
applied  
sciences

Article

Automated Ground Truth Generation for Learning-Based Crack
Detection on Concrete Surfaces

Hsiang-Chieh Chen * and Zheng-Ting Li

����������
�������

Citation: Chen, H.-C.; Li, Z.-T.

Automated Ground Truth Generation

for Learning-Based Crack Detection

on Concrete Surfaces. Appl. Sci. 2021,

11, 10966. https://doi.org/10.3390/

app112210966

Academic Editor: José A. F. O. Correia

Received: 25 October 2021

Accepted: 18 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, National United University, Miaoli 360301, Taiwan; gn00920581@gmail.com
* Correspondence: chc@nuu.edu.tw

Abstract: This article introduces an automated data-labeling approach for generating crack ground
truths (GTs) within concrete images. The main algorithm includes generating first-round GTs,
pre-training a deep learning-based model, and generating second-round GTs. On the basis of the
generated second-round GTs of the training data, a learning-based crack detection model can be
trained in a self-supervised manner. The pre-trained deep learning-based model is effective for crack
detection after it is re-trained using the second-round GTs. The main contribution of this study is the
proposal of an automated GT generation process for training a crack detection model at the pixel
level. Experimental results show that the second-round GTs are similar to manually marked labels.
Accordingly, the cost of implementing learning-based methods is reduced significantly because data
labeling by humans is not necessitated.

Keywords: automated data labeling; crack detection; crack segmentation; deep learning; ground
truth generation

1. Introduction

Cracks appear on the surface of concrete structures owing to various causes, such as
aging, environmental, and loading effects. Surface cracks are one of the earliest indicators
of structural damage; therefore, crack monitoring has become a critical task in structural
maintenance. Conventional monitoring relies on well-trained human inspectors who
observe and record crack information, and hence is considered inefficient. Moreover,
manual inspection results depend significantly on individual subjectivity, which may result
in inaccuracies and mistakes [1]. To perform an efficient and objective crack assessment,
automated inspection methods and systems must be developed. Automated crack detection
can be achieved using non-destructive techniques, such as infrared thermography [2],
ultrasonic sensors [3], terrestrial laser scanning [4–6], and laser displacement sensors [7].

In recent decades, image-based crack detection technology has garnered increasing
interest for facilitating visual inspection on the surface of concrete. Early image-based
methods were primarily devised on the basis of image processing techniques [8], such as
segmentation [9], edge detection [10], filtering [11], and histogram analysis [12]. However,
it is difficult to design a universal method to accommodate diverse scenes because cracks
often appear in irregular patterns. In recent years, the rapid development of artificial
intelligence has resulted in the extensive investigation of machine learning-based methods.
Deep learning models, particularly convolution neural networks (CNNs), have demon-
strated their superior performance in various computer vision applications. CNNs perform
well in image classification, segmentation, and object detection tasks, as well as in image
feature extraction. Inspired by the success of CNNs, some deep learning methods that split
an image into patches and then employ a CNN to extract features and predict whether
cracks exist within the patches have been proposed [13–15]. Although these methods can
locate cracks using a patch or a bounding box, they cannot accurately identify cracks at
the pixel level. Studies regarding pixel-level crack segmentation have increased signifi-
cantly in recent years. Such pixel-level segmentation is often categorized into semantic

Appl. Sci. 2021, 11, 10966. https://doi.org/10.3390/app112210966 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0097-4318
https://doi.org/10.3390/app112210966
https://doi.org/10.3390/app112210966
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210966
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210966?type=check_update&version=2


Appl. Sci. 2021, 11, 10966 2 of 20

segmentation and instance segmentation. For crack detection, semantic segmentation,
which performs pixel-wise identification for all target objects of the crack/non-crack class,
is typically preferred.

Fully convolutional networks (FCNs) trained via end-to-end learning first demon-
strated state-of-the-art performances in 2015 [16]. Subsequently, they were investigated
extensively to solve challenging problems in semantic segmentation, such as crack detec-
tion at the pixel level. FCNs are an extension of the original CNN and achieve pixel-level
classification on the basis of convolution layers [1]. Dung and Anh [17] proposed an FCN
with an encoder, i.e., the VGG16 [18], for concrete crack detection and density evaluation.
Furthermore, the crack path was accurately monitored using an FCN-based method. In [19],
a deep CNN comprising an FCN with an encoder–decoder architecture was proposed for
pixel-wise classification to detect cracks. Similarly, the VGG-Net was adopted in this FCN
model. Zhang et al. [20] introduced an FCN based on a dilated convolution operation. They
used a residual network [21] to obtain the feature maps of an input image and performed
the dilated convolution operations with different dilation rates to extract feature maps
under different receptive fields. CrackSegNet is an end-to-end deep network that combines
multiple techniques, including feature extraction by convolution, receptive field expansion
by dilated convolution, multi-scale max-pooling, and skipped connections of feature map
fusion [1]. Compared with the existing FCN-based models, it offers the advantages of
low generalization error and less data requirement; however, it requires more time for the
inference process. On the basis of the well-known segmentation model SegNet [22], Zou
et al. [23] developed DeepCrack, which is a deep CNN, by learning high-level features
for crack representation. To obtain both sparse and continuous features in each scale,
DeepCrack added skip layers to connect the encoder to the decoder. The effectiveness of
this skipping mechanism in distinguishing cracks from the background within an image
was validated.

To accommodate binary semantic segmentation, the U-Net was first proposed in [24]
to achieve better segmentation results on biomedical images. The U-Net requires relatively
few annotated images since it utilizes the elastic deformations of the training samples.
The success of the U-Net for biomedical images motivated researchers to evaluate the
performance of the U-Net in different applications, such as crack detection. Liu et al. [25]
were the first to apply the U-Net to detect concrete cracks. Furthermore, they verified that
the U-Net outperformed other existing deep CNNs in terms of robustness, effectiveness,
and detection accuracy. Hitherto, both FCNs and U-Nets have been investigated extensively,
e.g., the automatic pixel-level crack detection network [26] and the convolutional encoder–
decoder network [27].

Although the methods used yielded good performance in concrete crack detection,
they require a significant amount of development to be usable in practical applications.
For instance, considerable effort is required in acquiring training data, particularly for
annotating images in semantic segmentation. Each pixel of interest is labeled with the
class of its enclosing region using annotation tools. Hence, another critical issue in crack
detection segmentation is data labeling for the training set. Zou et al. [28] presented a
pseudo-labeling technique to generate structured pseudo-labels with unlabeled or weakly
labeled data. In [29], a self-supervised structure learning network that can be trained
without using a GT was introduced. This is achieved by training a reverse network to
return the output to the input. On the basis of these studies, we believe that an appropriate
algorithm that can generate GTs for training data is equally important as a crack detection
model that must be trained in a supervised manner. Therefore, an algorithm for generating
the GTs of concrete images that can be further used for training deep learning networks
to perform crack detection is proposed herein. The main contributions of this study are
summarized below:

1. We introduce an algorithm that can perform automated data labeling for concrete
images exhibiting cracks. This algorithm first produces preliminary labels via several



Appl. Sci. 2021, 11, 10966 3 of 20

image processing procedures. Hence, the preliminary labels, namely, the first-round
GTs, are used to train a deep U-Net-based model.

2. The U-Net-based model above is implemented by integrating the VGG16 into the
U-Net to form the vanilla architecture of our proposed crack detection model. In
addition, the encoder portion of this crack detection model is replaced by the well-
known residual network (ResNet) for evaluating the effectiveness among different
encoder backbones.

3. We propose a scheme to refine the first-round GTs to generate refined (also known
as second-round) GTs. Using a fuzzy inference system and using a crack image and
its prediction result yielded by the proposed model as inputs, we can derive the
degree of each pixel belonging to the crack class. Next, a thresholding operation
is employed to determine whether a pixel is categorized as a crack or non-crack.
Subsequently, the second-round GTs of the training data were obtained. Moreover,
the aforementioned U-Net-based model can be retrained using the second-round GTs
to achieve better performances.

To summarize, the main contribution of this study is the proposal of an automated
labeling technique that involves a three-stage procedure, including first-round GT gen-
eration, pre-training of a U-Net-based model, and second-round GT generation. The
remainder of this paper is organized as follows: Section 2 introduces the main algorithm of
the proposed method. In Section 3, we describe the implementation details and provide
a discussion regarding the experiments. Section 4 presents the quantitative results for
verifying the effectiveness of the proposed method. Finally, the conclusions are provided
in the final section.

2. Proposed Method

This section presents a self-supervised learning approach for training a deep learning-
based model for detecting cracks in concrete images. The highlight of the approach is
a three-stage process for performing automated data labeling, including first-round GT
generation, pre-training a U-Net-based model, and second-round GT generation. The
main algorithm of the proposed method includes the following steps. For every sample
in the training data, the label of cracks, namely, the first-round GT, was first generated
via our automated data-labeling method. Subsequently, a deep learning-based model was
pre-trained and used to detect cracks. On the basis of the fuzzy inferencing, we used a
binary crack classification method for each pixel to refine the crack detection results. Finally,
the refined results were considered to be second-round GTs that can be further used for
re-training the crack detection model or for training any learning-based model. The entire
procedure is described in detail next.

2.1. First-Round GT Generation

This subsection introduces an effective method for producing labels that can be used
as supervisory signals to pre-train a deep learning neural network. Crack detection in
an image is often regarded as a problem in binary semantic segmentation. Specifically,
it is a pixel-level classification of crack and non-crack cases. Because cracks are visually
presented in piecewise linear or curvilinear segments, they can be easily located by applying
an edge detection algorithm. Let I be the original image (size of w × h pixels), and
there are N images in the dataset. The main steps of our crack localization method are
described as follows.

2.1.1. Edge Pixel Enhancement

The original image I is first converted into a grayscale image Ig. Subsequently, a
Gaussian blur filter with a standard deviation σG is applied to the grayscale image. Next,
this blurred image Iblur is subtracted from the original grayscale image Ig to extract the
edge points occupied, denoted by Ie = Ig− Iblur. Figure 1 shows an example of the original
color images (randomly selected from the dataset provided in [30]) and the result obtained



Appl. Sci. 2021, 11, 10966 4 of 20

after edge pixel enhancement. To facilitate observation, we multiplied the pixel intensity in
subplot (b) by 5. It was observed that the pixels around the cracks were enhanced.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 21 
 

this blurred image 𝐼ୠ୪୳୰ is subtracted from the original grayscale image 𝐼୥ to extract the 
edge points occupied, denoted by 𝐼 = 𝐼୥ − 𝐼ୠ୪୳୰. Figure 1 shows an example of the origi-
nal color images (randomly selected from the dataset provided in [30]) and the result ob-
tained after edge pixel enhancement. To facilitate observation, we multiplied the pixel 
intensity in subplot (b) by 5. It was observed that the pixels around the cracks were en-
hanced. 

  
(a) (b) 

Figure 1. An example of edge pixel enhancement: (a) the original color image; (b) result of edge 
pixel enhancement. 

