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Abstract: This paper derives an original finite element for the static bending analysis of a transversely
cracked uniform beam resting on a two-parametric elastic foundation. In the simplified computational
model based on the Euler–Bernoulli theory of small displacements, the crack is represented by a
linear rotational spring connecting two elastic members. The derivations of approximate transverse
displacement functions, stiffness matrix coefficients, and the load vector for a linearly distributed load
along the entire beam element are based on novel cubic polynomial interpolation functions, including
the second soil parameter. Moreover, all derived expressions are obtained in closed forms, which
allow easy implementation in existing finite element software. Two numerical examples are presented
in order to substantiate the discussed approach. They cover both possible analytical solution forms
that may occur (depending on the problem parameters) from the same governing differential equation
of the considered problem. Therefore, several response parameters are studied for each example
(with additional emphasis on their convergence) and compared with the corresponding analytical
solution, thus proving the quality of the obtained finite element.

Keywords: static bending analysis; two-parametric elastic soil; uniform cracked beam; finite element
method; stiffness matrix of medium

1. Introduction

The occurrence of cracks in the structure is considered to be one of the most unfa-
vorable effects, since their presence may lead to the collapse in extreme cases. It is well
known that the stress and strain in structural elements such as beams or columns increase
significantly at the location of cracking. This leads not only to a reduction in stiffness but
also to a change in the response pattern, the magnitude of which depends mainly on the
location and depth of the crack. In the static analysis of structures, cracked beams are
usually considered as a one-dimensional continuum with local stiffness reduction, since
such models allow simpler and faster but still reliable response calculations. When the
stress distribution near the crack is not of interest, a simplified computational model in
which two adjacent elastic non-cracked segments are connected at the crack location by
a corresponding (rotational and/or translational) point spring is particularly suitable. In
addition, such a model allows an effective representation of the depth and location of
the crack. In the pure bending of slender Euler–Bernoulli beams, the presence of cracks
mainly affects the bending stiffness, so the point spring can be justifiably represented by
the rotational contribution only [1].

This rotational spring can also be effectively implemented into the computational
model of cracked beams on an elastic soil, which has already been confirmed by many
studies in the field of structural mechanics [2–5]. Most studies idealize soils by the classical
one-parameter Winkler model [6], in which the real compressive strength of soils is repre-
sented by individual and unconnected vertical compression springs. Furthermore, a recent
study introduces a new exact finite element for static analysis, which contains accurate
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interpolation functions obtained from the differential equation solutions of a transversely
cracked beam on Winkler soil [7].

In addition to Winkler’s compressive contribution, the mechanical strength of the
actual soil includes the shear contribution of deformations. Therefore, an additional pa-
rameter is included for a more detailed description of the soil behavior that also takes into
account the shear interaction between Winkler springs. By implementing the shear interac-
tion between the springs as a supplementary parameter, deformations and displacements
of the soil can be calculated even outside the loaded area, allowing the behavior of the
soil to be described much more realistically compared to single parameter formulation.
In the two-parametric model, the actual shear interaction between Winkler springs is
considered by introducing a second soil parameter. Several two-parametric models were
presented by many authors based on different physical assumptions. The shear interaction
between springs was first represented by an elastic membrane layer (Filonenko–Borodich
model), then by an elastic beam (Heteny model), and finally by an elastic shear layer
(Pasternak model), which is the most natural representation of the shear contribution of
the soil. Generally, all these models mathematically share the same governing differential
equation [8].

Although the analytical approach to solving differential equations provides exact
solutions, the finite element method is primarily used in modern static analysis of beams
on elastic soil, which is mostly due to the mathematical complexity of the analytical solution
of differential equations. The accuracy and speed of convergence of the results depend not
only on the applied mesh of elements but also on the quality of the applied finite elements.

Therefore, the novelty of this article is a closed-form original finite element for
static bending analysis of the uniform Euler–Bernoulli transversely cracked beam on
two-parametric soil. All expressions were derived from newly derived cubic polynomial
interpolation functions in which the second soil parameter was included directly.

2. Basic Assumptions and General Analytical Formulation

The study considers a straight uniform slender transversely cracked beam with a
rectangular constant cross-section resting on a deformable (elastic) soil. Since the bending
of a beam with a transverse crack in the vertical plane is analyzed, the Opening Mode
(Mode I) is considered. This mode is reflected in the different slopes to the left and right of
the crack. Therefore, the discrete crack is introduced into the mathematical model through
Okamura’s approach [1]. Although each transverse crack is geometrically defined by the
location L1 and depth d, it is modeled by a rotational spring in the considered solution, as
shown in Figure 1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 16 
 

one-parameter Winkler model [6], in which the real compressive strength of soils is 
represented by individual and unconnected vertical compression springs. Furthermore, a 
recent study introduces a new exact finite element for static analysis, which contains 
accurate interpolation functions obtained from the differential equation solutions of a 
transversely cracked beam on Winkler soil [7]. 

In addition to Winkler’s compressive contribution, the mechanical strength of the 
actual soil includes the shear contribution of deformations. Therefore, an additional 
parameter is included for a more detailed description of the soil behavior that also takes 
into account the shear interaction between Winkler springs. By implementing the shear 
interaction between the springs as a supplementary parameter, deformations and 
displacements of the soil can be calculated even outside the loaded area, allowing the 
behavior of the soil to be described much more realistically compared to single parameter 
formulation. In the two-parametric model, the actual shear interaction between Winkler 
springs is considered by introducing a second soil parameter. Several two-parametric 
models were presented by many authors based on different physical assumptions. The 
shear interaction between springs was first represented by an elastic membrane layer 
(Filonenko–Borodich model), then by an elastic beam (Heteny model), and finally by an 
elastic shear layer (Pasternak model), which is the most natural representation of the shear 
contribution of the soil. Generally, all these models mathematically share the same 
governing differential equation [8]. 

