD adaptively decomposes the input images into ban-
dlimited sub-bands called IMFs. Indeed, these IMFs characterize the image features of
source images. To highlight and extract relevant features in the fused image, we require
appropriate fusion rules. As discussed in Section 1, many fusion rules [46], such as minima,
maxima, averaging, and PCA, have been widely explored for this purpose over the past
few years. Among them, minima and maxima cause brightness distortions, averaging
rule blurs the fused image, and PCA degrades the spectral information [15]. Furthermore,
the fusion rules mentioned above may produce low spatial resolution issues [47]. The
LEM-based [47] fusion rule is adopted to tackle the issues discussed above in this work.

We have demonstrated the influence of these fusion rules visually in Figure 4 and
quantitatively in Table 2. As shown in Figure 4, the VMD with LEM fusion rule achieves
visually satisfying results compared to VMD with other fusion rules. Similarly, as shown
in Table 2, the fusion metric values calculated over 10 data sets proved the efficacy of the
chosen LEM fusion rule.

) (e) ®

Figure 4. Visual quality analysis of various fusion rules on MRI-CT image pair. (a) MRI image, (b) CT
image, (c) VMD-AVG, (d) VMD-MAX, (e) VMD-MIN (f) VMD-LEM.
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Table 2. Average quantitative analysis of various fusion rules on 10 pairs of MRI-CT images.

Methods

Metrics VMD-AVG VMD-MAX VMD-MIN VMD-LEM
EI 48.439 58.322 36.487 71.751
MI 4384 4.376 3.486 4391
VIFF 0.335 0.397 0.063 0.428
QaB/E 0.307 0.356 0.198 0.443
SSIM 0.599 0.232 0.563 0.621
AG 4.845 5.714 3.735 6.973
RMSE 0.0296 0.005 0.036 0.020
PSNR 15.926 14.553 15.869 18.580

The technical details of the LEM fusion rule are discussed as follows. The principal
idea behind using LEM is to extract and preserve vital information with the help of local
information constraints from both the images pixel by pixel [47]. The entire process of LEM
is described in Algorithm 1.

Algorithm 1

Let us consider the IMFs of the first image as IMstq, and the sec ond image as IMFsiB. The
local information LE,(x,y) of IMFsi, (x = A, B) is evaluated using the following steps.
Input : Decomposed modes of images IMFS%, IMFsiB.

Output : Enhanced decomposition modes F' ju1rs,, ; (¥, )-

Step 1: Calculate the local information LEM, (x,y) of individual modes IMFs, (« = A, B)
wow

LEM.(x,y) = ) ) [IMFsi(x + i,y+j)}2 x Wi (i, ) 5)
i=1j=1

111
We=|[111
111

Step 2 : Choose the maximum value in the local information LEM, (x, )

where, W is given by:

Ly(x,y) = max{LEMy(x + i,y +j)|1 <i,j <3} (6)

Step 3: Calculate the binary decision weight maps

B 1, if La(x,y) >Lp(x,y)

X1 (xy) = { 0, otherwise @)
_ 1, if Lg(x,y) >La(x,y)

Xa(x,y) = { 0, otherwise ®)

Step 4 : Obtain the enhanced decomposition modes F ;5 a5 (0 Y)

F’IIMFSA'B = Xq(x,y) x IMFsiq(x,y) + Xo(x,y) % IMFsiB(x,y) 9)

C. Synthesizing the Fused Image

We linearly combine all the enhanced IMFs obtained from each LEM fusion rule to
construct the fused image. The whole process of the proposed fusion framework is given
in Algorithm 2.



Appl. Sci. 2021, 11, 10975 80of 16
Algorithm 2
Input: Image A (MRI), Image B (CT).
Output: The fused image F.
Step 1: Image decomposition using VMD:
Employ VMD on the source images (A and B) to obtain IMFg which are represented as
VMD(A) = {IMPs}q,IMFsi o IMFsiA}.,i =(1,2,...N); .

VMD(B) = {IMFS}S,IMFS% . IMFs"B}.,i =(1,2,...N)

Step 2: LEM-based image fusion:

(a) Estimate the local information LEM,(x,y) from each sub — band IMFsi,(x = A, B) using
Equation (5).

(b) Consider the maximum value Ly (x,y) of LEM,(x,y) by Equation (6).