2.1.2. Crack Pixel Segmentation 
Intuitively, edge points often appear around cracks, and the different intensities of 

the grayscale represent different levels of discontinuities. Hence, a typical edge detection 
filter, i.e., the Sobel operator, is applied to image 𝐼 . The Sobel operator uses a pair of 
kernels, 𝑆௫ and 𝑆௬, as presented in (1), to calculate the approximations of the derivatives 
in the 𝑥- and 𝑦-axes, respectively. 

𝑆௫ = ൥1 0 −12 0 −21 0 −1൩ and 𝑆௬ = ൥ 1 2 10 0 0−1 −2 −1൩. (1) 

On the basis of the results of employing these two kernels convolved with 𝐼 , the 
resulting gradients along the two axes, 𝐺௫ and 𝐺௬, are further combined to form the mag-
nitude and direction angle, as calculated using (2) and (3). 𝑀𝑎𝑔 = ට(𝑆௫ ∗ 𝐼 )ଶ + ൫𝑆௬ ∗ 𝐼 ൯ଶ = ඥ(𝐺௫)ଶ + (𝐺௫)ଶ (2) 

𝛩 = tanିଵ ൬𝐺௬𝐺௫൰ (3) 

Subsequently, the magnitude image is obtained via a thresholding process such that 
the pixels whose intensity is less than a predefined threshold 𝑇୫ୟ୥  become zero. The 
thresholding used in this study is presented in (4). 𝑀𝑎𝑔(𝑥, 𝑦) = ൜𝑀𝑎𝑔(𝑥, 𝑦), if 𝑀𝑎𝑔(𝑥, 𝑦) ≥ 𝑇୫ୟ୥;  0,    otherwise,  (4) 

where 𝑀𝑎𝑔(𝑥, 𝑦) is the intensity at pixel (𝑥, 𝑦) in the magnitude image, and 𝑇୫ୟ୥ is a 
predefined threshold. Subsequently, the well-known morphological closing operation 
with a filter size of 𝑁 × 𝑁 is performed on this thresholded image to fill the cracks. Figure 
2 shows the result of thresholding the magnitude image and the result obtained after per-
forming the closing operation. In this study, we set the kernel size of closing operation 𝑁 = 15, which is sufficiently large to connect the edge points to form connected compo-
nents in the image. As shown in Figure 2b, the approximate crack shape can be extracted. 

Figure 1. An example of edge pixel enhancement: (a) the original color image; (b) result of edge
pixel enhancement.

2.1.2. Crack Pixel Segmentation

Intuitively, edge points often appear around cracks, and the different intensities of the
grayscale represent different levels of discontinuities. Hence, a typical edge detection filter,
i.e., the Sobel operator, is applied to image Ie. The Sobel operator uses a pair of kernels, Sx
and Sy, as presented in (1), to calculate the approximations of the derivatives in the x- and
y-axes, respectively.

Sx =

 1 0 −1
2 0 −2
1 0 −1

 and Sy =

 1 2 1
0 0 0
−1 −2 −1

. (1)

On the basis of the results of employing these two kernels convolved with Ie, the
resulting gradients along the two axes, Gx and Gy, are further combined to form the
magnitude and direction angle, as calculated using (2) and (3).

Mag =

√
(Sx ∗ Ie)

2 +
(
Sy ∗ Ie

)2
=

√
(Gx)

2 + (Gx)
2 (2)

Θ = tan−1
(

Gy

Gx

)
(3)

Subsequently, the magnitude image is obtained via a thresholding process such that
the pixels whose intensity is less than a predefined threshold Tmag become zero. The
thresholding used in this study is presented in (4).

Mag(x, y) =

{
Mag(x, y), if Mag(x, y) ≥ Tmag;

0, otherwise,
(4)

where Mag(x, y) is the intensity at pixel (x, y) in the magnitude image, and Tmag is a pre-
defined threshold. Subsequently, the well-known morphological closing operation with a
filter size of N×N is performed on this thresholded image to fill the cracks. Figure 2 shows
the result of thresholding the magnitude image and the result obtained after performing
the closing operation. In this study, we set the kernel size of closing operation N = 15,
which is sufficiently large to connect the edge points to form connected components in the
image. As shown in Figure 2b, the approximate crack shape can be extracted.



Appl. Sci. 2021, 11, 10966 5 of 20
Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 21 
 

  
(a) (b) 

Figure 2. Results of (a) thresholding the gradient image; (b) performing a closing operation. 

Thus far, the crack is outlined roughly. Furthermore, a more accurate label needs to 
be drawn to form the GT. As shown in Figure 1, the crack can be considered the fore-
ground, whereas the flat concrete surface is the background. GrabCut [31] is an iterative 
image segmentation method inspired by the graph cut algorithm [32] and involves simple 
user interactions. The simplest method to interact with a user is by drawing a rectangle to 
bound the desired object. Because the crack object has been extracted, as shown in Figure 
2b, the main task is to identify a rectangle to enclose the bright connected objects by ex-
cluding noise. Using the well-known connected-component labeling (CCL) method, we 
can locate a significant portion of the crack by a bounding box. Figure 3 presents the CCL 
results of Figure 2b, and the same bounding box drawn in Figure 1a. It is noteworthy that 
the nearby bounding boxes were merged and only the bounding boxes whose width (or 
height) exceeded 𝑤/3 (or ℎ/3) were preserved. 

  
(a) (b) 

Figure 3. Results of connected component labeling of (a) Figure 2b; (b) a significant portion of the 
crack in Figure 1a. 

In this study, we employed only the hard segmentation of the GrabCut algorithm 
because the crack boundary typically contains high-intensity discontinuities. On the basis 
of the bounding box shown in Figure 3b, we implemented the GrabCut algorithm within 
an image as follows: 

Step 1: Generate an initial trimap using the bounding box. 
The trimap 𝑇 = ሼ𝑇୆, 𝑇୊, 𝑇୙ሽ, where 𝑇୆, 𝑇୊ are background and foreground regions, 

respectively, and 𝑇୙ is the unknown region. In this initialization step, only 𝑇୆ was pro-
vided. The pixels outside the rectangle were marked as the background, and the fore-
ground was set to empty, i.e., 𝑇୊ = 𝜙. Hence, 𝑇୙ = 𝑇ത୆, which implies that the pixels were 
inside the rectangle. 

Step 2: Perform an initial segmentation of the original color image. 
All background pixels were categorized into the background class. Unmarked pixels 

were tentatively categorized into the foreground class. 

Figure 2. Results of (a) thresholding the gradient image; (b) performing a closing operation.

Thus far, the crack is outlined roughly. Furthermore, a more accurate label needs to be
drawn to form the GT. As shown in Figure 1, the crack can be considered the foreground,
whereas the flat concrete surface is the background. GrabCut [31] is an iterative image
segmentation method inspired by the graph cut algorithm [32] and involves simple user
interactions. The simplest method to interact with a user is by drawing a rectangle to bound
the desired object. Because the crack object has been extracted, as shown in Figure 2b, the
main task is to identify a rectangle to enclose the bright connected objects by excluding
noise. Using the well-known connected-component labeling (CCL) method, we can locate
a significant portion of the crack by a bounding box. Figure 3 presents the CCL results
of Figure 2b, and the same bounding box drawn in Figure 1a. It is noteworthy that the
nearby bounding boxes were merged and only the bounding boxes whose width (or height)
exceeded w/3 (or h/3) were preserved.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 21 
 

  
(a) (b) 

Figure 2. Results of (a) thresholding the gradient image; (b) performing a closing operation. 

Thus far, the crack is outlined roughly. Furthermore, a more accurate label needs to 
be drawn to form the GT. As shown in Figure 1, the crack can be considered the fore-
ground, whereas the flat concrete surface is the background. GrabCut [31] is an iterative 
image segmentation method inspired by the graph cut algorithm [32] and involves simple 
user interactions. The simplest method to interact with a user is by drawing a rectangle to 
bound the desired object. Because the crack object has been extracted, as shown in Figure 
2b, the main task is to identify a rectangle to enclose the bright connected objects by ex-
cluding noise. Using the well-known connected-component labeling (CCL) method, we 
can locate a significant portion of the crack by a bounding box. Figure 3 presents the CCL 
results of Figure 2b, and the same bounding box drawn in Figure 1a. It is noteworthy that 
the nearby bounding boxes were merged and only the bounding boxes whose width (or 
height) exceeded 𝑤/3 (or ℎ/3) were preserved. 

  
(a) (b) 

Figure 3. Results of connected component labeling of (a) Figure 2b; (b) a significant portion of the 
crack in Figure 1a. 

In this study, we employed only the hard segmentation of the GrabCut algorithm 
because the crack boundary typically contains high-intensity discontinuities. On the basis 
of the bounding box shown in Figure 3b, we implemented the GrabCut algorithm within 
an image as follows: 

Step 1: Generate an initial trimap using the bounding box. 
The trimap 𝑇 = ሼ𝑇୆, 𝑇୊, 𝑇୙ሽ, where 𝑇୆, 𝑇୊ are background and foreground regions, 

respectively, and 𝑇୙ is the unknown region. In this initialization step, only 𝑇୆ was pro-
vided. The pixels outside the rectangle were marked as the background, and the fore-
ground was set to empty, i.e., 𝑇୊ = 𝜙. Hence, 𝑇୙ = 𝑇ത୆, which implies that the pixels were 
inside the rectangle. 

Step 2: Perform an initial segmentation of the original color image. 
All background pixels were categorized into the background class. Unmarked pixels 

were tentatively categorized into the foreground class. 

Figure 3. Results of connected component labeling of (a) Figure 2b; (b) a significant portion of the
crack in Figure 1a.

In this study, we employed only the hard segmentation of the GrabCut algorithm
because the crack boundary typically contains high-intensity discontinuities. On the basis
of the bounding box shown in Figure 3b, we implemented the GrabCut algorithm within
an image as follows:

Step 1: Generate an initial trimap using the bounding box.
The trimap T = {TB, TF, TU}, where TB, TF are background and foreground regions,

respectively, and TU is the unknown region. In this initialization step, only TB was provided.
The pixels outside the rectangle were marked as the background, and the foreground
was set to empty, i.e., TF = φ. Hence, TU = TB, which implies that the pixels were
inside the rectangle.

Step 2: Perform an initial segmentation of the original color image.
All background pixels were categorized into the background class. Unmarked pixels

were tentatively categorized into the foreground class.
Step 3: Initialize two Gaussian mixture models (GMMs).



Appl. Sci. 2021, 11, 10966 6 of 20

The background and foreground GMMs, denoted by GMMBG and GMMFG, respec-
tively, were created separately using the initial segmentation results obtained in the pre-
vious step. Every GMM was a full-covariance Gaussian mixture with K components.
The k-th component comprised four parameters: the mean µk (a tuple in the RGB color
space), covariance matrix Σ (a 3 × 3 matrix), determinant of the covariance matrix |Σ|, and
component weight v.

Step 4: Assign each pixel belonging to the foreground class to the Gaussian component.
Each pixel in the foreground class was assigned to the component GMMFG, which

has the maximum likelihood. This was performed by evaluating the Gaussian distribution
on the basis of considering the pixel’s RGB triple as the input. Similarly, each pixel in the
background class was assigned to the maximum-likelihood component of GMMBG.