Although the analytical approach to solving differential equations provides exact 
solutions, the finite element method is primarily used in modern static analysis of beams 
on elastic soil, which is mostly due to the mathematical complexity of the analytical 
solution of differential equations. The accuracy and speed of convergence of the results 
depend not only on the applied mesh of elements but also on the quality of the applied 
finite elements. 

Therefore, the novelty of this article is a closed-form original finite element for static 
bending analysis of the uniform Euler–Bernoulli transversely cracked beam on two-
parametric soil. All expressions were derived from newly derived cubic polynomial 
interpolation functions in which the second soil parameter was included directly. 

2. Basic Assumptions and General Analytical Formulation 
The study considers a straight uniform slender transversely cracked beam with a 

rectangular constant cross-section resting on a deformable (elastic) soil. Since the bending 
of a beam with a transverse crack in the vertical plane is analyzed, the Opening Mode 
(Mode I) is considered. This mode is reflected in the different slopes to the left and right 
of the crack. Therefore, the discrete crack is introduced into the mathematical model 
through Okamura’s approach [1]. Although each transverse crack is geometrically defined 
by the location L1 and depth d, it is modeled by a rotational spring in the considered 
solution, as shown in Figure 1. 

 
Figure 1. Mathematical model of a beam with crack on the two-parametric soil. 

Okamura et al. defined the genuine spring stiffness Kr as: 

2 1 
Kr(EIz, δ) 

u3=Y2 
u2=Φ1 u1=Y1 

L1 
L 

y, v 
x 

u4=Φ2 
k  kG 

EIz 

Figure 1. Mathematical model of a beam with crack on the two-parametric soil.

Okamura et al. defined the genuine spring stiffness Kr as:

Kr =
EIz

h · 6 · (1− ν2) · F(δ′) . (1)
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This original spring stiffness definition takes into account the non-cracked bending
stiffness of the beam EIz, the height of the non-cracked part of the cross-section h, Poisson’s
ratio ν, the relative crack depth δ′ = d/h, and the compliance function F(δ′).

F(δ′) = 1.98δ′
2 − 3.277δ′

3
+ 14.43δ′

4 − 31.26δ′
5
+ 63.56δ′

6 − 103.36δ′
7
+ 147.52δ′

8 − 127.69δ′
9
+ 61.50δ′

10 (2)

In addition to Okamura, several other authors have provided their definitions, which
implement the same general definition form of Kr but with different compliance func-
tions [9–12].

The derivations represent the soil (defined as isotropic, homogeneous, and linear
material) as a two-parameter elastic medium. The governing equilibrium differential
equation for the non-cracked beams takes the form [8]:

EIz ·
d4v(x)

dx4 − kG ·
d2v(x)

dx2 + k · v(x) = q(x) (3)

where v(x)—transverse displacement function; k—coefficient of proportionality derived
from the genuine Winkler’s soil coefficient; kG—the second soil parameter; q(x)—continuous
transverse load. When searching for the analytical solution, two auxiliary parameters (λ1
and λ2) are implemented, which can be altogether presented by:

λi =

√√
4 · EIz · k− (−1)i · kG

4 · EIz
i = 1, 2. (4)

If the value of kG equals zero, both expressions reduce into a single parameter, which
is already known from the genuine Winkler model solution. However, when solving the
governing differential equation of a two-parametric soil, there is an important difference
compared to the equivalent Winkler soil differential equation where a single analytical solu-
tion is obtained regardless of the combination of the beam and soil coefficients. Namely, for
some combinations of two-parametric soil mechanical parameters, the second parameter
becomes an imaginary value. Consequently, there are two different forms of analytical so-
lutions (vGDE) of Equation (3) [13]. For the case of kG

2 < 4·EIz·k, the solution of Equation (3)
obtains the following form:

vGDE(x) = eλ1·x · (a1 · cos(λ2 · x) +a2 · sin(λ2 · x)) + eλ1·x · (a3 · cos(λ2 · x) +a4 · sin(λ2 · x)) (5)

while for the case of kG
2 ≥ 4·EIz·k, the solution is:

vGDE(x) = a1 · eλ1·x + a2 · eλ2·x + a3 · e−λ1·x + a4 · e−λ2·x (6)

where ai (i = 1, 2, 3, 4) are integration constants.

