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Abstract: In many practical engineering situations, a source of vibrations may excite a large and
flexible structure such as a ship’s deck, an aeroplane fuselage, a satellite antenna, a wall panel. To
avoid transmission of the vibration and structure-borne sound, radial or polar periodicity may be
used. In these cases, numerical approaches to study free and forced wave propagation close to
the excitation source in polar coordinates are desirable. This is the paper’s aim, where a numerical
method based on Floquet-theory and the FE discretision of a finite slice of the radial periodic structure
is presented and verified. Only a small slice of the structure is analysed, which is approximated
using piecewise Cartesian segments. Wave characteristics in each segment are obtained by the
theory of wave propagation in periodic Cartesian structures and Finite Element analysis, while wave
amplitude change due to the changes in the geometry of the slice is accommodated in the model
assuming that the energy flow through the segments is the same. Forced response of the structure is
then evaluated in the wave domain. Results are verified for an infinite isotropic thin plate excited
by a point harmonic force. A plate with a periodic radial change of thickness is then studied. Free
waves propagation are shown, and the forced response in the nearfield is evaluated, showing the
validity of the method and the computational advantage compared to FE harmonic analysis for
infinite structures.

Keywords: periodic structures; polar coordinates; wave propagation; forced response of plates and
shells; finite element analysis; unbounded structures

1. Introduction

Starting from the milestone book written by Leon Brillouin [1], wave propagation in
periodic media has been a subject extensively studied. In particular, periodicity effects in
electromagnetic wave motion have been largely investigated, and they have found applica-
tions in many optical and electromagnetic devices. The ability of periodic configuration
of creating electronic/photonic band-gaps in semiconductors and crystals is similar to
structural/acoustical band-gaps in elastic media. The subject has recently found renewed
interest due to its new and potential applications in vibroacoustic isolation, e.g., [2], noise
suppression devices, e.g., [3], mitigation of seismic waves, e.g., [4,5], elastic/acoustic meta-
materials [6]. A comprehensive review of the research in periodic materials and structures
has been presented in [7]. In [7] the authors gave an overview of the numerical and
experimental research in periodic structures, phononic crystals, and acoustic/elastic meta-
materials up to 2014, showing some of the recent progress and the growth in academic and
applied research interests in these fields. Experimental studies on periodic structures were
presented recently in many papers, and periodicity effects such as structural and acous-
tic band-gaps, attenuation, directional energy flow, were verified in many specific cases,
e.g., [7,8]. While these phenomena are well known, most of the literature on periodic engi-
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neering structures has been devoted to developing theoretical and numerical approaches
due to the importance of understanding and characterising wave propagation behaviour.

Mead [9] and his coworkers at the University of Southampton [10] gave a substan-
tial contribution to methods for predicting and analysing wave motion in periodic en-
gineering structures. Among the numerical approaches proposed, those based on Fi-
nite Element theory have shown large versatility and applicability to modelling physical
structures. Two different main approaches are typically applied. The firsts implement
absorbing boundary conditions/layers that mimick the infinity domains through artificial
non-reflective boundaries [11,12]; the advantage of this approach relies on the capability
of standard FEA to model waveguides as a part of more complex structures. However,
the computational cost remains a common issue in such an analysis, especially at high
frequencies, when the mesh must be refined to reach sufficient accuracy in studies of the
performance of a waveguide. It implies a substantial increase in the number of DOFs of the
model, which leads to prohibitive computational time at higher frequency.

The seconds are numerical methods based on FE analysis of a unit cell of the structures
and the theory of wave propagation in periodic structures, e.g., [13–15]. Compared to FE
modelling with absorbing boundary conditions/layers, these numerical methods allow
high accuracy up to high frequency at very low computation cost, and they can be the
preferable choice when the requirement is the prediction of wave motion in 1-dimensional
and 2-dimensional single waveguides, e.g., beam-like structures, panels and shells, cylin-
drical waveguides, etc. Some FE commercial software have recently implemented new
specific modules for studying Cartesian periodic structures exploiting Bloch-Floquet the-
ory. Although their use can be advantageous due to their ability to tackle complicated
geometries, they involve a high computational cost in many cases.