Step 5: Learn new parameters of GMMs.
The current GMMs were discarded, and the new parameters of the background and

foreground GMMs were learned using the pixel sets that were assigned in Step 4.
Step 6: Conduct image segmentation.
Graph cut was performed to obtain a new tentative classification of the background

and foreground for all pixels.
The entire GrabCut procedure is presented above. The iterative scheme begins with

repeating Steps 4–6 until the classification result converges. Figure 4 shows the result
of GrabCut from Figure 3b, in which the pixels belonging to the foreground class are
preserved, and the background pixels are set to zero (black pixels). The foreground pixels
are further refined by categorizing them into brighter and darker groups, and only the
darker pixels are regarded as cracks. Therefore, the crack pixels in the original image are
indicated. Figure 5 shows the preliminary result of crack segmentation by employing the
GrabCut method and image processing techniques. It is noteworthy that the crack pixels
are depicted by white pixels and can be directly applied to train a deep learning-based
model since the crack and non-crack pixels are labeled by 1 and 0, respectively. In this
study, we named this binary map the first-round GT.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 21 
 

Step 3: Initialize two Gaussian mixture models (GMMs). 
The background and foreground GMMs, denoted by 𝐺𝑀𝑀୆ୋ and 𝐺𝑀𝑀୊ୋ, respec-

tively, were created separately using the initial segmentation results obtained in the pre-
vious step. Every GMM was a full-covariance Gaussian mixture with 𝐾 components. The 𝑘 -th component comprised four parameters: the mean 𝜇௞  (a tuple in the RGB color 
space), covariance matrix Σ (a 3 × 3 matrix), determinant of the covariance matrix |Σ|, 
and component weight 𝜛. 

Step 4: Assign each pixel belonging to the foreground class to the Gaussian compo-
nent. 

Each pixel in the foreground class was assigned to the component 𝐺𝑀𝑀୊ୋ, which has 
the maximum likelihood. This was performed by evaluating the Gaussian distribution on 
the basis of considering the pixel’s RGB triple as the input. Similarly, each pixel in the 
background class was assigned to the maximum-likelihood component of 𝐺𝑀𝑀୆ୋ. 

Step 5: Learn new parameters of GMMs. 
The current GMMs were discarded, and the new parameters of the background and 

foreground GMMs were learned using the pixel sets that were assigned in Step 4. 
Step 6: Conduct image segmentation. 
Graph cut was performed to obtain a new tentative classification of the background 

and foreground for all pixels. 
The entire GrabCut procedure is presented above. The iterative scheme begins with 

repeating Steps 4–6 until the classification result converges. Figure 4 shows the result of 
GrabCut from Figure 3b, in which the pixels belonging to the foreground class are pre-
served, and the background pixels are set to zero (black pixels). The foreground pixels are 
further refined by categorizing them into brighter and darker groups, and only the darker 
pixels are regarded as cracks. Therefore, the crack pixels in the original image are indi-
cated. Figure 5 shows the preliminary result of crack segmentation by employing the 
GrabCut method and image processing techniques. It is noteworthy that the crack pixels 
are depicted by white pixels and can be directly applied to train a deep learning-based 
model since the crack and non-crack pixels are labeled by 1 and 0, respectively. In this 
study, we named this binary map the first-round GT. 

 
Figure 4. Result of foreground extraction by GrabCut algorithm from Figure 3b. 

 

Figure 4. Result of foreground extraction by GrabCut algorithm from Figure 3b.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 21 
 

Step 3: Initialize two Gaussian mixture models (GMMs). 
The background and foreground GMMs, denoted by 𝐺𝑀𝑀୆ୋ and 𝐺𝑀𝑀୊ୋ, respec-

tively, were created separately using the initial segmentation results obtained in the pre-
vious step. Every GMM was a full-covariance Gaussian mixture with 𝐾 components. The 𝑘 -th component comprised four parameters: the mean 𝜇௞  (a tuple in the RGB color 
space), covariance matrix Σ (a 3 × 3 matrix), determinant of the covariance matrix |Σ|, 
and component weight 𝜛. 

Step 4: Assign each pixel belonging to the foreground class to the Gaussian compo-
nent. 

Each pixel in the foreground class was assigned to the component 𝐺𝑀𝑀୊ୋ, which has 
the maximum likelihood. This was performed by evaluating the Gaussian distribution on 
the basis of considering the pixel’s RGB triple as the input. Similarly, each pixel in the 
background class was assigned to the maximum-likelihood component of 𝐺𝑀𝑀୆ୋ. 

Step 5: Learn new parameters of GMMs. 
The current GMMs were discarded, and the new parameters of the background and 

foreground GMMs were learned using the pixel sets that were assigned in Step 4. 
Step 6: Conduct image segmentation. 
Graph cut was performed to obtain a new tentative classification of the background 

and foreground for all pixels. 
The entire GrabCut procedure is presented above. The iterative scheme begins with 

repeating Steps 4–6 until the classification result converges. Figure 4 shows the result of 
GrabCut from Figure 3b, in which the pixels belonging to the foreground class are pre-
served, and the background pixels are set to zero (black pixels). The foreground pixels are 
further refined by categorizing them into brighter and darker groups, and only the darker 
pixels are regarded as cracks. Therefore, the crack pixels in the original image are indi-
cated. Figure 5 shows the preliminary result of crack segmentation by employing the 
GrabCut method and image processing techniques. It is noteworthy that the crack pixels 
are depicted by white pixels and can be directly applied to train a deep learning-based 
model since the crack and non-crack pixels are labeled by 1 and 0, respectively. In this 
study, we named this binary map the first-round GT. 

 
Figure 4. Result of foreground extraction by GrabCut algorithm from Figure 3b. 

 

Figure 5. Preliminary result of crack segmentation by preserving darker pixels in the foreground
from Figure 4. Crack pixels are denoted by white color in this plot.



Appl. Sci. 2021, 11, 10966 7 of 20

2.2. Pre-Training Binary Segmentation Model for Crack Detection

Crack detection is typically achieved through binary semantic segmentation, which
classifies every pixel into two classes: crack and non-crack. In this study, we first imple-
mented a pixel-level crack detection method based on the U-Net [24], which relies on an
encoder–decoder architecture and uses copy-and-crop operations to propagate the details
from the encoder layers to their corresponding layers in the decoder. The crack detection
model used in this study was a hybrid of U-Net and VGG16 [18], which uses VGG16 as the
encoder portion of the U-Net. Additionally, the U-net encoder can be replaced by different
backbones, such as the ResNet [21]. The use of different backbones will be discussed later.
Figure 6 shows the architecture of the employed model presented in this subsection, and
its detailed composition is presented in Table 1. Because of the limitations of the U-Net, its
input size must be a multiple of 32. Hence, an input image measuring 448× 448 pixels with
three channels was used, and the output image was a binary map with 448× 448 pixels.
The symbol ⊕ denotes the concatenation operation. Additionally, the ReLu function was
used as an activation function in every convolution layer, and an up-sampling layer was
achieved by performing the well-known bilinear interpolation with a scaling factor of 2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 21 
 

Figure 5. Preliminary result of crack segmentation by preserving darker pixels in the foreground 
from Figure 4. Crack pixels are denoted by white color in this plot. 

2.2. Pre-Training Binary Segmentation Model for Crack Detection 
Crack detection is typically achieved through binary semantic segmentation, which 

classifies every pixel into two classes: crack and non-crack. In this study, we first imple-
mented a pixel-level crack detection method based on the U-Net [24], which relies on an 
encoder–decoder architecture and uses copy-and-crop operations to propagate the details 
from the encoder layers to their corresponding layers in the decoder. The crack detection 
model used in this study was a hybrid of U-Net and VGG16 [18], which uses VGG16 as 
the encoder portion of the U-Net. Additionally, the U-net encoder can be replaced by dif-
ferent backbones, such as the ResNet [21]. The use of different backbones will be discussed 
later. Figure 6 shows the architecture of the employed model presented in this subsection, 
and its detailed composition is presented in Table 1. Because of the limitations of the U-
Net, its input size must be a multiple of 32. Hence, an input image measuring 448 × 448 
pixels with three channels was used, and the output image was a binary map with 448 × 448 pixels. The symbol ⊕ denotes the concatenation operation. Additionally, the 
ReLu function was used as an activation function in every convolution layer, and an up-
sampling layer was achieved by performing the well-known bilinear interpolation with a 
scaling factor of 2. 

 
Figure 6. Simple architecture of the employed U-Net-based model. 

Table 1. Complete composition of the employed U-Net-based model. 

Block Name Layer Kernel Size Stride Channels 

Con-1 
Convolution 3×3 1 364 
Convolution 3×3 1 6464 

Maxpool 2×2 2 - 

Conv-2 
Convolution 3×3 1 64128 
Convolution 3×3 1 128128 

Maxpool 2×2 2 - 

Conv-3 

Convolution 3×3 1 128256 
Convolution 3×3 1 256256 
Convolution 3×3 1 256256 

Maxpool 2×2 2 - 

Conv-4 

Convolution 3×3 1 256512 
Convolution 3×3 1 512512 
Convolution 3×3 1 512512 

Maxpool 2×2 2 - 

Figure 6. Simple architecture of the employed U-Net-based model.

Next, we used the dataset presented in [30] as the target and randomly split all of
its 20,000 images into training, validation, and test sets, according to the ratio of 6:1:3.
Specifically, 12,044 images were used for training, 2123 for validation, and 5833 for testing,
as summarized in Table 2. To consider such a crack detection problem, we adopted the
binary cross-entropy loss expressed in (5) as the loss function during training.

Loss = − 1
N

N

∑
i=1

(zi log(S(zi)) + (1− zi) log(1− S(zi))) (5)

where N is the number of samples, zi is the class which is either 0 or 1, and S(·) is the
sigmoid function. The optimization used in our learning is a stochastic gradient descent
with a momentum factor of 0.9, and a learning rate η = 10−3. In addition, the loss function
is modified by adding an L2 regularization term with a weight λ = 10−4 for preventing
overfitting. Figure 7 shows the per-epoch trend of the training and validation loss. It
is noteworthy that the minimum total loss occurred at epoch 20, and the validation loss
converged; the total loss was 0.07131. Therefore, we selected the trained model after this
epoch was completed as the interim best model and applied it to detect cracks in images.
The inference output of this model was a probabilistic map Ipred whose pixel value ranged
from 0 to 1 and represented the probability of a pixel belonging to the crack class. To
facilitate further discussions, we multiplied the pixel value of the probabilistic map by
255 and then obtained a normalized prediction map Ĩpred. Figure 8 shows the normalized
prediction result of Figure 1a. Five additional representative examples are shown in



Appl. Sci. 2021, 11, 10966 8 of 20

Figure 9, namely, the upper, middle, and bottom rows, which are the original images; their
first-round GTs; and the detection results obtained using our pre-trained model.

Table 1. Complete composition of the employed U-Net-based model.