3. Derivation of a New Finite Element

For the purposes of numerical bending analyses, a new finite element of a singly
transversely cracked Euler–Bernoulli beam on an elastic two-parametric soil is derived
in this section. All the assumptions (regarding the beam, the crack, and the subgrade)
considered in the analytical formulation of the problem are also applied in the derivation
of the finite element. The equivalent rotational spring connecting two adjacent segments is
located at a distance L1 from the left edge (node 1). The presented finite element of length
L has two nodes and a total of four standard degrees of freedom. These are the (upwards
positive) transverse displacement Y1 and the (anticlockwise) rotation Φ1 in the left node
1, as well as the (upwards positive) transverse displacement Y2 and the (anticlockwise)
rotation Φ2 in the right node 2, as shown in Figure 1.
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3.1. Derivation of Interpolation Functions of the Cracked Beam on the Two-Parametric Medium

As in many similar derivations, and primarily in order to universally cover both possi-
ble cases related to the parameter λ2 by a unique finite element solution, the complete cubic
polynomials are implemented as interpolation functions. Due to the presence of the crack,
which divides the beam into two elastic parts, separate interpolation functions are required
for the parts to the left and the right. Since the finite element has four standard degrees of
freedom, this consequently requires eight constants to be determined. They are determined
from four boundary as well as four continuity conditions (the equality of displacements,
the condition for the discrete slope increase, the equality of bending moments, and the
equality of shear forces) at the crack location where the influence of the crack is introduced
as a slope discontinuity. Although the general description of the continuity conditions is
identical to the similar Winkler soil, there is an important computational difference since
the second soil parameter kG is now directly introduced into the derivation of interpolation
functions through the condition of shear forces equilibrium, i.e.,

EIz · v1
′′′ (L1)− kG · v1

′(L1) = EIz · v2
′′′ (L1)− kG · v2

′(L1) (7)

Thus, the following functions of transverse displacements are obtained for the sections
to the left and right of the crack, as shown in Equations (8) and (9):

v1(x) = Y1 · N1,1(x) + Φ1 · N1,2(x) + Y2 · N1,3(x) + Φ2 · N1,4(x) 0 ≤ x ≤ L1 (8)

v2(x) = Y1 · N2,1(x) + Φ1 · N2,2(x) + Y2 · N2,3(x) + Φ2 · N2,4(x) L1 ≤ x ≤ L (9)

with the following interpolation functions N1,i(x) and N2,i(x) (i = 1, 2, 3, 4), as shown in
Equations (10) and (11):

N1,i(x) = Ai,1 + Ai,2 · x + Ai,3 · x2 + Ai,4 · x3 (10)

N2,i(x) = Bi,1 + Bi,2 · x + Bi,3 · x2 + Bi,4 · x3. (11)

The coefficients Ai,j (i, j = 1, 2, 3, 4) from interpolation functions of the first elastic part
can be expressed by implementing the Dirac δ function as:

Ai,1 = δi1 (12)

Ai,2 = δi2 (13)

Ai,3 =
3
(

L2 + α2L1ψ
)
(δi1 + Lδi2 − δi3)−

(
L3 + α6(L− L1)L1ψ

)
(δi2 − δi4)

L(L3 + 2ψ(L2β2 − 2LL1β3 + L1
2β6))

(14)

Ai,4 =
(2L + ψα2)δi1 +

(
3L2 + ψ(6L1 + α0(2L + L1))

)
δi2 − (6L + ψα6)δi3 +

(
3L2 + ψα6(L− L1)

)
δi4

3L(L3 + 2ψ(L2β2 − 2LL1β3 + L1
2β6))

(15)

with the three following abbreviations:

ψ =
EIz

Kr
(16)

αi = i +
kG(L− L1)

2

EIz
(17)

βi = i +
kGL1

2

EIz
. (18)
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Considering all four conditions of continuity at the crack location, the coefficients of
the interpolation functions of the second part can be written by the coefficients of the first
part as follows:

Bi,j = Aij + ψ · (Ai3 + 3 · L1 · Ai4)

(
2δj1 − 2L1δj1 +

kG(−1)kL1
4−j

EIz
(
δj2 + δj3 + 3

(
δj1 + δj4

))). (19)

It should be noted that for the non-cracked case (δ′ = 0), these functions reduce into
standard polynomial interpolation functions for the non-cracked case.

3.2. Derivation of Matrices of the Cracked Beam on the Two-Parametric Medium

The entire deformation energy U can be expressed as a sum of the contributions from
the beam (from both elastic parts as well as the spring) and the soil:

U = 1
2 ·

L1∫
x=0

EIz·
(

∂2v1
∂x2

)2
· dx + 1

2 ·
L∫

x=L1

EIz·
(

∂2v2
∂x2

)2
· dx + 1

2 · Kr ·
(

∂v1
∂x

∣∣∣
L1
− ∂v2

∂x

∣∣∣
L1

)2
+ 1

2 ·
L1∫

x=0
k · v1

2 · dx

+ 1
2 ·

L∫
x=L1

k · v2
2 · dx + 1

2 ·
L1∫

x=0
kG ·

(
∂v1
∂x

)2
· dx + 1

2 ·
L∫

x=L1

kG ·
(

∂v2
∂x

)2
· dx

(20)

where the first two terms belong to the strain energy in the beam elastic non-cracked parts,
the third term corresponds to the contribution of the crack through the rotational spring
energy, the fourth and the fifth term represent the strain energy of the Winkler soil, and the
last two terms stand for the second soil parameter contribution, respectively.