(c) Evaluate the binary decision weight maps X; (x,y), Xa(x,y) with Equations (7) and (8).

(d) Fuse the decomposed modes F' s 4.5 (%, ) using Equation (9).

Step 3: Reconstruct the fused image by summing all the fused sub-bands obtained from Step 2.

F=Y Fu(xy),i=1,...N (11)

M=

I
—_

D. Image Fusion Evaluation Metrics

In this paper, we used a few state-of-the-art image fusion metrics to estimate the
information contribution of each source image in the fusion process. They are edge intensity
(EI) [48], mutual information (MI) [49], visual information fidelity (VIF) [50,51], edge-
based similarity measure (QgB /F ) [52], structural similarity index measure (SSIM) [51,53],
average gradient (AG) [54], root mean square error (RMSE) [15], peak signal-to-noise ratio
(PSNR) [13,42]. EI represents the difference of luminance along the gradient direction in
images. MI is used to measure the relative information between the source and the fused
images. VIF estimates the visual information fidelity between the fused and source images
depending on the Gaussian mixture model. The edge-based similarity (QﬁB /F) measure
will be useful to provide the edge details in the fused image. RMSE computes a difference
measure between the reference image and fused image. In this work, the maximum value
of RMSE of MRI-fused images and CT-fused images is considered. Similarly, PSNR is also
computed. Except for RMSE, the higher values of all these metrics imply better fusion. In
the case of the RMSE, the lowest value yields a better result.

3. Results and Discussion

This section presents the experimental setup, results and analysis of the proposed
method. First, we explain the experimental setup and methods, followed by data analysis
using both qualitative and quantitative methods. Finally, we compare the proposed method
with the existing literature for a fair assessment.

The experiments are conducted on a PC with Intel(R) Core (TM) i5-5200U CPU@2.20GHz
and RAM 8GB using MATLAB2018b. We have considered a whole-brain atlas website
(http:/ /www.med.harvard.edu/AANLIB/home.html, accessed on 1 September 2021) to
conduct our experiments. For this purpose, 23 MRI-CT medical image data sets are
taken from this database. All these data sets are registered with a resolution of 256 x 256.
Image registration [55] is a necessary step prior to image fusion. It is defined as the process
of mapping the input images with the help of a reference image. Such mapping aims to
match the corresponding images based on specific features to assist in the image fusion
process. The database contains various cross-sectional multimodal medical images, such as
MRI (T1 and T2 weighted), CT, single-photon emission computed tomography (SPECT),
and positron emission tomography (PET).

Furthermore, it has a wide range of brain images ranging from healthy to different
brain diseases, including cerebrovascular, neoplastic, degenerative, and infectious diseases.
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We have considered 23 pairs of MRI-CT from fatal stroke (cerebrovascular disease) to
validate our proposed approach (Supplementary Materials). Interested readers can find
more details of this database in [56].

The efficacy of any image fusion algorithm can be verified using subjective (qualita-
tive) and objective (quantitative) analysis. In Section 3.1, we first verified the subjective
performance of various fusion algorithms and then performed objective analysis using
fusion metrics in Section 3.2.

3.1. Subjective Assessment

Visual results of various MRI and CT fusion methods are shown in Figures 5-7.
A good MRI- and CT-fused image should contain both the soft tissue information and
dense structure information of the MRI and CT images. We can draw the following
observations by examining the visual quality of the four sets of MRI-CT fusion results
using various methods.

Figure 5. Visual quality analysis of various fusion algorithms for MRI-CT (set-7). (a) MRI image,
(b) CT image, (c) ASR, (d) CVT, (e) DTCWT, (f) MSVD, (g) CSMCA, (h) NSST, (i) proposed method.
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Figure 6. Visual quality analysis of various fusion algorithms for MRI-CT (set-11). (a) MRI image,
(b) CT image, (c) ASR, (d) CVT, (e) DTCWT, (f) MSVD, (g) CSMCA, (h) NSST, (i) proposed method.

Figure 7. Visual quality analysis of various fusion algorithms for MRI-CT (set-15). (a) MRI image,
(b) CT image, (c) ASR, (d) CVT, (e) DTCWT, (f) MSVD, (g) CSMCA, (h) NSST, (i) proposed method.
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MRI

CT

ASR

CVT

DTCWT

MSVD

CSMCA

NEST

PROPOSED

SET-1

1. Compared to all the other methods, our proposed algorithm provides a brighter
outer region representing the CT image’s dense structure;

2. From Figures 5-7, it can be seen that the fused images of methods (c)—(g) are
yielding poor contrast;

3. Though the method (h) in all the Figures 5-7 provides better contrast details; still, it
is suffering from artifacts, especially in the CT region.