Block Name Layer Kernel Size Stride Channels

Con-1
Convolution 3 × 3 1 3→64
Convolution 3 × 3 1 64→64

Maxpool 2 × 2 2 -

Conv-2
Convolution 3 × 3 1 64→128
Convolution 3 × 3 1 128→128

Maxpool 2 × 2 2 -

Conv-3

Convolution 3 × 3 1 128→256
Convolution 3 × 3 1 256→256
Convolution 3 × 3 1 256→256

Maxpool 2 × 2 2 -

Conv-4

Convolution 3 × 3 1 256→512
Convolution 3 × 3 1 512→512
Convolution 3 × 3 1 512→512

Maxpool 2 × 2 2 -

Conv-5

Convolution 3 × 3 1 512→512
Convolution 3 × 3 1 512→512
Convolution 3 × 3 1 512→512

Maxpool 2 × 2 2 -

Center-Block
Up-sampling 2 × 2 Scale factor: 2 -
Convolution 3 × 3 1 512→512
Convolution 3 × 3 1 512→256

Deconv-5
Up-sampling 2 × 2 Scale factor: 2 -
Convolution 3 × 3 1 768→512
Convolution 3 × 3 1 512→256

Deconv-4
Up-sampling 2 × 2 Scale factor: 2 -
Convolution 3 × 3 1 7698→512
Convolution 3 × 3 1 512→256

Dconv-3
Up-sampling 2 × 2 Scale factor: 2 -
Convolution 3 × 3 1 512→256
Convolution 3 × 3 1 256→64

Deconv-2
Up-sampling 2 × 2 Scale factor: 2 -
Convolution 3 × 3 1 192→128
Convolution 3 × 3 1 128→32

Deconv-1 Convolution 3 × 3 1 96→32

Conv-F Convolution 3 × 3 1 32→1

Table 2. Data distribution in the dataset.

Category Ratio Number of Samples Percentage

Training 6 12,044 60.22%
Validation 1 2123 10.615%

Test 3 5833 29.165%

Total 10 20,000 100%



Appl. Sci. 2021, 11, 10966 9 of 20

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21 
 

Total 10 20,000 100% 

 
Figure 7. Trend of training and validation loss. 

 
Figure 8. Crack detection result from Figure 1a, obtained using our proposed model. 

 
Figure 9. Five additional examples for representing the performance of our pre-trained model. 

2.3. Second-Round GT Generation: Refinement Stage 
As shown in Figure 9, the performance of the pre-trained model appeared to be ac-

ceptable for conducting crack segmentation, even though the automated labeled data 
were not comparable to the manually labeled data. The next stage is to obtain more accu-
rate GTs for re-training the model. The entire procedure for achieving this goal is de-
scribed as follows: 

Figure 7. Trend of training and validation loss.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21 
 

Total 10 20,000 100% 

 
Figure 7. Trend of training and validation loss. 

 
Figure 8. Crack detection result from Figure 1a, obtained using our proposed model. 

 
Figure 9. Five additional examples for representing the performance of our pre-trained model. 

2.3. Second-Round GT Generation: Refinement Stage 
As shown in Figure 9, the performance of the pre-trained model appeared to be ac-

ceptable for conducting crack segmentation, even though the automated labeled data 
were not comparable to the manually labeled data. The next stage is to obtain more accu-
rate GTs for re-training the model. The entire procedure for achieving this goal is de-
scribed as follows: 

Figure 8. Crack detection result from Figure 1a, obtained using our proposed model.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21 
 

Total 10 20,000 100% 

 
Figure 7. Trend of training and validation loss. 

 
Figure 8. Crack detection result from Figure 1a, obtained using our proposed model. 

 
Figure 9. Five additional examples for representing the performance of our pre-trained model. 

2.3. Second-Round GT Generation: Refinement Stage 
As shown in Figure 9, the performance of the pre-trained model appeared to be ac-

ceptable for conducting crack segmentation, even though the automated labeled data 
were not comparable to the manually labeled data. The next stage is to obtain more accu-
rate GTs for re-training the model. The entire procedure for achieving this goal is de-
scribed as follows: 

Figure 9. Five additional examples for representing the performance of our pre-trained model.

2.3. Second-Round GT Generation: Refinement Stage

As shown in Figure 9, the performance of the pre-trained model appeared to be
acceptable for conducting crack segmentation, even though the automated labeled data
were not comparable to the manually labeled data. The next stage is to obtain more accurate
GTs for re-training the model. The entire procedure for achieving this goal is described
as follows:

First, the grayscale image Ig was enhanced through contrast-limited adaptive his-
togram equalization (CLAHE) [33], and the enhanced image is denoted as Ĩg. CLAHE is



Appl. Sci. 2021, 11, 10966 10 of 20

a widely used method for contrast enhancement and has been verified to be effective in
several applications [34,35]. In this method, an image is divided into non-overlapping re-
gions (also known as tiles) of equal size, and the histogram equalization per tile is operated
separately. Next, a simple bilinear interpolation was employed to eliminate the incon-
sistent boundaries between the tiles. In this study, we determined the hyper-parameters
for CLAHE, i.e., a clip limit of 0.1 and a tile size of 8× 8 pixels, on the basis of several
experimental tests.

Second, a fuzzy inference system (FIS) is proposed to determine whether a spec-
ified pixel (x, y) is labeled as a crack in the second-round GTs. Let p1 = Ĩg(x, y) and
p2 = Ĩpred(x, y) be two antecedent variables of the proposed FIS, and q be its consequent
variable. Here, p1 represents the intensity of pixel (x, y) in the enhanced grayscale image Ĩg,
and p2 is the pixel value of the normalized map ĨPred at the same position. Both antecedent
variables range from 0 to 255, and their fuzzy sets are depicted in Figure 10, in which
the trapezoidal and triangular functions are used as the membership functions. For the
consequent part, q is represented by equally spaced triangular membership functions, as
plotted in Figure 11. The linguistic terms include Very Small (VS), Small (S), Medium (M),
Large (L), and Very Large (VL). The parameters for defining the five membership functions
of the two antecedent variables are

{
αk

1 | k = 1, 2, . . . , 5
}

and
{

αk
2 | k = 1, 2, . . . , 5

}
. For

simplicity, we only attempted to obtain the values of α5
1 and α5

2, and set α1
1 = α1

2 = 0;
meanwhile, the other parameters were equally spaced between them. Table 3 lists the
parameters determined using the trial-and-error analysis method used in this work.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 21 
 

First, the grayscale image 𝐼୥ was enhanced through contrast-limited adaptive histo-
gram equalization (CLAHE) [33], and the enhanced image is denoted as 𝐼ሚ୥. CLAHE is a 
widely used method for contrast enhancement and has been verified to be effective in 
several applications [34,35]. In this method, an image is divided into non-overlapping re-
gions (also known as tiles) of equal size, and the histogram equalization per tile is oper-
ated separately. Next, a simple bilinear interpolation was employed to eliminate the in-
consistent boundaries between the tiles. In this study, we determined the hyper-parame-
ters for CLAHE, i.e., a clip limit of 0.1 and a tile size of 8 × 8 pixels, on the basis of several 
experimental tests. 

Second, a fuzzy inference system (FIS) is proposed to determine whether a specified 
pixel (𝑥, 𝑦) is labeled as a crack in the second-round GTs. Let 𝑝ଵ = 𝐼ሚ୥(𝑥, 𝑦) and 𝑝ଶ =𝐼ሚ୮୰ୣୢ(𝑥, 𝑦) be two antecedent variables of the proposed FIS, and 𝑞 be its consequent var-
iable. Here, 𝑝ଵ represents the intensity of pixel (𝑥, 𝑦) in the enhanced grayscale image 𝐼ሚ୥, and 𝑝ଶ is the pixel value of the normalized map 𝐼ሚ୔୰ୣୢ at the same position. Both an-
tecedent variables range from 0 to 255, and their fuzzy sets are depicted in Figure 10, in 
which the trapezoidal and triangular functions are used as the membership functions. For 
the consequent part, 𝑞 is represented by equally spaced triangular membership func-
tions, as plotted in Figure 11. The linguistic terms include Very Small (VS), Small (S), Me-
dium (M), Large (L), and Very Large (VL). The parameters for defining the five membership 
functions of the two antecedent variables are ሼ𝛼ଵ௞ ห 𝑘 = 1,2, … ,5ሽ and ሼ𝛼ଶ௞ ห 𝑘 = 1,2, … ,5ሽ. 
For simplicity, we only attempted to obtain the values of 𝛼ଵହ and 𝛼ଶହ, and set 𝛼ଵଵ = 𝛼ଶଵ =0; meanwhile, the other parameters were equally spaced between them. Table 3 lists the 
parameters determined using the trial-and-error analysis method used in this work. 

 
(a) 

 
(b) 

Figure 10. Fuzzy sets of antecedent variables. Figure 10. Fuzzy sets of antecedent variables.
Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21 
 

 

Figure 11. Fuzzy sets of consequent variables. 

Table 3. Parameters of fuzzy sets of antecedent variables. 

Variable 𝑝ଵ 
𝛼ଵଵ 𝛼ଵଶ 𝛼ଵଷ 𝛼ଵସ 𝛼ଵହ 
0 40 80 120 160 

Variable 𝑝ଶ 
𝛼ଶଵ 𝛼ଶଶ 𝛼ଶଷ 𝛼ଶସ 𝛼ଶହ 
0 50 100 150 200 

According to the physical characteristics of cracks within an image, the pixels belong-
ing to cracks are often presented in darker colors compared with their neighbors, which 
belong to the non-crack class. On the basis of the description above and the normalized 
prediction map 𝐼ሚ୔୰ୣୢ, we used variables 𝑝ଵ and 𝑝ଶ as two inputs and objectively con-
structed fuzzy rules using the aforementioned linguistic terms. For example: 

IF 𝑝ଵ is Small (S) AND 𝑝ଶ is Large (L), THEN 𝑞 is Large (L). 

Here, the consequent variable 𝑞 indicate the degree to which pixel (𝑥, 𝑦) is consid-
ered to be the crack class. The entire fuzzy rule base is tabulated in Table 4, in which 25 
rules are included. The 𝑚-th fuzzy rule can be formally written in a canonical format as 
follows: 

Rule 𝑚: IF 𝑝ଵ is 𝐴መଵ𝓂 AND 𝑝ଶ is 𝐴መଶ𝓂, THEN 𝑞 is 𝐵෠ 𝓂. 

Here, 𝑚 = 1,2, … ,25 , and 𝐴መଵ𝓂 ∈ ሼVS, S, M, L, VLሽ , 𝐴መଵ𝓂 ∈ ሼVS, S, M, L, VLሽ , and 𝐵෠ 𝓂 ∈ሼVS, S, M, L, VLሽ are selected from the fuzzy sets of 𝑝ଵ, 𝑝ଶ, and 𝑞, respectively. Whereas 
an input pair (𝑝෤ଵ, 𝑝෤ଶ) is imported into the FIS and fires some of the fuzzy rules, the non-
fuzzy output can be obtained using the minimum inference engine and the center-of-grav-
ity defuzzification method [36], as formulated below. 