Since the interpolation functions are known, transverse displacements from
Equations (8) and (9) can be implemented in Equation (20). Furthermore, the complete
4 × 4 stiffness matrix [k] of a cracked beam finite-element on two-parametric soil can be
thus expressed as:

[k] =
L1∫

x=0

EIz ·
{

N′′1
}T ·

{
N′′1
}
· dx +

L∫
x=L1

EIz ·
{

N′′2
}T ·

{
N′′2
}
· dx + Kr ·

({
N′1(L1)

}
−
{

N′2(L1)
})T ·

({
N′1(L1)

}
−
{

N′2(L1)
})

︸ ︷︷ ︸
[kb ]

+k ·
L1∫

x=0

{N1}T · {N1} · dx + k ·
L∫

x=L1

{N2}T · {N2} · dx

︸ ︷︷ ︸
[ks1]

+ kG ·
L1∫

x=0

{
N1
′}T ·

{
N1
′} · dx + kG ·

L∫
x=L1

{
N2
′}T ·

{
N2
′} · dx

︸ ︷︷ ︸
[ks2]

= [kb] + [ks1] + [ks2]

(21)

where {N1} and {N2} represent the interpolation function vectors of the first and the second
elastic part, respectively.

Thus, Equation (21) clearly shows the separate contributions of all the beam and soil
parameters of the stiffness matrix. Every element of each separate contribution of kb,ij, ks1,ij,
and ks2,ij (i, j = 1, 2, 3, 4) of stiffness matrix [k] is presented in a closed form expression as:

kb,ij = 4EIzψ(Ai,3 + 3L1 Ai4)
(

Aj,3 + 3L1 Aj,4
)
+

EIz
L5L1

5

4
∑

m=3

4
∑

n=3

(m−1)(m−2)(n−1)(n−2)
(m+n−5)

(
Lk+l L1

5Bi,mBj,n + L5L1
k+l(Ai,m Aj,n − Bi,mBj,n

)) (22)

ks1,ij =
k

LL1

4

∑
m=1

4

∑
n=1

(
Lm+nL1Bi,mBj,n + LL1

m+n(Ai,m Aj,n − Bi,mBj,n
))

(m + n− 1)
(23)

ks2,ij =
kG

L3L1
3

4
∑

k=2

4
∑

l=2

(m−1)(n−1)
(m+n−3)

(
Lm+nL1

3Bi,mBj,n + L3L1
m+n(Ai,m Aj,n − Bi,mBj,n

))
. (24)
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Each element kij (I, j = 1, 2, 3, 4) of the entire stiffness matrix can be further straightfor-
wardly presented as a sum of all three separate contributions:

kij = kb,ij + ks1,ij + ks2,ij. (25)

Moreover, Equations (22)–(25) may be generally presented in a more convenient form
with a single expression:

kα,ij = 4δ3,ξ2 EIzψ(Ai,3 + 3L1 Ai4)
(

Aj,3 + 3L1 Aj,4
)
+

ξ2
∑

ξ=ξ1

4
∑

m=3

4
∑

n=3

(
ξ−1
∏

l=1
(m−l)(n−l)

)
(Lm+n L1

2ξ−1Bi,mBj,n+L2ξ−1L1
m+n(Ai,m Aj,n−Bi,mBj,n))

(kδ1,ξ+kGδ2,ξ+EIzδ3,ξ)
−1

(1−2ξ+m+n)L2ξ−1L1
2ξ−1

(26)

where the coefficients ξ1 and ξ2 define the matrix being calculated. For ξ1 = ξ2 = i (with
i = 1, 2, 3), Equation (26) reduces into the beam stiffness matrix element kb,ij, the first soil ma-
trix element ks1,ij, and the second soil matrix element ks2,ij, as shown in Equations (22)–(24),
respectively. Furthermore, each term of the complete stiffness matrix, Equation (25), can be
directly obtained by taking ξ1 = 1 and ξ2 = 4.

3.3. Derivation of Load Vector Due to a Continuous Load q(x) over the Whole Element

To complete the finite element solution for the cases where continuous loads are
considered, the load vector is also required. This vector consists of nodal forces and
moments that replace the actual distributed load q(x) (upwards positive) over the finite
element. These terms are derived from the conditions of work-equivalency where the work
W is calculated due to distributed transverse load q(x) as:

W =

L1∫
x=0

q(x) · v1(x) · dx +

L∫
x=L1

q(x) · v2(x) · dx. (27)

The equation is further expressed in terms of vectors of unknown nodal displacements
(degrees of freedom) {u}:

W =


L1∫

x=0

q(x) · {N1} · dx +

L∫
x=L1

q(x) · {N2} · dx

 · {u}T (28)

where the complete expressions in external curved brackets represent the substitutive load
vector {Fq(x)} = {F1, F2, F3, F4}T. If qL and qR represent values of the load at the starting and
ending node, respectively, the four load vector coefficients Fi (i = 1, 2, 3, 4) for a linearly
distributed load (upward positive) obtain the form:

Fi =
4

∑
j=1

(
L1

j((1 + j)LqL + jL1(qR − qL))
)
(Ai,j − Bi,j) + L1+j(qL + jqR)Bi,j

jL(1 + j)
. (29)

This newly presented finite element solution was entitled cracked beam on 2 paramet-
ric soil Finite Element (cb2psFE).

3.4. Computation of Nodal Shear Forces and Bending Moments

The corresponding element equilibrium equation in FEM formulation is:

[k]{u} =
{

Fq(x)

}
+ {Q} (30)

where {Q} is the vector of secondary variables. Assembling the stiffness matrix and the
load vector of the structure allows us to first obtain the nodal displacements and rotations
for all the finite elements. Shear forces and bending moments at both nodes of the finite
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element are further calculated from the vector of secondary variables {Q}, as obtained from
Equation (30):

{Q} = [k]{u} −
{

Fq(x)

}
=
{

Vy1,−Mz1,−Vy2, Mz2
}T (31)

consisting of the discrete values of shear forces (Vy1 and Vy2) and bending moments (Mz1
and Mz2).