A common feature of these methods is Cartesian spatial periodicity. The Bloch-Floquet
theorem, which was applied in 1946 by Brillouin to solve the wave equation, relies, in fact,
on the translational invariance of the problem formulation and is not rigorously applicable
to polar coordinates systems [16]. In many practical engineering situations, a source of
vibrations may excite a large and flexible structure such as a ship’s deck, an aeroplane
fuselage, a satellite antenna, a wall panel. In these cases, radial periodicity (e.g., as a
sequence of annuli with alternating properties) may be used to reduce transmission of the
vibration and structure-borne sound, and numerical approaches to study free and forced
wave propagation in polar coordinates are desirable. The problem of wave propagation in
radially periodic structures has been mainly formulated in optics within the theory of Bragg
fibre [17]. Leaving aside numerous purely numerical studies (see, for instance, [18–20]), we
notice that two approaches have been used so far to “adjust” the Bloch theorem for a cylin-
drically symmetric Bragg fibre. The first one is based on the use of far-field approximation
of Bessel functions [21,22], and the second one implies special radial varying of material
properties [23–25]. Some recent works presented an approximation of the formulation of
the Floquet theory for radially periodic membrane and plates [26]. However, studies of
wave propagation in a polar periodic configuration in structural mechanics are rare.

The paper aims to present a numerical method based on Floquet-theory and the FE
discretisation of a small finite slice of a radial periodic structure. The method relies on
adapting the Wave Finite Element (WFE) approach [14,15] to radial periodic waveguides.
In this method, a unit cell of the waveguide is discretised using standard FE elements.
The FE mass and stiffness matrices are reduced using wave propagation theory in peri-
odic structures, and wave characteristics are numerically evaluated from an eigenvalue
problem. This allows a very substantial reduction in the number of DOFs involved in the
computation, with a dramatic reduction of the computational time compared to other FE
approaches. Forced wave propagation is then evaluated in the wave domain as described
in [27,28]. Amongst the numerical methods that could be used to investigate wave propa-
gation problems, the WFE technique has several desirable features: it can be applied both
to continuous and periodic structures; it exploits Bloch-Floquet theory and the versatility of
standard FE analysis of a very small part of the structure; it allows the study of waveguides
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with complex cross-sectional characteristics in a systematic manner, up to high frequency
and with a low-computation cost. Applications of the technique to periodic, axisymmetric,
helical, and slowly varying waveguides were presented in the literature, and the method
has been validated through many benchmark cases, e.g., [29–31]. The approach rigorously
assumes wave propagation in structures posed in Cartesian coordinates, and application
to forced response in two dimensions was only possible by a semi-analytical computation
via contour integration and the residue theorem [32].

Following a previous study by the same authors [33], this paper presents a simplified
adaptation of this WFE technique to structures in polar coordinates exhibiting periodicity in
the radial directions. Cylindrical wave propagation is thus estimated exploiting the Floquet
theory formulation for an infinite periodic structure in one dimension. The approximation
is achieved by taking only a very small slice of the structure and discretising the slice
through piecewise Cartesian segments. Wave characteristics in each segment are obtained
by the WFE approach, while wave amplitudes change due to the changes in the geometry
of the slice are accommodated in the model assuming that the energy flow through each
segment is the same. In this paper, the forced response of a flexible periodic plate excited by
a transverse source of vibration force is considered. Nearfield response and low-frequency
harmonic excitation, far enough from the first stop-band, is assumed. The aim is to quantify
the response level of the structure close to the excitation point and in the frequency regime
where the fundamental modes of the structures are excited.

The paper is organised as follows. In Section 2 the method is described. Section 3
contains a numerical example of a thin flexible plate, for which analytical solutions are
available [34]. Section 4 deals with a plate with a periodic change of thickness in the radial
direction for which an analytical solution is not available. The numerical results were
verified through a standard Finite Element model of the plate with perfectly matched layers
(PMLs) in COMSOL Multiphysics®. The last section is devoted to conclusions.