𝑞෤ = ׬ 𝑞𝐵ᇱ(𝑞)𝑑𝑞୕׬ 𝐵ᇱ(𝑞)𝑑𝑞୕  (6) 

and 𝐵ᇱ(𝑞) = max𝓂 ሼ𝐴ଵ𝓂(𝑝෤ଵ) ∧ 𝐴ଶ𝓂(𝑝෤ଶ) ∧ 𝐺𝓂(𝑞)ሽ, (7) 

where ∧ is the minimum operator, and Q is the universe of discourse. 
Therefore, the main procedure for generating a refined GT is to employ our proposed 

FIS to classify each pixel as crack or non-crack, followed by forming a binary map to be 
used as the GT. This is achieved as follows: 
• Step 1: For a specified pixel (𝑥෤, 𝑦෤), two inputs 𝑝෤ଵ = 𝐼ሚ୥(𝑥෤, 𝑦෤) and 𝑝෤ଶ = 𝐼ሚ୮୰ୣୢ(𝑥෤, 𝑦෤) are 

imported into the proposed FIS. 
• Step 2: The non-fuzzy output 𝑞෤ is obtained using the fuzzy inference engine. This 

output is regarded as the degree to which pixel (𝑥෤, 𝑦෤) belongs to the crack or non-
crack class. 

Figure 11. Fuzzy sets of consequent variables.



Appl. Sci. 2021, 11, 10966 11 of 20

Table 3. Parameters of fuzzy sets of antecedent variables.

Variable p1
α1

1 α2
1 α3

1 α4
1 α5

1

0 40 80 120 160

Variable p2
α1

2 α2
2 α3

2 α4
2 α5

2

0 50 100 150 200

According to the physical characteristics of cracks within an image, the pixels belong-
ing to cracks are often presented in darker colors compared with their neighbors, which
belong to the non-crack class. On the basis of the description above and the normalized
prediction map ĨPred, we used variables p1 and p2 as two inputs and objectively constructed
fuzzy rules using the aforementioned linguistic terms. For example:

IF p1 is Small (S) AND p2 is Large (L), THEN q is Large (L).

Here, the consequent variable q indicate the degree to which pixel (x, y) is considered
to be the crack class. The entire fuzzy rule base is tabulated in Table 4, in which 25 rules are
included. The m-th fuzzy rule can be formally written in a canonical format as follows:

Rule m: IF p1 is Âm
1 AND p2 is Âm

2 , THEN q is B̂m.

Table 4. Fuzzy rule table for determining the degree to which a pixel belongs to the crack class.

p2

p1 VS S M L VL

VS M VS VS VS VS
S M S S VS VS
M L M S S VS
L L L M S VS

VL VL L M M S

Here, m = 1, 2, . . . , 25, and Âm
1 ∈ {VS, S, M, L, VL}, Âm

1 ∈ {VS, S, M, L, VL}, and
B̂m ∈ {VS, S, M, L, VL} are selected from the fuzzy sets of p1, p2, and q, respectively.
Whereas an input pair ( p̃1, p̃2) is imported into the FIS and fires some of the fuzzy rules,
the non-fuzzy output can be obtained using the minimum inference engine and the center-
of-gravity defuzzification method [36], as formulated below.

q̃ =

∫
Q qB′(q)dq∫
Q B′(q)dq

(6)

and
B′(q) = max

m
{Am

1 ( p̃1) ∧ Am
2 ( p̃2) ∧ Gm(q)}, (7)

where ∧ is the minimum operator, and Q is the universe of discourse.
Therefore, the main procedure for generating a refined GT is to employ our proposed

FIS to classify each pixel as crack or non-crack, followed by forming a binary map to be
used as the GT. This is achieved as follows:

• Step 1: For a specified pixel (x̃, ỹ), two inputs p̃1 = Ĩg(x̃, ỹ) and p̃2 = Ĩpred(x̃, ỹ) are
imported into the proposed FIS.

• Step 2: The non-fuzzy output q̃ is obtained using the fuzzy inference engine. This out-
put is regarded as the degree to which pixel (x̃, ỹ) belongs to the crack or non-crack class.

• Step 3: Label the refined (second-round) GT, as expressed by

IGT
2 (x̃, ỹ) =

{
1, if q̃ ≥ Tcrack;
0, otherwise.

(8)



Appl. Sci. 2021, 11, 10966 12 of 20

The steps above are repeated for all pixels in the image, where 1 ≤ x̃ ≤ w and
1 ≤ ỹ ≤ h. Therefore, a binary map (size of w× h pixels) can be obtained, in which the
crack and non-crack pixels are denoted by 1 and 0, respectively. This map is regarded as
the second-round GT and is further used for re-training the pre-trained crack detection
model. To facilitate observation, Figure 12 shows the original image, as well as the first- and
second-round GTs in subplots (a), (b), and (c). As shown, the shape of the second-round
GT was smoother than that of the first-round GT and resembled labeling by a human.
Figure 13 shows another five examples that were randomly selected from the dataset. The
upper, middle, and bottom rows represent the original, first-round, and second-round GT
labels, respectively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 21 
 

• Step 3: Label the refined (second-round) GT, as expressed by 𝐼ଶୋ୘(𝑥෤, 𝑦෤) = ൜1, if 𝑞෤ ≥ 𝑇ୡ୰ୟୡ୩; 0, otherwise.  (8) 

The steps above are repeated for all pixels in the image, where 1 ≤ 𝑥෤ ≤ 𝑤 and 1 ≤𝑦෤ ≤ ℎ. Therefore, a binary map (size of 𝑤 × ℎ pixels) can be obtained, in which the crack 
and non-crack pixels are denoted by 1 and 0, respectively. This map is regarded as the 
second-round GT and is further used for re-training the pre-trained crack detection model. 
To facilitate observation, Figure 12 shows the original image, as well as the first- and sec-
ond-round GTs in subplots (a), (b), and (c). As shown, the shape of the second-round GT 
was smoother than that of the first-round GT and resembled labeling by a human. Figure 
13 shows another five examples that were randomly selected from the dataset. The upper, 
middle, and bottom rows represent the original, first-round, and second-round GT labels, 
respectively. 

Table 4. Fuzzy rule table for determining the degree to which a pixel belongs to the crack class. 𝒑𝟏𝒑𝟐 VS S M L VL 

VS M VS VS VS VS 
S M S S VS VS 
M L M S S VS 
L L L M S VS 

VL VL L M M S 
 

   
(a) (b) (c) 

Figure 12. Example of an image with crack: (a) original image; (b) first-round crack GT; (c) second-round crack GT. Figure 12. Example of an image with crack: (a) original image; (b) first-round crack GT; (c) second-
round crack GT.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21 
 

 
Figure 13. Five randomly selected examples: original image (upper), and their first-round GT (middle), 
and second-round GT (bottom). 

2.4. Main Procedure of Proposed Algorithm 
The goal of the proposed algorithm is to obtain labeled data that can be regarded as 

the GT for training a learning-based crack segmentation. To verify the effectiveness of our 
automated labeling algorithm, we implemented a deep learning model that is a hybrid of 
the U-Net and VGG16 to identify cracks by pixel. The configuration of the proposed algo-
rithm is outlined, and the overall procedure for acquiring second-round GTs for a dataset 
is summarized as the following Algorithm 1. The implementation details and experiments 
are discussed in the following sections. 

Algorithm 1: Automated Data Labeling for a Dataset 
Input: All images in the dataset. Let 𝐼 be a specific image. 
Output: Second-round GTs for all images. 
Steps: 

1: Convert 𝐼 into a grayscale image 𝐼୥. 
2: Apply Gaussian blur filter on 𝐼୥, and obtain a blurred image 𝐼ୠ୪୳୰. 
3: Subtract the blurred image 𝐼ୠ୪୳୰ from the gray image 𝐼୥,  

denoted by 𝐼 = 𝐼୥ − 𝐼ୠ୪୳୰. 
4: Perform Sobel edge detector on 𝐼 , and obtain the gradient magnitude 𝑀𝑎𝑔  

and direction 𝛩. 
5: Binarize the magnitude map 𝑀𝑎𝑔 by thresholding. 
6: Perform closing operation on this binarized map. 
7: Use connected-component labeling to obtain bounding boxes of cracks. 
8: Apply GrabCut to extract crack pixels which are denoted by 1 in the first-round 

GT. 
9: Repeat Steps 1–8 for every image in the dataset. Collect training data, in which 

each sample consists of a pair of an image and its first-round GT. 
10: Pre-train a binary segmentation model using the training data obtained in Step 

9. 
11: Obtain the prediction result 𝐼୮୰ୣୢ  for the image 𝐼  using this pre-trained  

model. 
12: Normalize 𝐼୮୰ୣୢ to 𝐼ሚ୮୰ୣୢ, in which every pixel value ranges from 0 to 255. 
13: Enhance the grayscale image 𝐼୥ to be 𝐼ሚ୥ by CLAHE. 
14: For every pixel (𝑥, 𝑦) in the image 𝐼: 

Figure 13. Five randomly selected examples: original image (upper), and their first-round GT (middle), and second-round
GT (bottom).

2.4. Main Procedure of Proposed Algorithm

The goal of the proposed algorithm is to obtain labeled data that can be regarded as
the GT for training a learning-based crack segmentation. To verify the effectiveness of our
automated labeling algorithm, we implemented a deep learning model that is a hybrid
of the U-Net and VGG16 to identify cracks by pixel. The configuration of the proposed
algorithm is outlined, and the overall procedure for acquiring second-round GTs for a
dataset is summarized as the following Algorithm 1. The implementation details and
experiments are discussed in the following sections.



Appl. Sci. 2021, 11, 10966 13 of 20

Algorithm 1: Automated Data Labeling for a Dataset

Input: All images in the dataset. Let I be a specific image.
Output: Second-round GTs for all images.
Steps:

1: Convert I into a grayscale image Ig.
2: Apply Gaussian blur filter on Ig, and obtain a blurred image Iblur.
3: Subtract the blurred image Iblur from the gray image Ig,

denoted by Ie = Ig − Iblur.
4: Perform Sobel edge detector on Ie, and obtain the gradient magnitude Mag and direction Θ.
5: Binarize the magnitude map Mag by thresholding.
6: Perform closing operation on this binarized map.
7: Use connected-component labeling to obtain bounding boxes of cracks.
8: Apply GrabCut to extract crack pixels which are denoted by 1 in the first-round GT.
9: Repeat Steps 1–8 for every image in the dataset. Collect training data, in which each sample consists of a pair of an image and

its first-round GT.
10: Pre-train a binary segmentation model using the training data obtained in Step 9.
11: Obtain the prediction result Ipred for the image I using this pre-trained model.
12: Normalize Ipred to Ĩpred, in which every pixel value ranges from 0 to 255.
13: Enhance the grayscale image Ig to be Ĩg by CLAHE.
14: For every pixel (x, y) in the image I:Perform the proposed FIS to determine the degree to which pixel (x, y) be longs to the

crack or non-crack class.
15: Repeat Steps 11–14 for every image in the dataset. The second-round GTs of all training samples are obtained.