3.5. Calculation of Bending Moment Functions

Two approaches can generally be applied to obtain the bending moment distribution
functions, differing in the implemented method as well as in the degree of the resulting
polynomials.

The well-known mechanical differential relations (Mz(x) = EIz · v′′ (x)) between the
transverse displacements, slopes, and bending moment functions (i.e., differential equation
of the deflection curve, DEDC) are implemented in the formal mechanical approach. Since
transverse displacement functions to the left and to the right differ for a cracked element,
this consequently yields two bending moment functions inside a single cracked element. If
the transverse displacement functions were ideal, i.e., accurate, this process would also lead
to exact bending moment functions. However, since cubic polynomial functions are selected
for the description of transverse displacements, therefore, the obtained bending moment
functions are just approximations in the form of linear functions within the finite element.
Consequently, the discrepancies appear in the nodes as well as within the finite element.

In the second approach, the initially obtained bending moment and shear force nodal
values from vector {Q} are interpolated to obtain polynomial functions. When imple-
menting standard Hermite cubic interpolation polynomials of level 1 (H1), just first nodal
derivatives of the bending moments are required. They are generally expressed as

Mz
′(0) = Vy1 + kG ·Φ1 (32)

and
Mz
′(L) = Vy2 + kG ·Φ2 (33)

for the first and the second node, respectively.
However, the implementation of the Hermite interpolation polynomials of level 2

(H2, or quintic) is also possible where the nodal values of the bending moments second
derivatives are additionally included in the interpolation:

Mz
′′ (0) = qL − k ·Y1 +

kG
EIz
·Mz1 (34)

and
Mz

′′ (L) = qR − k ·Y2 +
kG
EIz
·Mz2 (35)

for the first and the second node, respectively.
In this way, not only a higher degree polynomial is being applied, but also all main

mechanical parameters (EIz, k and kG) are apparently included in the analysis. It should be
further noted that by applying interpolation (either cubic H1 or quintic H2) of nodal values,
a single function is obtained for the whole element where the directly evaluated nodal
values of bending moments (Mz1 and Mz2) and shear forces (Vy1 and Vy2) from vector {Q}
are preserved.

3.6. Calculation of Shear Force Functions

Even more options are available when deriving shear force functions. In the formal
mechanical approach, the first derivation of bending moment functions (related to the
third derivative of transverse displacements) is combined with the first derivative of
transverse displacements (Vy(x) = Mz

′(x)− kG · v′(x)). However, the availability of two
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approaches for bending moment functions evaluation consequently leads to two shear force
distribution functions. The first approach is a formal approach but also the less accurate
one, where the bending moment functions are obtained from the second derivative of
transverse displacement functions. Namely, although the resulting shear force function is
still a quadratic polynomial (due to the derivative of transverse displacement function), it
should also be noted that the derivation of bending moments only contributes a constant
value. In the second approach, the derivatives of bending moment functions obtained by
the interpolation are coupled to the first derivative of transverse displacement functions. In
this way, the resulting shear force function is still quadratic polynomial but slightly better
than in the first approach. Furthermore, both approaches incorporate the derivatives of
transverse displacement functions and obtain two shear force functions within the element
due to the presence of the crack.

However, since the quality of the polynomial functions, and, consequently their
results degrade with each derivation, the shear force functions are rather obtained by
direct interpolation in the last approach, where either H1 (cubic) or H2 (quintic) Hermite
polynomials are implemented. This purely mathematical approach uses nodal shear forces
and their derivatives in interpolation. If H1 (cubic) Hermite polynomials are implemented,
just the first derivatives of nodal shear forces are required, which are evaluated as:

Vy
′(0) = qL − k ·Y1 (36)

Vy
′(L) = qR − k ·Y2. (37)

Nevertheless, the implementation of H2 (quintic) Hermite polynomials is also possible,
where the required nodal second derivatives of shear forces are evaluated as:

Vy
′′ (0) = q′(0)− k ·Φ1 (38)

Vy
′′ (L) = q′(L)− k ·Φ2. (39)

Both interpolation approaches that preserve nodal shear forces values (Vy1 and Vy2)
produce a single shear force function over the whole element.

4. Verification Numerical Examples and Discussion

Two examples of cracked structures on two-parametric elastic soil are presented in
order to verify the discussed solutions. Transverse displacements, bending moments, and
shear forces along the structure length were studied. The results were compared to the exact
results from the solutions of the simplified model governing differential equations that were
solved for each considered example. These solutions were obtained by implementing the
known analytical solutions for the non-cracked parts (Equations (5) or (6)) using the same
continuity conditions at crack location as in the derivation of new interpolation functions.

The examples setup is given in Figure 2. Both examples consider a beam with two
transverse cracks of relative depth δ′ = 0.5 (with F(δ′ = 0.5) = 0.582914 obtained from
Equation (2)), which are loaded with two uniformly distributed loads as well as with
two transverse concentrated loads at both ends. The cross-section is a rectangle of width
b = 0.5 m, while the heights of both examples differ: the values considered are h = 0.8 m
and h = 0.1 m, respectively.