From Figures 5-7, it can be noticed that the ASR method transfers both the CT and
MRI information partially with low contrast. Next, coming to the CVT contains more MRI
details than the CT. In the DTCWT method, we can find a few fusion artifacts in and around
the CT region. Similarly, we can observe information fusion loss in the MSVD method.
Compared with the methods mentioned above, CSMCA gives better visual quality, but
the overall contrast of the image is reduced. The fused images with the NSST method are
visually degraded due to both the fusion loss and artifacts. Overall, our proposed method
retains the necessary information from the MRI and CT with minimum fusion losses. The
comparison results of the MRI-CT fusion using various methods, including the proposed
method on the 23 pairs of fatal stroke images, are shown in Figures 8 and 9.

SET-2 SET-3 SET-4 SET-5 SET-6 SET-7 SET-8 SET-9 SET-10

Figure 8. The results of various methods on first 10 pairs of MRI-T images (fatal stroke).
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SET-11 SET-12 SET-13 SET-14 SET-15 SET-16 SET-17 SET-18 SET-19 SET-20 SET-21 SET-22 SET-23
L4

CVT

Figure 9. The results of various methods on next 13 pairs of MRI-CT images (fatal stroke).

3.2. Objective Assessment

Here, we assess the fused image quality objectively using fusion metrics. Tables 3-5
demonstrate the objective assessment of the three fatal-stroke images proposed and other
existing approaches (sets: 7, 11, and 15) subjectively analyzed earlier. In addition, we
have presented the average objective metric scores of all the 23 sets (fatal-stroke)in Table 6.
Fusion metrics except for RMSE with the first highest values are highlighted in bold
font, and the second-highest values are underlined. The first-lowest value of the RMSE
is indicated in bold, and the second-lowest value is underlined. A number within the
bracket at the end of the quantitative metric scores represents the rank of the fusion
algorithm. In these Tables, the ranking scheme is considered for better quantitative analysis
of fusion algorithms.

Table 3. Quantitative analysis of various fusion methods for MRI-CT (set-7).

Methods
Metrics ASR CVT DTCWT MSVD CSMCA NSST  Proposed Method
EI 85.184 91.417 (1) 88.853 77.183 87.219 81.907 90.390 (2)
MI 3.948 (2) 3.548 3.656 3.490 3.811 3.703 4.079 (1)
VIFF 0.321 0.290 0.280 0.344 (2) 0.319 0.267 0.406 (1)
QaB/E 0.535 0.478 0.500 0.427 0.536 (2) 0.373 0.538 (1)
SSIM 0.563 0.376 0.499 0.548 0.629 (2) 0.520 0.697 (1)
AG 8.561 9.140 (1) 8.933 8.332 8.674 8.368 9.008 (2)
RMSE 0.034 0.034 0.034 0.034 0.035 0.027 (2) 0.020

PSNR 16.328 16.749 17.166 13.28 17.393 (2) 13.976 21.342 (1)
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Table 4. Quantitative analysis of the various fusion methods for MRI-CT (set-11).
Methods
Metrics ASR CVT DTCWT MSVD CSMCA NSST Proposed Method
EI 67.026 79.944 (2) 75.086 64.169 70.435 75.318 80.087 (1)

MI 4.279 3.904 4.030 4.227 4.346 (1) 4.116 4.339 (2)
VIFF 0.272 0.254 0.249 0.286 0.297 (2) 0.241 0.356 (1)
QaB/E 0.472 0.421 0.435 0.392 0.481 (1) 0.421 0.480 (2)
SSIM 0.593 0.276 0.413 0.301 0.537 0.600 (1) 0.599 (2)

AG 6.662 7.887 (2) 7421 6.812 6.877 7471 7.980 (1)
RMSE 0.029 0.029 0.029 0.028 0.029 0.024 (2) 0.021 (1)
PSNR 16.857 17.171 17.720 15.804 17.892 (1) 13.981 17.794 (2)