3. Implementation and Experiments

The proposed algorithm was implemented on a GPU-accelerated computer with an
Intel CoreTM i7-11800 @ 2.3 GHz and 32G RAM, and an NVIDIA GeForce GTX 3080 with
an 8G GPU. In this section, the detailed implementation of our proposed method and the
reduced computation afforded by the proposed FIS are discussed.

3.1. Crack Detection Models Based on U-Net

In the present study, a U-Net-based model was implemented because it is superior
to other conventional methods, such as CrackTree [37], CrackIt [38], and CrackForest [39].
In Section 2.2, a hybrid architecture of the U-Net and VGG16 was introduced to perform
per-pixel crack segmentation. It is noteworthy that the U-Net encoder can be replaced
by different backbones. Hence, we used the ResNet [21] for the encoder portion of the
U-Net (the left half in Figure 6, including the blocks named Conv-1 to Conv-5). Table 5
summarizes the complete compositions of the encoder replaced by ResNet-18, 34, 50, and
101. Therefore, the vanilla version was compared with four U-Net-based models that
involve different ResNets in this study. We named them Res-U-Net-18, Res-U-Net-34,
Res-U-Net-50, and Res-U-Net-101.

To evaluate the performance of these five models, we used the dataset introduced in
Table 2 to train each model. Before implementing our proposed algorithm, all the images
were normalized to a size of 448× 448 pixels in advance because the width and height of
the input images must be a multiple of 32 (the limitation of using the U-Net-based model).
The main procedure of automated data labeling for obtaining the second-round GT is
described below:

1. Perform the algorithm of the first-round GT generation proposed in Section 2.1.
2. Pre-train the U-Net-based models, including the vanilla, Res-U-Net-18, Res-U-Net-34,

Res-U-Net-50, and Res-U-Net-101 models, separately. The hyper-parameters used
during this training stage are the same as those introduced in Section 2.2.

3. Use each learned model to obtain the crack prediction results of the training data.
4. On the basis of the prediction results, obtain the second-round GTs using the refine-

ment scheme presented in Section 2.3.
5. Finally, use the second-round GTs to re-train the five pre-trained models separately.

Hence, U-Net-based crack detection models with different types of encoders are obtained.



Appl. Sci. 2021, 11, 10966 14 of 20

Table 5. The complete composition of the U-Net-based models with different encoders.

Block Names
Encoder Backbones

ResNet-18 ResNet-34 ResNet-50 ResNet-101

Conv-1 7× 7.64, stride 2
3× 3 Maxpool, stride 2

Conv-2
[

3× 3.64
3× 3.64

]
× 2

[
3× 3.64
3× 3.64

]
× 3

 1× 1.64
3× 3.64
1× 1.64

×
3

 1× 1.64
3× 3.64
1× 1.64

×
3

Conv-3

[
3× 3.128
3× 3.128

]
×

2

[
3× 3.128
3× 3.128

]
×

4

 1× 1.128
3× 3.128
1× 1.512

×
4

 1× 1.128
3× 3.128
1× 1.512

×
4

Conv-4

[
3× 3.256
3× 3.256

]
×

2

[
3× 3.256
3× 3.256

]
×

6

 1× 1.256
3× 3.256
1× 1.1024

×
6

 1× 1.256
3× 3.256
1× 1.1024

×
23

Conv-5

[
3× 3.512
3× 3.512

]
×

2

[
3× 3.512
3× 3.512

]
×

3

 1× 1.512
3× 3.512
1× 1.2048

×
3

 1× 1.512
3× 3.512
1× 1.2048

×
3

For analyzing the time consumption of each model, we first investigated the number of
model parameters and the computation time per image (sized of 448× 448 pixels). As listed
in Table 6, the Res-U-Net-18 model had the fastest execution time and the smallest number
of parameters, whereas the vanilla architecture’s execution time was at mid-level. Figure
14 shows the per-epoch trend of training and validation losses, trained by the second-
round GTs. According to a comparison of the training loss, the Res-U-Net-101 model
outperformed the others because it exhibited the most complicated architecture; however,
it performed the worst in terms of validation loss. This is because the image features
were memorized rather than learned in that model, i.e., overfitting occurred. As shown
by the plots, the vanilla structure is suitable for crack detection in our study. Figure 15
shows several examples of the proposed models, in which the first and second columns
show the original images and their first-round GTs, respectively, whereas those shown
from the third to the last columns are the second-round GTs for the vanilla, Res-U-Net-18,
Res-U-Net-34, Res-U-Net-50, and Res-U-Net-101 models, respectively. As shown by the
results of the second-round GTs, the vanilla and Res-U-Net-34 yielded similar results. The
vanilla U-Net-based model exhibited good performance in crack detection problems.

Table 6. The number of parameters and computation time among different encoder backbones.

Models Backbones
Time (Unit: ms)

Number of
Model

ParametersMin. Max. Avg.

Vanilla VGG16 49.5 50.4 49.7 29,306,465
Res-U-Net-18 ResNet-18 41.9 42.8 42.2 25,009,737
Res-U-Net-34 ResNet-34 44.4 44.8 44.5 35,117,897
Res-U-Net-50 ResNet-50 56.1 56.7 56.4 57,677,897
Res-U-Net-101 ResNet-101 63.9 64.5 64.1 76,670,025



Appl. Sci. 2021, 11, 10966 15 of 20

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21 
 

of the second-round GTs, the vanilla and Res-U-Net-34 yielded similar results. The vanilla 
U-Net-based model exhibited good performance in crack detection problems. 

Table 5. The complete composition of the U-Net-based models with different encoders. 

Block Names 
Encoder Backbones 

ResNet-18 ResNet-34 ResNet-50 ResNet-101 

Conv-1 7 × 7, 64, stride 2 3 × 3 Maxpool, stride 2 

Conv-2 ቂ3 × 3, 643 × 3, 64ቃ × 2 ቂ3 × 3, 643 × 3, 64ቃ × 3 ൥1 × 1, 643 × 3, 641 × 1, 64൩ × 3 ൥1 × 1, 643 × 3, 641 × 1, 64൩ × 3 

Conv-3 ቂ3 × 3, 1283 × 3, 128ቃ × 2 ቂ3 × 3, 1283 × 3, 128ቃ × 4 ൥1 × 1, 1283 × 3, 1281 × 1, 512൩ × 4 ൥1 × 1, 1283 × 3, 1281 × 1, 512൩ × 4 

Conv-4 ൤3 × 3, 2563 × 3, 256൨ × 2 ൤3 × 3, 2563 × 3, 256൨ × 6 ൥ 1 × 1, 2563 × 3, 2561 × 1, 1024൩ × 6 ൥ 1 × 1, 2563 × 3, 2561 × 1, 1024൩ × 23 

Conv-5 ൤3 × 3, 5123 × 3, 512൨ × 2 ൤3 × 3, 5123 × 3, 512൨ × 3 ൥ 1 × 1, 5123 × 3, 5121 × 1, 2048൩ × 3 ൥ 1 × 1, 5123 × 3, 5121 × 1, 2048൩ × 3 

Table 6. The number of parameters and computation time among different encoder backbones. 

Models Backbones 
Time (Unit: ms) Number of Model 

Parameters  Min. Max. Avg. 
Vanilla VGG16 49.5 50.4 49.7 29,306,465 

Res-U-Net-18 ResNet-18 41.9 42.8 42.2 25,009,737 
Res-U-Net-34 ResNet-34 44.4 44.8 44.5 35,117,897 
Res-U-Net-50 ResNet-50 56.1 56.7 56.4 57,677,897 

Res-U-Net-101 ResNet-101 63.9 64.5 64.1 76,670,025 
 

 
(a) 

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21 
 

 
(b) 

Figure 14. Per-epoch trend of losses: (a) training loss; (b) validation loss. 

 
Figure 15. Second-round GTs obtained using five different U-Net-based models. 

3.2. Further Discussion on Computation of FIS 
In Section 2.3, an FIS was introduced to derive the degree of an interesting pixel be-

longing to the crack class. As an input pair goes into the FIS, several steps, including fuzz-
ification, firing rules, inferencing, and defuzzification, are required to compute the final 
output. Because the process above must be performed at the pixel level, a considerable 
amount of computation time is required. To reduce the computation time, we transformed 
the proposed FIS into an input–output mapping, i.e., 𝜙 = func(𝑝ଵ, 𝑝ଶ). This mapping can 
be pre-determined and constructed using a lookup table for 𝑝ଵ = 0,1,2, … ,255 and 𝑝ଶ =0,1,2, … ,255. Figure 16 shows the pre-computed mapping surface, in which the horizontal 
plane is the 𝑝ଵ vs. 𝑝ଶ plane, and the vertical axis is the crisp output of 𝑞. Each pixel in 
the original image is classified as the crack class if its output derived from the mapping is 
greater than a predefined threshold 𝑇ୡ୰ୟୡ୩ = 0.4. Accordingly, the computation time for 

Figure 14. Per-epoch trend of losses: (a) training loss; (b) validation loss.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21 
 

 
(b) 

Figure 14. Per-epoch trend of losses: (a) training loss; (b) validation loss. 

 
Figure 15. Second-round GTs obtained using five different U-Net-based models. 

3.2. Further Discussion on Computation of FIS 
In Section 2.3, an FIS was introduced to derive the degree of an interesting pixel be-

longing to the crack class. As an input pair goes into the FIS, several steps, including fuzz-
ification, firing rules, inferencing, and defuzzification, are required to compute the final 
output. Because the process above must be performed at the pixel level, a considerable 
amount of computation time is required. To reduce the computation time, we transformed 
the proposed FIS into an input–output mapping, i.e., 𝜙 = func(𝑝ଵ, 𝑝ଶ). This mapping can 
be pre-determined and constructed using a lookup table for 𝑝ଵ = 0,1,2, … ,255 and 𝑝ଶ =0,1,2, … ,255. Figure 16 shows the pre-computed mapping surface, in which the horizontal 
plane is the 𝑝ଵ vs. 𝑝ଶ plane, and the vertical axis is the crisp output of 𝑞. Each pixel in 
the original image is classified as the crack class if its output derived from the mapping is 
greater than a predefined threshold 𝑇ୡ୰ୟୡ୩ = 0.4. Accordingly, the computation time for 

Figure 15. Second-round GTs obtained using five different U-Net-based models.

3.2. Further Discussion on Computation of FIS

In Section 2.3, an FIS was introduced to derive the degree of an interesting pixel
belonging to the crack class. As an input pair goes into the FIS, several steps, including
fuzzification, firing rules, inferencing, and defuzzification, are required to compute the
final output. Because the process above must be performed at the pixel level, a considerable
amount of computation time is required. To reduce the computation time, we transformed
the proposed FIS into an input–output mapping, i.e., φ = func(p1, p2). This mapping
can be pre-determined and constructed using a lookup table for p1 = 0, 1, 2, . . . , 255 and
p2 = 0, 1, 2, . . . , 255. Figure 16 shows the pre-computed mapping surface, in which the
horizontal plane is the p1 vs. p2 plane, and the vertical axis is the crisp output of q. Each
pixel in the original image is classified as the crack class if its output derived from the



Appl. Sci. 2021, 11, 10966 16 of 20

mapping is greater than a predefined threshold Tcrack = 0.4. Accordingly, the computation
time for our proposed FIS is reduced significantly by replacing the inference process with
such a lookup table.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

our proposed FIS is reduced significantly by replacing the inference process with such a 
lookup table. 