2. Stepwise WFE Approximation of a Radially Periodic Plate

A lossless and linear elastic plate with radial periodicity is considered. The plate
consists of an infinite repetition of a sequence of annuli of the same width with alternating
properties, as shown in Figure 1a. The lattice constant, or the characteristic length of the
unit cell, is here defined in the radial direction and denoted by R.
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In order to apply the WFE method, a slice of the plate is taken, as shown in Figure 1b.
Since the periodicity is in the radial direction, the angle of the slice can be arbitrarily small.
The slice is approximated as a piecewise rectangular waveguide in Cartesian coordinates,
as shown in Figure 1c. A finite number of segments is assumed. These segments are
numbered increasingly in the radial direction from 1 to n, where n is the cell distant r from
the centre. Wave characteristics of each of these rectangular segments are obtained using
the WFE approach as described in Section 2.1. In the model, the left nodes of the first cell
are shifted at an arbitrarily small distance R0 from the origin of the coordinates; the inner
part, 0 < r < R0, is uniform and homogenous.

2.1. Free Wave Propagation Characteristics

Wave characteristics of each segment (cell) in Figure 1c are evaluated using the WFE
method as described in [14,28]. The waves are numerically represented by the dispersion
curves, (k, ω), which give the information about the wave vector k available for each
frequency ω, and the corresponding FE nodal displacements Φq and nodal forces Φf,
which occur under the passage of a wave. In the WFE, only the unit periodic cell is analysed.
Figure 2 shows a finite element mesh of a unit cell using 4-noded rectangular elements
and the correspondent WFE model. The degrees of freedom q in the dicrestised equation
of motion, Equation (1), are ordered and condensed as q =

[
qT

L qT
R qT

I
]T , where the

subscripts L, R and I are associated with the right qR =
[
qT

1 qT
2
]T , left qL =

[
qT

5 qT
6
]T

and interior qI =
[
qT

3 qT
4
]T nodal degrees of freedom of the cell, with a similar expression

for the nodal forces f =
[
fT

L fT
R fT

I

]T
.
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The discretised equation of motion, (K−ω2M)q = Dq = f, is obtained using conven-
tional FEA and it is partitioned as DLL DLR DRI

DRL DRR DRI
DIL DIR DI I


qL
qR
qI

 =


fL
fR
fI

 (1)

To apply the WFE method, the internal Dofs of the unit cell must be reduced. In this
paper, a standard dynamic condensation is applied as

qI = −DI I
−1(DILqL + DIRqR) (2)

However, according to the size of the model, more efficient methods for condensing
the inner DOFs and speeding up the resolution of the WFE eigenvalue problem can be
applied, e.g., [35,36].

The resulting equation of motion is[
DLL DLR
DRL DRR

]{
qL
qR

}
=

{
fL
fR

}
(3)
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The inclusion of stress, temperature effects and damping in the model can be accom-
modated, if necessary, as described in [37]. Periodicity conditions are applied so that

qR = λqL; fR = −λfL (4)

where λ = e−ikL and k is the wavenumber. Combining Equation (4) with Equation (3), the
equation of free wave motion takes the form of a quadratic eigenvalue problem, as[

λ2DLR + λ(DLL + DRR) + DRL

]
qL = 0 (5)

whose solutions yield the relationship between the wavenumber and frequency (dispersion
curves) and the displacement qL of the cross-section due to wave motion (wave mode
shapes). Equation (5) can be further recast as a standard linear eigenvalue problem as
(A− γI)Z = 0,

where A =

[
0 I

−A−1
2 A0 −A−1

2 A1

]
A2 = DLR, A1 = DLL + DRR, A0 = DRL, and

Z = [qT
L λqT

L ]
T .

The time average energy flow in each segment can be then obtained from

Π =
1
2

Re
[
fH iωq

]
(6)

where the superscript H denotes the Hermitian transpose and f and q are recovered using
Equations (3) and (4).

2.2. Forced Wave Amplitude

Forced wave propagation and structural response are evaluated following the theory
presented in [27,28]. Wave properties are grouped into positive and negative going waves,
which can be described by the two sets of results

(
k+, Φ+, a+

)
and

(
k−, Φ−, a−

)
. Here

k+, k− and a+, a− are wavenumbers and waves’ amplitudes travelling in the positive and
negative direction, while Φ+ = [Φ+

q , Φ+
f ]

T and Φ− = [Φ−q , Φ−f ]
T are the corresponding

nodal displacements and nodal forces, that is the FE discretisation of wavemodes. For
evaluating the forced response, it is advantageous to obtain also the left eigenvectors of the
WFE eigenvalue problem in Equation (5). These are partitioned in the same manner as the
wavemodes, that is Ψ+ = [Ψ+

f , Ψ+
q ] and Ψ− = [Ψ−f , Ψ−q ]. Left and right eigenvectors are

orthogonal and they can be normalised so that

Ψ+Φ+ = I, Ψ−Φ− = I (7)