At first, the solutions of corresponding governing differential equations (GDEs) were
found just to obtain the benchmark values for both examples. The presence of two cracks
and an in-field change of the applied transverse continuous load requires four elastic
segments in the corresponding computational model of the beam. Consequently, four
coupled differential equations were solved to obtain the model exact solutions. Afterwards,
several FE meshes consisting completely of recently presented cb2psFE elements were
analyzed, starting with the smallest model possible. Due to the presence of two cracks, two
cb2psFE finite elements were required as a minimum.
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4.1. First Example

In the first study, the rectangular cross-section height was taken as h = 0.8 m (with
Kr = 2.76494·108 Nm obtained from Equation (1)). This value led to the case where
kG

2 < 4·EIz·k, and both coefficients λ1 and λ2 were positive and real.
Therefore, the solutions obtained from the coupled system of GDEs were acquired the

form of Equation (5):

vGDE,1(x) = e0.4233·x ·
(
7.4811 · 10−7 · cos(0.3837 · x) +2.7792 · 10−4 · sin(0.3837 · x)

)
+e−0.4233·x ·

(
−4.2377 · 10−3 · cos(0.3837 · x) −1.3896 · 10−4 · sin(0.3837 · x)

)
− 3.3333 · 10−4 0 ≤ x ≤ 2 m

vGDE,2(x) = e0.4233·x ·
(
8.8944 · 10−6 · cos(0.3837 · x) +1.5382 · 10−5 · sin(0.3837 · x)

)
+e−0.4233·x ·

(
−2.8128 · 10−3 · cos(0.3837 · x) −2.3464 · 10−4 · sin(0.3837 · x)

)
− 3.3333 · 10−4 2 m ≤ x ≤ 6 m

vGDE,3(x) = e0.4233·x ·
(
4.2036 · 10−6 · cos(0.3837 · x) +2.1772 · 10−5 · sin(0.3837 · x)

)
+e−0.4233·x ·

(
−3.7523 · 10−3 · cos(0.3837 · x) +6.2555 · 10−4 · sin(0.3837 · x)

)
− 5.3333 · 10−4 6 m ≤ x ≤ 10 m

vGDE,4(x) = e0.4233·x ·
(
4.6530·10−6 · cos(0.3837 · x) +3.2713 · 10−5 · sin(0.3837 · x)

)
+e−0.4233·x ·

(
−5.5265 · 10−2 · cos(0.3837 · x) +7.83935 · 10−3 · sin(0.3837 · x)

)
− 5.3333 · 10−4 10 m ≤ x ≤ 12 m

In the initial FE model, the applied two-parametric soil stiffness matrices and load
vectors obtained from Equations (25) and (29) of the implemented two cb2psFE of equal
lengths were:

[kb] =


0.356062 0.963040 −0.356062 1.173333
0.963040 3.431570 −0.963040 2.346667
−0.356062 −0.963040 0.356062 −1.173333
1.173333 2.346667 −1.173333 4.693333

 · 108; [ks1] =


1.746241 1.685490 0.556703 −0.861501
1.685490 2.104046 0.882174 −1.311865
0.556703 0.882174 1.640353 −1.388499
−0.861501 −1.311865 −1.388499 1.542857

 · 108

[ks2] =


0.094107 0.070474 −0.094107 0.044168
0.070474 0.517836 −0.070474 −0.094990
−0.094107 −0.070474 0.094107 −0.044168
0.044168 −0.094990 −0.044168 0.360000

 · 108

[k1] =


2.196411 2.719004 0.106533 0.356000
2.719004 6.053453 −0.151340 0.939812
0.106533 −0.151340 2.090523 −2.606000
0.356000 0.939812 −2.606000 6.596190

 · 108;
{

Fq(x),1

}
=


−76764.801
−85588.803
−73235.199
75000.000


[k2] =


2.090523 2.606000 0.106533 0.151340
2.606000 6.596190 −0.356000 0.939812
0.106533 −0.356000 2.196411 −2.719004
0.151340 0.939812 −2.719004 6.053453

 · 108;
{

Fq(x),2

}
=


−117176.319
−120000.000
−122823.681
136942.085


where all matrix components of the complete stiffness matrix [k1] obtained from Equa-
tions (22)–(24) are also shown for the first finite element.

Afterwards, element matrices, as well as load vectors, were assembled and three dis-
crete nodal displacement values, as well as rotations, were calculated next. Subsequently,
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these discrete values were implemented with newly derived polynomial interpolation func-
tions to obtain transverse displacement values between the nodes, as shown in Equations (8)
and (9):

v1,1(x) = −4.4899 · 10−3 + 1.8797 · 10−3 · x− 1.6973 · 10−4 · x2 + 9.2677 · 10−6 · x3 0 ≤ x ≤ 2 m

v2,1(x) = −3.2780 · 10−3 + 1.2242 · 10−3 · x− 1.3259 · 10−4 · x2 + 3.0761 · 10−6 · x3 2 m ≤ x ≤ 6 m

v1,2(x) = −1.7714 · 10−3 + 4.3860 · 10−4 · x + 3.7231 · 10−6 · x2 − 4.7954 · 10−6 · x3 6 m ≤ x ≤ 10 m

v2,2(x) = 1.2968 · 10−2 − 2.5558 · 10−3 · x + 2.3180 · 10−4 · x2 − 1.2398 · 10−5 · x3 10 m ≤ x ≤ 12 m.