Table 5. Quantitative analysis of the state-of-the-art methods for MRI-CT (set-15) dataset.
Methods
Metrics ASR CcvT DTCWT MSVD CSMCA NSST Proposed Method

EI 51.347 63.877 58.355 49.732 51.899 65.474 (2) 65.802 (1)

MI 4.186 3.878 3.995 4.090 4284 (2) 4.214 4.549 (1)
VIFF 0.356 0.362 0.365 0.348 0.412 (2) 0.340 0.484 (1)
QAB/E 0.465 (2) 0.418 0.431 0.380 0.461 0.446 0.478 (1)
SSIM 0.674 (2) 0.338 0.507 0.417 0.663 0.590 0.694 (1)

AG 5.065 6.231 5.719 5.197 5.045 6.349 (1) 6.326 (2)
RMSE 0.028 0.029 0.029 0.026 0.028 0.022 (2) 0.018 (1)
PSNR 17.396 17.268 17.649 16.392 18.644 (1) 14.096 18.024 (2)

Table 6. Average quantitative analysis of the proposed method (23 pairs of MRI-CT) and other state-of-the-art methods.

Methods

Metrics ASR CVT DTCWT MSVD CSMCA NSST Proposed Method
EI 57.800 64.531 61.820 50.850 58.592 62.404 64.582
MI 3.666 3.360 3.446 3.694 3.657 3.740 3.830
VIFF 0.376 0.362 0.358 0.365 0.401 0.364 0.498
QaB/F 0.541 0.483 0.500 0.399 0.531 0.439 0.542
SSIM 0.651 0.350 0.503 0.614 0.634 0.586 0.657
RMSE 0.029 0.029 0.029 0.029 0.029 0.022 0.020
AG 5.772 6.390 6.148 5.427 5.771 6.217 6.412
PSNR 16.803 16.972 17.242 16.000 17.757 16.021 20.291

Comprehensively, the proposed framework is the only approach that occupies the
first two ranks for all eight metrics among all the seven methods. It indicates that our
method has robust performance (i.e., stable and promising performance) than other existing
techniques. Specifically, our approach always remains in the first position on VIFF and

RMSE for all four data sets, as shown in Tables 3-5.

Average quantitative analysis of the proposed and other state-of-the-art methods
calculated over 23 pairs of MRI-CT (fatal stroke) are presented in Table 6. The proposed
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method occupied the first position by overperforming other fusion algorithms when
average values are considered in fusion metrics.

In general, the consistent performance of any image fusion algorithm in quantitative
results is mainly due to the good visual quality of fused images, fusion gain, and less
fusion loss and fusion artifacts. We have already seen from the visual result analysis that
the proposed method can transfer the source image information into the fused image with
less fusion loss and artifacts compared to the other fusion algorithms. It is also evident
from the fusion metrics that our method is giving a stable performance.

Hence, we can conclude that the proposed method is promising, stable, and efficient
from qualitative and quantitative comparative analysis.

4. Conclusions and Future Scope

We proposed a multi-modal medical image fusion framework with VMD and LEM
to fuse MRI and CT medical images in this work. By using an adaptive decomposition
technique VMD, significant IMFs are derived from the source images. This decomposi-
tion process can preserve some details of source images. However, these details are not
sufficient to fulfill the clinical needs of radiologists. Hence, we used a LEM fusion rule
to preserve complementary information from IMFs, an essential criterion during medical
image diagnosis. All the experiments are evaluated on the Whole Brain Atlas benchmark
data sets to analyze the efficacy of the proposed methodology. The experimental results
reveal that the proposed framework attained better visual perception. Even objective
assessment in terms of average EI (64.582), MI (3.830), VIFF (0.498), Q?B /F (0.542), SSIM
(0.6574), RMSE (0.020), AG (6.41), and PSNR (20.291) demonstrated quantitative fusion
performance better than the existing multi-modal fusion approaches. In the future, we
wish to conduct experiments with extensive data that contain images of MRI and CT with
different disease information. Additionally, we consider extending this work to both 2D
and 3D image clinical applications. Furthermore, we would like to verify the effectiveness
of the proposed method for other image fusion applications such as digital photography,
remote sensing, battlefield monitoring, and military.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app112210975/5s1. The qualitative (Figures S1-523) and quantitative results (Tables S1-523)
of all the 23 pairs of images used in this work are given in the supplementary material.
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