 
Figure 16. The input to output mapping surface of the proposed FIS to derive the degree to which a 
pixel belongs to the crack class. 

4. Quantitative Evaluation Using Different Datasets 
We generated an evaluation dataset in which the samples were collected from the 

concrete images of the DeepCrack [40] and edge-based labeled crack image (ELCI) [41] 
datasets. Because the GTs of the crack images in these two datasets were labeled by their 
provider, they are suitable for computing the performance metrics accurately. The inter-
section over union (IoU) metric was adopted as the main indicator for quantifying the 
performance of our proposed method. We measured the percent overlap between the an-
notated GT and the second-round GT yielded by our method, as expressed in (9). IoU = (Annotated GT) ∩ (prediction result)(Annotated GT) ∪ (prediction result) (9) 

For crack segmentation tasks, the IoU can be calculated on the basis of the true posi-
tive (TP), false positive (FP), and false negative (FN) values at the pixel level for the crack 
class. IoU = TPTP + FP + FN (10) 

The second-round GTs obtained by our proposed method are regarded as the pre-
diction result in calculating the IoU values. In addition to the IoU value, the precision, 
recall, and F1-score are also computed as follows: Precision = TPTP + FP (11) 

Recall = TPTP + FN (12) 

F1 − score = 2 × Precision × RecallPrecision + Recall  (13) 

In the quantitative evaluation experiments, we acquired 200 concrete images and 
their GTs to form the evaluation dataset from DeepCrack and ELCI. Each image and its 
crack GT were pre-processed and normalized into 448 × 448 pixels. Subsequently, the 
proposed method was applied to obtain the second-round GTs for the concrete images of 
the evaluation dataset; hence, the performance metrics for 200 images were computed and 
averaged. As shown in Figures 14 and 15, the vanilla version of our proposed method 

Figure 16. The input to output mapping surface of the proposed FIS to derive the degree to which a
pixel belongs to the crack class.

4. Quantitative Evaluation Using Different Datasets

We generated an evaluation dataset in which the samples were collected from the
concrete images of the DeepCrack [40] and edge-based labeled crack image (ELCI) [41]
datasets. Because the GTs of the crack images in these two datasets were labeled by
their provider, they are suitable for computing the performance metrics accurately. The
intersection over union (IoU) metric was adopted as the main indicator for quantifying
the performance of our proposed method. We measured the percent overlap between the
annotated GT and the second-round GT yielded by our method, as expressed in (9).

IoU =
(Annotated GT) ∩ (prediction result)
(Annotated GT) ∪ (prediction result)

(9)

For crack segmentation tasks, the IoU can be calculated on the basis of the true positive
(TP), false positive (FP), and false negative (FN) values at the pixel level for the crack class.

IoU =
TP

TP + FP + FN
(10)

The second-round GTs obtained by our proposed method are regarded as the predic-
tion result in calculating the IoU values. In addition to the IoU value, the precision, recall,
and F1-score are also computed as follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1− score =
2× Precision× Recall

Precision + Recall
(13)

In the quantitative evaluation experiments, we acquired 200 concrete images and
their GTs to form the evaluation dataset from DeepCrack and ELCI. Each image and its
crack GT were pre-processed and normalized into 448× 448 pixels. Subsequently, the
proposed method was applied to obtain the second-round GTs for the concrete images of
the evaluation dataset; hence, the performance metrics for 200 images were computed and
averaged. As shown in Figures 14 and 15, the vanilla version of our proposed method
performed well and was the least affected by overfitting; hence, it was selected as the



Appl. Sci. 2021, 11, 10966 17 of 20

decisive model for computing the performance indicators. Table 7 lists the results in terms
of the IoU, precision, recall, and F1-score. Because the cracks were extremely irregular
and the GT was labeled manually, a small tolerance margin between the annotated GT
and the prediction result can be used to measure the coincidence between the detected
cracks and the GT [42]. In Table 7, the margin of n pixels (n = 1, 2, 3) was used, i.e., TP
pixels were included within an n-pixel vicinity of the GT. The notation 0-pixel denotes
that the tolerance margin is not utilized, whereas 1-pixel and 2-pixel indicate that the
tolerance margins with 1 and 2 pixels were employed, respectively. As shown in Table 7,
our proposed method with a vanilla architecture can achieve 94.4% precision when the
tolerance margin is 2-pixel in the vicinity. Figure 17 shows five samples from the evaluation
dataset, in which the upper, middle, and bottom rows represent the concrete images, the
GTs labeled by humans, and the prediction results (second-round GTs obtained using our
method), respectively.

Table 7. Numerical results obtained using vanilla version of our proposed method.

Vicnity
Metrics IoU Precision Recall F1-Score

0-pixel 0.667 0.723 0.794 0.778
1-pixel 0.801 0.895 0.856 0.890
2-pixel 0.814 0.944 0.883 0.898

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 21 
 

performed well and was the least affected by overfitting; hence, it was selected as the de-
cisive model for computing the performance indicators. Table 7 lists the results in terms 
of the IoU, precision, recall, and F1-score. Because the cracks were extremely irregular and 
the GT was labeled manually, a small tolerance margin between the annotated GT and the 
prediction result can be used to measure the coincidence between the detected cracks and 
the GT [42]. In Table 7, the margin of 𝑛 pixels (𝑛 = 1, 2, 3) was used, i.e., TP pixels were 
included within an 𝑛-pixel vicinity of the GT. The notation 0-pixel denotes that the toler-
ance margin is not utilized, whereas 1-pixel and 2-pixel indicate that the tolerance margins 
with 1 and 2 pixels were employed, respectively. As shown in Table 7, our proposed 
method with a vanilla architecture can achieve 94.4% precision when the tolerance margin 
is 2-pixel in the vicinity. Figure 17 shows five samples from the evaluation dataset, in 
which the upper, middle, and bottom rows represent the concrete images, the GTs labeled 
by humans, and the prediction results (second-round GTs obtained using our method), 
respectively. 

Table 7. Numerical results obtained using vanilla version of our proposed method. 

Metrics
Vicinity IoU Precision Recall F1-Score 

0-pixel 0.667 0.723 0.794 0.778 
1-pixel 0.801 0.895 0.856 0.890 
2-pixel 0.814 0.944 0.883 0.898 

 
Figure 17. Five examples in the evaluation dataset: original image (upper), manually labeled GTs (middle), and prediction 
results (second-round GTs) obtained using our method (bottom). 

5. Further Discussions and Improvements 
As shown in Figure 17, there were minor defects that existed in the second-round 

GTs, i.e., the thin crack was not marked near the edge of the second-round GT (in the third 
column), and the crack broke into two piecewise objects (in the fourth column). The cause 
of these two cases is the threshold value 𝑇ୡ୰ୟୡ୩ in (8). In the experiments above, we simply 
set 𝑇ୡ୰ୟୡ୩ = 0.4 , which was an approximate value obtained using the trial-and-error 
method through evaluating all training data. A fixed threshold could not adapt to various 
conditions. In addition, this threshold was determined per image using the well-known 
Otsu’s method [43] in this section. Figure 18 shows the results of the second-round GTs 

Figure 17. Five examples in the evaluation dataset: original image (upper), manually labeled GTs
(middle), and prediction results (second-round GTs) obtained using our method (bottom).

5. Further Discussions and Improvements

As shown in Figure 17, there were minor defects that existed in the second-round
GTs, i.e., the thin crack was not marked near the edge of the second-round GT (in the
third column), and the crack broke into two piecewise objects (in the fourth column). The
cause of these two cases is the threshold value Tcrack in (8). In the experiments above, we
simply set Tcrack = 0.4, which was an approximate value obtained using the trial-and-
error method through evaluating all training data. A fixed threshold could not adapt to
various conditions. In addition, this threshold was determined per image using the well-
known Otsu’s method [43] in this section. Figure 18 shows the results of the second-round
GTs using different values of Tcrack. The upper, middle, and bottom rows represent the
prediction results of using TOtsu, 0.9·TOtsu, and 0.7·TOtsu, respectively, for the thresholding
values, where TOtsu was the threshold obtained by Otsu’s method. It was observed that the
threshold value of 0.7·TOtsu was suitable for every image.



Appl. Sci. 2021, 11, 10966 18 of 20

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 21 
 

using different values of 𝑇ୡ୰ୟୡ୩. The upper, middle, and bottom rows represent the pre-
diction results of using 𝑇୓୲ୱ୳, 0.9 ∙ 𝑇୓୲ୱ୳, and 0.7 ∙ 𝑇୓୲ୱ୳, respectively, for the thresholding 
values, where 𝑇୓୲ୱ୳ was the threshold obtained by Otsu’s method. It was observed that 
the threshold value of 0.7 ∙ 𝑇୓୲ୱ୳ was suitable for every image. 

 
Figure 18. Results of second-round GTs using different values of 𝑇ୡ୰ୟୡ୩: by Otsu’s method 𝑇ୡ୰ୟୡ୩ = 𝑇୓୲ୱ୳ (upper), 𝑇ୡ୰ୟୡ୩ =0.9 ∙ 𝑇୓୲ୱ୳ (middle), and 𝑇ୡ୰ୟୡ୩ = 0.7 ∙ 𝑇୓୲ୱ୳ (bottom). 

6. Conclusions 
An algorithm for performing automated data labeling for concrete images with 

cracks is presented herein. The main procedure of the proposed algorithm included the 
following: (1) first-round GT generation, (2) training of a deep U-Net-based model, and 
(3) second-round GT generation. The refined GTs can be used to train a final model for 
detecting cracks on concrete surfaces. Our proposed algorithm enables the self-supervised 
learning of training a deep learning-based crack detection method for concrete images 
because the cracks can be automatically labeled at the pixel level. The experimental results 
showed that the second-round GTs yielded by the proposed algorithm were similar to 
manually labeled GTs. Therefore, any learning-based model for concrete crack detection 
can be trained in a self-supervised manner using the proposed method to generate GTs 
for training samples. Furthermore, the cost of learning will be reduced significantly as the 
GTs need not be labeled manually. 

Author Contributions: Conceptualization, H.-C.C.; methodology, H.-C.C.; software, Z.-T.L.; valida-
tion, H.-C.C. and Z.-T.L.; formal analysis, H.-C.C.; investigation, Z.-T.L.; resources, H.-C.C.; writing—
original draft preparation, Z.-T.L.; writing—review and editing, H.-C.C.; visualization, Z.-T.L.; su-
pervision, H.-C.C.; project administration, H.-C.C.; funding acquisition, H.-C.C. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, grant num-
bers MOST 108-2221-E-239-026 and 110-2221-E-239-033. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data used to support the findings of this study are available from 
the corresponding author upon request. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 18. Results of second-round GTs using different values of Tcrack: by Otsu’s method
Tcrack = TOtsu (upper), Tcrack = 0.9·TOtsu (middle), and Tcrack = 0.7·TOtsu (bottom).