The results for transverse displacements are shown in Figure 3, where the horizontal
axis represents the distance from the left end of the beam. The vertical axis shows the
transverse displacement, and the red and black lines show the solutions of GDEs and
the FEM model, respectively. It is clear from Figure 3a that both models exhibit decent
agreement at the end nodes of the beam, but the discrepancies are more obvious at some
other points. However, it should be noted that the implemented interpolation functions
were polynomial interpolation functions, Equations (10) and (11), which do not include the
genuine Winkler soil parameter.
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Nevertheless, mesh refinements had an obvious positive impact on the results as the
differences between approximate solutions and the GDEs solutions effectively decreased. In
Figure 3b, the results for transverse displacements are presented for the FEM computational
model consisting of four cb2psFE elements of equal lengths (where for the non-cracked
elements with δ′ = 0, the value of parameter ψ was taken as 0). The progress over the
original two cb2psFE model is clearly evident as the discrepancies already almost vanished.

Furthermore, a comparison of displacements at five locations (points A, B, and C,
which are located at the left end, mid-span, and right end, respectively, as well as both
crack locations (C1 and C2)) for different finite element meshes is given in Table 1. While
the discrete displacements of points A, B, and C of all meshes were obtained directly from
the model system of linear equations, the displacement values at the crack locations (vC1
and vC2) were generally obtained by interpolation (denoted by * in the table). The only
exceptions are meshes where the element node and the crack coincided in the model.
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Table 1. Results of transverse displacements for several solutions and locations.

Solution vA (mm) vC1 (mm) vB (mm) vC2 (mm) vC (mm)

GDEs −4.57025 −1.23163 −0.12909 −1.68105 −5.85171
2 cb2psFE −4.48993 −1.33539 * −0.04154 −1.80843 * −5.74653
4 cb2psFE −4.55059 −1.25081 * −0.12998 −1.70517 * −5.82683
6 cb2psFE −4.56149 −1.22663 −0.12945 −1.67464 −5.84065
8 cb2psFE −4.56849 −1.23202 * −0.12925 −1.68155 * −5.84949

10 cb2psFE −4.56950 −1.23200 * −0.12916 −1.68152 * −5.85077
12 cb2psFE −4.56983 −1.23141 −0.12912 −1.68077 −5.85119

* values obtained from interpolation functions of cb2psFE model.

Obviously, the comparison of displacement values in the table leads to the conclusion
that the convergence of the results is evident. The values demonstrate that the directly
obtained nodal values are generally slightly more accurate than the interpolated values
between the nodes. However, it should be noted that the first soil parameter (i.e., k) is
included solely in the calculation of the nodal displacement (through the newly presented
stiffness matrices), while it is not included in the interpolation functions.

The discrete nodal displacements and rotations additionally allow for the matching
nodal values of bending moments as well as shear forces to be calculated directly through
the vector {Q}. By further implementations, these discrete values allow for bending moment
functions to be calculated. Thus, Figure 4 shows the values of bending moment functions
on the vertical axis obtained from the four implemented approaches, while the horizontal
axis represents the distance from the left beam end. The red line shows the benchmark
solutions of GDEs, while the black line shows the values obtained by DEDC i.e., through
the second derivatives of transverse displacement functions. Furthermore, the light blue
and the dark blue lines show the functions obtained from interpolations implementing H1
and H2 polynomials, respectively.
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Figure 4a shows the results for the two FE meshes, and the impact of the degree of
the polynomial is quite obvious as the fifth degree H2 polynomials evidently exhibit the
best matching against the GDEs solutions. Nevertheless, if the mesh is refined and several
more finite elements are applied, all discussed approaches converge toward exact GDEs
solutions, however with different convergence rates. Thus, Figure 4b shows the results
of eight finite element meshes. It is also evident from this figure that the agreement is
increasing simultaneously with the degree of the implemented polynomial, although the
differences between both Hermite polynomial solutions efficiently diminish.

Among several approaches available for calculations of shear force functions, the
direct interpolation of shear force values exhibited the optimal selection regarding the
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balance between the quality of the results and the computational efforts. Figure 5 on
the vertical axis shows the shear force results for two (a) and four (b) cb2psFE meshes,
respectively (the horizontal axis represents the distance from the left end of the beam). It
confirms that even for a rather small number of finite elements, the H2 (as well as even H1)
interpolation functions already produced excellent matching to the values obtained with
the GDEs solutions. %clearpage
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4.2. Second Example

In this study, the height of the rectangular cross-section was reduced to h = 0.1 m
(with Kr = 4.32022·106 Nm obtained from Equation (1)). This value led to the case where
kG

2 > 4·EIz·k, consequently meaning that the coefficient λ2 became an imaginary value
(such cases are possible in the engineering practice, although they are less frequent). This
changed not only the numerical values of the coupled GDEs solutions but also their
mathematical forms. Therefore, the corresponding solutions were obtained in the form of
Equation (6):

vGDE,1(x) = 4.0822 · 10−4 · e−5.5647·x − 7.1761 · 10−3 · e−1.3272·x − 2.7301 · 10−7 · e1.3272·x + 2.0557 · 10−10 · e5.5647·x − 3.3333 · 10−4

0 ≤ x ≤ 2 m

vGDE,2(x) = 0.9550 · 10−4 · e−5.5647·x − 7.2236 · 10−3 · e−1.3272·x − 3.7995 · 10−8 · e1.3272·x + 1.9061 · 10−20 · e5.5647·x − 3.3333 · 10−4

2 m ≤ x ≤ 6 m

vGDE,3(x) = −1.9086 · 109 · e−5.5647·x + 0.2974 · 10−3 · e−1.3272·x − 1.0936 · 10−9 · e1.3272·x + 1.1899 · 10−29 · e5.5647·x − 5.3333 · 10−4