In an analogous manner to the modal analysis, the total displacement and force at the
junction of a cell is described by the sum of the positive and negative wavemodes so that[

q
f

]
=
[

Φ+
q Φ−q

Φ+
f Φ−f

][
a+

a−

]
. (8)

Equation (8) defines the transformation between the physical domain, where the
motion is described in terms of nodal displacements and forces, and the wave domain,
where the motion is described in terms of waves of amplitudes a+, a− travelling in the
positive and negative directions. A point force fe will generate excited positive and negative
going waves, propagating away from the excitation point. Compared to the Cartesian
periodicity, in the case of a radially periodic plate, the position of this point force is an
independent parameter. Here, we assume a transverse harmonic point force exciting the
structure at the left nodes of the first cell in Figure 1c. With reference to Figure 1, continuity
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and equilibrium equations can be written at the left side of the first cell, and excited wave
amplitudes can be recovered from Equation (9)[

Φ+
q,1 Φ−q,1

Φ+
f,1 Φ−f,1

][
a+1 (r1

)
a−1 (r1

) ] = [ 0
fe

]
(9)

In practice, as in modal analysis, only m pairs of (positive- and negative-going) waves
are retained (a reduced wave basis is assumed in most cases). Moreover, the number of
assumed modes can be different at each frequency. It is noteworthy to mention that all
the waves propagating in the structure (real wavenumbers) should be considered. Evanes-
cent and attenuating waves (corresponding to pure imaginary or complex wavenumbers)
should be also assumed since they play an important role in scattering and forcing prob-
lems. Consequently, the wavemodes’ matrix is typically rectangular and the use of standard
pseudoinverse operation can lead to numerical errors. To overcome this issue, the orthogo-
nality between right and left eigenvectors in Equation (7) can be exploited, and the excited
wave amplitudes at r1 can be obtained from[

a+1 (r1
)

a−1 (r1
) ] = [ Ψ+

f ,1 Ψ+
q,1

Ψ−f,1 Ψ−q,1

][
0
fe

]
(10)

2.3. Coupling of the Segments and Wave Amplitude Decay

Compared to the corresponding Cartesian waveguides, wave propagation is not
translational invariant in the radially periodic structures, and amplitude attenuation occurs
as the waves travel from the centre in the radial direction. Since the energy flowing
along the slice is constant, wave amplitude change due to changes in the geometry can
be accommodated in the model according to an energy balance principle as in [31]. In
this section, the procedure is presented for the first two cells. The same passages must be
applied up to the cell j = n, including the point at which the response must be evaluated.

In the Cartesian cell, amplitudes are related at two points r1 and r2 = r1 + R, by
a1

+(r2) = T+(R)a+1 (r1
)

and a−1 (r2) = T−1 (R)a−1 (r1
)
, where T+

1 (R) = diag
[
exp

(
−ik+

1 R
)]

and T−1 (R) = diag
[
exp

(
−ik−1 R

)]
. Therefore, nodal displacements and nodal forces at the

interface between cell 1 and cell 2 are[
q1
f1

]
=

[
Φ+

q,1 Φ−q,1
Φ+

f,1 Φ−f,1

][
T1

+(R) 0
0 T1

−(R)

][
a1

+(r1)
a1
−(r1)

]
(11)

Using the left eigenvectors as in Equation (10), the first attempt to find the excited
wave amplitude in cell 2 gives[ ~

a
+

2
~
a
−
2

]
=

[
Ψ+

f ,2 Ψ+
q,2

Ψ−f,2 Ψ−q,2

][
q1
f1

]
(12)

Nodal displacements and nodal forces at cell 2 can be obtained using the same expres-
sion of Equation (10)[

q2
f2

]
=

[
Φ+

q,2 Φ−q,2
Φ+

f,2 Φ−f,2

][
T2

+(R) 0
0 T2

−(R)

][ ~
a2

+
~
a2
−

]
(13)

and the time-averaged energy flows, Equation (6), of cell 1 and cell 2 can be evaluated
using nodal displacement and nodal forces from Equations (11) and (13)