6. Conclusions

An algorithm for performing automated data labeling for concrete images with cracks
is presented herein. The main procedure of the proposed algorithm included the following:
(1) first-round GT generation, (2) training of a deep U-Net-based model, and (3) second-
round GT generation. The refined GTs can be used to train a final model for detecting
cracks on concrete surfaces. Our proposed algorithm enables the self-supervised learning
of training a deep learning-based crack detection method for concrete images because the
cracks can be automatically labeled at the pixel level. The experimental results showed that
the second-round GTs yielded by the proposed algorithm were similar to manually labeled
GTs. Therefore, any learning-based model for concrete crack detection can be trained in a
self-supervised manner using the proposed method to generate GTs for training samples.
Furthermore, the cost of learning will be reduced significantly as the GTs need not be
labeled manually.

Author Contributions: Conceptualization, H.-C.C.; methodology, H.-C.C.; software, Z.-T.L.; val-
idation, H.-C.C. and Z.-T.L.; formal analysis, H.-C.C.; investigation, Z.-T.L.; resources, H.-C.C.;
writing—original draft preparation, Z.-T.L.; writing—review and editing, H.-C.C.; visualization,
Z.-T.L.; supervision, H.-C.C.; project administration, H.-C.C.; funding acquisition, H.-C.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, grant
numbers MOST 108-2221-E-239-026 and 110-2221-E-239-033.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ren, Y.; Huang, J.; Hong, Z.; Lu, W.; Yin, J.; Zou, L.; Shen, X. Image-based concrete crack detection in tunnels using deep fully

convolutional networks. Constr. Build. Mater. 2020, 234, 117367. [CrossRef]
2. Sirca, G.F., Jr.; Adeli, H. Infrared thermography for detecting defects in concrete structures. J. Civ. Eng. Manag. 2018, 24, 508–515.

[CrossRef]

http://doi.org/10.1016/j.conbuildmat.2019.117367
http://doi.org/10.3846/jcem.2018.6186


Appl. Sci. 2021, 11, 10966 19 of 20

3. Wolf, J.; Pirskawetz, S.; Zang, A. Detection of crack propagation in concrete with embedded ultrasonic sensors. Eng. Fract. Mech.
2015, 146, 161–171. [CrossRef]

4. Cho, S.; Park, S.; Cha, G.; Oh, T. Development of image processing for crack detection on concrete structures through terrestrial
laser scanning associated with the octree structure. Appl. Sci. 2018, 8, 2373. [CrossRef]

5. Rabah, M.; Elhattab, A.; Fayad, A. Automatic concrete cracks detection and mapping of terrestrial laser scan data. NRIAG J.
Astron. Geophys. 2013, 2, 250–255. [CrossRef]

6. Turkan, Y.; Hong, J.; Laflamme, S.; Puri, N. Adaptive wavelet neural network for terrestrial laser scanner-based crack detection.
Autom. Constr. 2018, 94, 191–202. [CrossRef]

7. Giri, P.; Kharkovsky, S. Detection of surface crack in concrete using measurement technique with laser displacement sensor.
IEEE Trans. Instrum. Meas. 2016, 65, 1951–1953. [CrossRef]

8. Su, T.C. Application of computer vision to crack detection of concrete structure. Int. J. Eng. Technol. Innov. 2013, 5, 457. [CrossRef]
9. Xu, H.; Tian, Y.; Lin, S.; Wang, S. Research of image segmentation algorithm applied to concrete bridge cracks. In Proceedings of the

2013 IEEE Third International Conference on Information Science and Technology (ICIST), Yangzhou, China, 23–25 March 2013.
10. Nguyen, H.N.; Kam, T.Y.; Cheng, P.Y. An automatic approach for accurate edge detection of concrete crack utilizing 2D geometric

features of crack. J. Signal Process. Syst. 2014, 77, 221–240. [CrossRef]
11. Nishikawa, T.; Yoshida, J.; Sugiyama, T.; Fujino, Y. Concrete crack detection by multiple sequential image filtering. Comput.-Aided

Civ. Infrastruct. Eng. 2012, 27, 29–47. [CrossRef]
12. Prasanna, P.; Dana, K.; Gucunski, N.; Basily, B. Computer-vision based crack detection and analysis. In Proceedings of the Sensors

and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA, USA, 12–15 March 2012.
13. Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural networks.

Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]
14. Chen, F.C.; Jahanshahi, M.R. NB-CNN: Deep learning-based crack detection using convolutional neural network and Naïve

Bayes data fusion. IEEE Trans. Ind. Electron. 2017, 65, 4392–4400. [CrossRef]
15. Kim, B.; Cho, S. Automated vision-based detection of cracks on concrete surfaces using a deep learning technique. Sensors 2018,

18, 3452. [CrossRef]
16. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015.
17. Dung, C.V. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2019, 99, 52–58.

[CrossRef]
18. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556.
19. Islam, M.M.; Kim, J.M. Vision-based autonomous crack detection of concrete structures using a fully convolutional encoder-

decoder network. Sensors 2019, 19, 4251. [CrossRef]
20. Zhang, J.; Lu, C.; Wang, J.; Wang, L.; Yue, X.G. Concrete cracks detection based on FCN with dilated convolution. Appl. Sci. 2019,

9, 2686. [CrossRef]
21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.
22. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.

IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]
23. Zou, Q.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. Deepcrack: Learning hierarchical convolutional features for crack detection.

IEEE Trans. Image Process. 2018, 28, 1498–1512. [CrossRef]
24. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the In-

ternational Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015.
25. Liu, Z.; Cao, Y.; Wang, Y.; Wang, W. Computer vision-based concrete crack detection using U-net fully convolutional networks.

Autom. Constr. 2019, 104, 129–139. [CrossRef]
26. Zhang, Y.; Chen, B.; Wang, J.; Li, J.; Sun, X. APLCNet: Automatic Pixel-Level Crack Detection Network Based on Instance

Segmentation. IEEE Access 2020, 8, 199159–199170. [CrossRef]
27. Li, S.; Zhao, X. Automatic crack detection and measurement of concrete structure using convolutional encoder-decoder network.

IEEE Access 2020, 8, 134602–134618. [CrossRef]
28. Zou, Y.; Zhang, Z.; Zhang, H.; Li, C.L.; Bian, X.; Huang, J.B.; Pfister, T. Pseudoseg: Designing pseudo labels for semantic

segmentation. arXiv 2020, arXiv:2010.09713.
29. Zhang, K.; Zhang, Y.; Cheng, H.D. Self-supervised structure learning for crack detection based on cycle-consistent generative

adversarial networks. J. Comput. Civ. Eng. 2020, 34, 04020004. [CrossRef]
30. Mendeley Data. Concrete Crack Images for Classification. Available online: https://data.mendeley.com/datasets/5y9wdsg2zt/2

(accessed on 30 July 2021).
31. Rother, C.; Kolmogorov, V.; Blake, A. Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 2012, 23, 3.
32. Boykov, Y.Y.; Jolly, M.P. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In

Proceedings of the Eighth IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001.
33. Reza, A.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J.

VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [CrossRef]

http://doi.org/10.1016/j.engfracmech.2015.07.058
http://doi.org/10.3390/app8122373
http://doi.org/10.1016/j.nrjag.2013.12.002
http://doi.org/10.1016/j.autcon.2018.06.017
http://doi.org/10.1109/TIM.2016.2541358
http://doi.org/10.7763/IJET.2014.V5.596
http://doi.org/10.1007/s11265-013-0813-8
http://doi.org/10.1111/j.1467-8667.2011.00716.x
http://doi.org/10.1111/mice.12263
http://doi.org/10.1109/TIE.2017.2764844
http://doi.org/10.3390/s18103452
http://doi.org/10.1016/j.autcon.2018.11.028
http://doi.org/10.3390/s19194251
http://doi.org/10.3390/app9132686
http://doi.org/10.1109/TPAMI.2016.2644615
http://doi.org/10.1109/TIP.2018.2878966
http://doi.org/10.1016/j.autcon.2019.04.005
http://doi.org/10.1109/ACCESS.2020.3033661
http://doi.org/10.1109/ACCESS.2020.3011106
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000883
https://data.mendeley.com/datasets/5y9wdsg2zt/2
http://doi.org/10.1023/B:VLSI.0000028532.53893.82


Appl. Sci. 2021, 11, 10966 20 of 20

34. Laksmi, T.V.; Madhu, T.; Kavya, K.; Basha, S.E. Novel image enhancement technique using CLAHE and wavelet transforms.
Int. J. Sci. Eng. Technol. 2016, 5, 507–511. [CrossRef]

35. Sundaram, M.; Ramar, K.; Arumugam, N.; Prabin, G. Histogram modified local contrast enhancement for mammogram images.
Appl. Soft. Comput. 2011, 11, 5809–5816. [CrossRef]

36. Zimmermann, H.J. Fuzzy Set Theory and Its Applications, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 232–239.
37. Zou, Q.; Cao, Y.; Li, Q.; Mao, Q.; Wang, S. CrackTree: Automatic crack detection from pavement images. Pattern Recognit. Lett.

2012, 33, 227–238. [CrossRef]
38. Oliveira, H.; Correia, P.L. CrackIT—An image processing toolbox for crack detection and characterization. In Proceedings of the

2014 IEEE International Conference on Image Processing, Paris, France, 27–30 October 2014.
39. Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic road crack detection using random structured forests. IEEE Trans. Intell.

Transp. Syst. 2016, 17, 3434–3445. [CrossRef]
40. Liu, Y.; Yao, J.; Lu, X.; Xie, R.; Li, L. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation.

Neurocomputing 2019, 338, 139–153. [CrossRef]
41. Cho, H.; Yoon, H.J.; Jung, J.Y. Image-based crack detection using crack width transform (CWT) algorithm. IEEE Access 2018, 6,

60100–60114. [CrossRef]
42. Ai, D.; Jiang, G.; Kei, L.S.; Li, C. Automatic pixel-level pavement crack detection using information of multi-scale neighborhoods.

IEEE Access 2018, 6, 24452–24463. [CrossRef]
43. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. Syst. 1979, 9, 62–66. [CrossRef]

http://doi.org/10.17950/ijset/v5s11/1103
http://doi.org/10.1016/j.asoc.2011.05.003
http://doi.org/10.1016/j.patrec.2011.11.004
http://doi.org/10.1109/TITS.2016.2552248
http://doi.org/10.1016/j.neucom.2019.01.036
http://doi.org/10.1109/ACCESS.2018.2875889
http://doi.org/10.1109/ACCESS.2018.2829347
http://doi.org/10.1109/TSMC.1979.4310076

	Introduction 
	Proposed Method 
	First-Round GT Generation 
	Edge Pixel Enhancement 
	Crack Pixel Segmentation 

	Pre-Training Binary Segmentation Model for Crack Detection 
	Second-Round GT Generation: Refinement Stage 
	Main Procedure of Proposed Algorithm 

	Implementation and Experiments 
	Crack Detection Models Based on U-Net 
	Further Discussion on Computation of FIS 

	Quantitative Evaluation Using Different Datasets 
	Further Discussions and Improvements 
	Conclusions 
	References