6 m ≤ x ≤ 10 m

vGDE,4(x) = 2.5682 · 1019 · e−5.5647·x − 2.1234 · e−1.3272·x − 1.0865 · 10−9 · e1.3272·x + 5.0959 · 10−33 · e5.5647·x − 5.3333 · 10−4

10 m ≤ x ≤ 12 m

A two cb2psFE model was also applied here initially, whereas the corresponding
stiffness matrices and load vectors were obtained from Equations (25) and (29), respectively.
After solving the system of six linear equations, three discrete nodal displacement values
as well as rotations were obtained. These values were further coupled with polynomial
interpolation functions to additionally obtain transverse displacements between the nodes,
as shown in Equations (8) and (9). This problem’s results for transverse displacements are
presented in Figure 6. The abscissa axis represents the distance from the left end of the beam,
and the ordinate axis represents the transverse displacement of the two models. In addition,
the red and black lines show the solutions of GDEs and the cb2psFE model, respectively. It
is apparent from Figure 6a that the results of the two FE mesh now exhibit almost perfect
agreement at all three nodes and that only some rather small discrepancies are apparent in
the vicinities of the cracks. Nevertheless, any discrepancies already completely disappear
when four FEs are being implemented, as shown in Figure 6b.
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some rather small discrepancies are apparent in the vicinities of the cracks. Nevertheless, 
any discrepancies already completely disappear when four FEs are being implemented, 
as shown in Figure 6b. 
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Afterwards, several analyses with more finite elements were executed where the 
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solutions, as no discrepancies were detected. Therefore, just a comparison of 
displacements at five characteristic points for different finite element meshes is presented 
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Figure 6. Comparison of transverse displacements for two (a) and four (b) FE meshes, respectively.

Afterwards, several analyses with more finite elements were executed where the dis-
placement curves of all models visually exhibited ideal matching with the GDEs solutions,
as no discrepancies were detected. Therefore, just a comparison of displacements at five
characteristic points for different finite element meshes is presented in Table 2.

Table 2. Results of transverse displacements for several solutions and locations.

Solution vA (mm) vC1 (mm) vB (mm) vC2 (mm) vC (mm)

GDEs −7.10145 −0.82797 −0.43899 −1.15046 −8.99332
2 cb2psFE −7.08739 −0.88593 * −0.42891 −1.22572 * −8.97526
4 cb2psFE −7.09083 −0.84549 * −0.44200 −1.17304 * −8.98006
6 cb2psFE −7.09121 −0.83208 −0.44032 −1.15551 −8.98052
8 cb2psFE −7.09091 −0.84219 * −0.43912 −1.16822 * −8.98014

10 cb2psFE −7.09237 −0.83551 * −0.43905 −1.15987 * −8.98197
12 cb2psFE −7.09418 −0.82692 −0.43902 −1.14915 −8.98423

* values obtained from interpolation functions of cb2psFE model.

Figure 7 (in which the horizontal axis represents the distance from the left end of the
beam, and the ordinate axis represents the bending moment) compares the bending moment
values obtained by different approaches. As a result, it clearly shows the evolution of
bending moment functions obtained from GDEs solutions (red line) as well as interpolated
functions obtained by H1 (light blue) and H2 (dark blue) polynomials. It is undoubtedly
evident from the figure that the GDEs bending moment functions are dominated by two
extremely localized peaks near both beam ends (with intensive changes of curvature within
their vicinities). Therefore, an increased number of finite elements (Ne) was required to
obtain visually perfect agreement of the results (although some small discrepancies in the
vicinities of the cracks remain still noticeable).
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are smoother than the bending moment functions, fewer finite elements were required to 
obtain a very fine agreement of the results. The horizontal axis in Figure 8 represents the 
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At last, functions of shear force distributions were calculated. Since these functions
are smoother than the bending moment functions, fewer finite elements were required to
obtain a very fine agreement of the results. The horizontal axis in Figure 8 represents the
distance from the left end of the beam, and the vertical axis represents the results of the
shear force. For a small number (i.e., four) of finite elements, as shown in Figure 8a, the
H2 interpolation functions (dark blue) produced evidently better matching against GDEs
solutions (red) as the H1 (light blue) interpolation functions. However, since the model
number of FEs is actually governed by the bending moment functions, the differences
between both interpolations became almost irrelevant with the increasing number of FEs
as the H1 interpolation functions already produced good matching, as shown in Figure 8b.
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5. Conclusions

The main conclusions can be summarized as follows:

• FEM bending analysis of slender cracked uniform beams resting on a two-parametric
soil was considered.

• The second soil parameter was directly implemented in the new transverse displace-
ment interpolation functions.

• The FE’s complete stiffness matrix consists of three separately derived matrices be-
longing to the beam and both soil contributions.

• The presented solutions converge to the exact differential equations solutions inde-
pendently of the value of the coefficient λ2.

• Derived solutions in the closed symbolic form are applicable for all two-parametric
soil models that have the same governing differential equation.

Nevertheless, future studies should initially focus on the inclusion of the first soil
parameter directly in the interpolation functions (either in the form of approximate polyno-
mials or by implementing exact solutions of the governing differential equations). Research
could also consider variations of cross-sections and both soil parameters along the length
of the element. The third research direction should be oriented toward experimental
verifications.
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