Π1 =
1
2

Re
{

f1
H iωq1

}
, Π2 =

1
2

Re
{

f2
H iωq2

}
(14)
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The ratio between Π1 and Π2 gives the amplitude decay ξ2 in waveguide 2, which is
evaluated as in [32]

ξ2
2 =

Re
{

f1
H iωq1

}
Re{f2H iωq2}

(15)

The wave and amplitudes in waveguide 2 are therefore approximated to[
a2

+

a2
−

]
= ξ2

[ ~
a2

+
~
a2
−

]
(16)

Equations (13)–(16) can be repeated iteratively until ξ2 converges to one, and the
final value of the wave amplitudes reach the required approximation. One passage was
sufficient to converge to a useful approximation with a very low computational cost in the
numerical cases studied. Excited wave amplitudes decay in the next cells up to cell n are
evaluated following the same passages.

3. Numerical Examples

This section shows two numerical examples: the first concerns a thin isotropic plate
excited by a central transverse harmonic force, while the second deals with a plate with a
periodic radial change of thickness. In both cases, the WFE model is obtained using 4-noded
plane elements in bending having three degrees of freedom per node: translation in the
z-direction and rotations around the x- and y-directions. To verify the results, analytical
solutions were compared in the first case, while results for the radially periodic plate were
verified through comparison with those obtained by an FE model with PMLs. This model
was realised in COMSOL Mutiphysics® using the Structural Mechanics Module. The plate
was discretised by shell elements having six degrees of freedom per node (translations and
rotations in the z, x, and y directions), while a second-order polynomial stretching function
was chosen for the PMLs, see the COMSOL Multiphysics Reference Manual for further
information. The FE models were realised both in Cartesian and Polar coordinates systems
with similar results, and a convergence test was performed by refining the mesh in the
PML domain.

The non-dimensional frequency

Ω = ωR2
√

ρh
D

(17)

is introduced, where ρ, h and D are respectively the density, thickness and bending stiffness
of the plate, ω is the frequency in radiant, and R is the period of the structure as in Figure 1.

3.1. Numerical Verification. Infinite Plate Subjected to a Transverse Harmonic Force

The literature has largely studied the problem of a thin plate subjected to harmonic
loads, and closed-form solutions can be found in many classical books on vibrations,
e.g., [34]. This numerical example is introduced here to verify the method described in
Section 2 and show its applicability to continuous structures.

An aluminium plate of thickness h = 1 mm is considered. Flexural waves in the plate
are excited by a central transverse harmonic force of magnitude F/

(
Eh2) = 1.4 · 10−3, and

the complex out of plane displacement is evaluated at a distance r/h = 300 from the plate
centre, viz. origin of the polar coordinates.

In this case, the structure is continuous and uniform, and it can be studied as a periodic
structure with arbitrary radial and circumferential periodicity: the choice of the period,
viz. length R of the unit cell, is arbitrary under standard FE assumptions to avoid element
distortion and dispersion errors [38]. Therefore, the number of segments that are used to
approximate the slice from the centre to r is arbitrarily chosen. The discretisation must be
refined until it does not produce a negligible change in the solution. In this example, only
three segments have been found sufficient for convergence.
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In order to simplify the WFE model, a small circle around the point force is removed
and the left nodes of the first cell are shifted at a distance R0/h = r1 = 10 from the point
force. In this example, the WFE approximation is obtained for a slice of angle θ = 6o.
Waves are induced only in the positive radial direction and therefore a1

− = 0 is assumed.
Periodicity in each segment is further exploited. Here, the number of “sub-period” in each
segment is chosen by a simple algorithm that optimises the mesh according to the slice’s
dimension and the number of segments. No significant differences are noticed decreasing
the distance R0 further.

Figure 3 shows the absolute value and the phase of the transverse displacement of the
plate. A comparison between the numerical and analytical solutions is shown. The latter is
evaluated using the analytical equation given in [34]: w = −iF

8Dk2

(
H2

0(kr)− i 2
π K0(kr)

)
, where

k = 4
√

ω2ρh/D is the flexural wavenumber, H2
0(kr) is the zero-order Hankel function of

the second kind and K0(kr) is the zero-order modified Bessel function of the second kind.
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Results obtained using the FE model of the plate with PMLs are, as seen in Figure 3,
in excellent agreement with the WFE results (small discrepancies are due to the differences
in the FE models). However, this numerical study also demonstrates the computational
superiority of the WFE method over the standard FE + PML analysis: the CPU time used
by Matlab® to solve the WFE model of the plate was approximately four hundred times
less than the CPU time used by COMSOL Mutiphysics® to solve the correspondent FE
+ PML model. One of the main reasons for such a difference in the computational cost
is the very small size of the WFE matrices compared to the number of DOFs involved in
standard FE analysis. The WFE model for this numerical example was realised using one
shell element, resulting in 6 DOFs after the WFE reduction, Equation (5), while the size of
the FE + PML model was 676,422 DOFs.

3.2. Radially Periodic Plate

In this section, we consider a plate in polar coordinates with radial periodicity. Figure 4
depicts a schematic figure of the plate and its unit cell (period). In the following, the
characteristic length R and the thickness h1 are used to define the dimensionless parameters:

β = h2/h1 = 2.7, γ = R/R1 = 2.7, δ = R/h1 = 27
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Figure 4. (a) radially periodic infinite plate with an internal hole of radius R0; (b) period, or unit cell.

The WFE model is obtained considering an arbitrary circumferential periodicity of
angle θ = 9o. The external harmonic force of magnitude F/(2πR0) =140 N/m is applied at
the internal edge of the plate and included in the WFE by two equivalent transverse nodal
forces exciting the left nodes of the first unit cell. Waves are induced only in the positive
radial direction and therefore a1

− = 0 is assumed. The structure exhibits stop-bands due
to its periodicity as shown in [26]. These stop-bands can be predicted with accuracy by
the WFE up to high frequency. However, in this paper, the plate response is evaluated
in the nearfield and at a low-frequency. Therefore, only the wave modes below the first
stop-band are considered in the analysis. Figure 5 shows the dispersion curves of flexural
waves propagating in the positive direction. Analytical flexural waves propagating in the
corresponding homogeneous plates of thickness h1 and h2 are also shown for comparison.
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Figure 5. Dispersion curves for flexural waves in the radially periodic plate. Propagating flexural
waves in the corresponding homogeneous plates of thickness h1, - - - - , and h2, - . - . - , are shown
for comparison.

The transverse response of the plate is evaluated after 4 unit cells, at a distance
r = 5R from the centre of the plate (or equally at a distance r = 4R from the border
of the internal hole). Figure 6 shows the displacements in terms of absolute and phase
values. Results obtained using the FE model with PMLs are also presented. Although some
small discrepancies were expected due to the very different FE discretisation and a very
different approach to the problem, it can be noticed that the results obtained by the WFE
method are in good agreement with those obtained by the finite element harmonic analysis.
The WFE model for each segment of the plate slice was set up with three shell elements,
resulting in six DOFs after the WFE reduction, while the FE + PML had 794,448 DOFs. The
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computational time used by Matlab® to solve the WFE model of this radially periodic plate
was almost two thousand times less than the CPU time used by COMSOL Mutiphysics® to
solve the correspondent FE + PML model.
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4. Conclusions

In this paper, free and forced wave propagation in a radially periodic plate was
studied using an adaptation of the Wave Finite Element method to structures showing
radial periodicities. Cylindrical waves propagating were approximated exploiting the
Floquet theory formulation for an infinite periodic structure in one dimension. This
approximation was achieved by taking only a very small slice of the structure, which was
discretised through piecewise Cartesian segments. Wave characteristics in each segment
were obtained by the WFE method, while wave amplitudes change was accommodated in
the model assuming an energy balance principle. The forced response of the structure was
then evaluated in the wave domain. The paper’s main goal was to verify the approach for
predicting the forced response in the nearfield of a radial periodic structures. Two numerical
examples were presented: an isotropic thin plate excited by a transverse harmonic force,
for which analytical solutions are available, and a plate with a periodic change of thickness
in the radial direction. In the latter, the numerical results were verified through a standard
Finite Element model of the plate with perfectly matched layers (PMLs). In both cases,
it was found that the numerical results were in good agreement with the analytical and
numerical FE results, showing the advantages of the approach in terms of computational
ime, approximation controllability, and modelling efficiency.
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