
applied
sciences

Article

High-Performance English–Chinese Machine Translation Based
on GPU-Enabled Deep Neural Networks with Domain Corpus

Lanxin Zhao 1,*, Wanrong Gao 2 and Jianbin Fang 2

����������
�������

Citation: Zhao, L.; Gao, W.; Fang, J.

High-Performance English–Chinese

Machine Translation Based on

GPU-Enabled Deep Neural Networks

with Domain Corpus. Appl. Sci. 2021,

11, 10915. https://doi.org/

10.3390/app112210915

Academic Editors: Jorge

Martin-Gutierrez

and João M. F. Rodrigues

Received: 13 September 2021

Accepted: 17 November 2021

Published: 18 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of International Business, Hunan University of Information Technology, Changsha 410151, China
2 School of Computer, National University of Defense Technology, Changsha 410073, China;

gaowanrong@nudt.edu.cn (W.G.); j.fang@nudt.edu.cn (J.F.)
* Correspondence: zhaolanxin21@yeah.net

Abstract: The ability to automate machine translation has various applications in international
commerce, medicine, travel, education, and text digitization. Due to the different grammar and
lack of clear word boundaries in Chinese, it is challenging to conduct translation from word-based
languages (e.g., English) to Chinese. This article has implemented a GPU-enabled deep learning
machine translation system based on a domain-specific corpus. Our system takes an English text
as input and uses an encoder-decoder model with an attention mechanism based on Google’s
Transformer to translate the text to Chinese output. The model was trained using a simple self-
designed entropy loss function and an Adam optimizer on English–Chinese bilingual text sentences
from the News area of the UM-Corpus. The parallel training process of our model can be performed
on common laptops, desktops, and servers with one or more GPUs. At training time, we not only
track loss over training epochs but also measure the quality of our model’s translations with the
BLEU score. We also provide an easy-to-use web interface for users so as to manage corpus, training
projects, and trained models. The experimental results show that we can achieve a maximum BLEU
score of 29.2. We can further improve this score by tuning other hyperparameters. The GPU-enabled
model training runs over 15x faster than on a multi-core CPU, which facilitates us having a shorter
turn-around time. As a case study, we compare the performance of our model to that of Baidu’s,
which shows that our model can compete with the industry-level translation system. We argue
that our deep-learning-based translation system is particularly suitable for teaching purposes and
small/medium-sized enterprises.

Keywords: neural machine translation; transformer; GPUs; multi-domain corpus

1. Introduction

Currently, machine learning (ML) is experiencing a renaissance where deep learning
(DL) has been the main driving force. Deep neural networks (DNNs) are extremely
powerful machine learning models that can achieve promising performance on challenging
problems such as speech recognition [1,2] and visual object recognition [3–6]. In particular,
due to the capacity of capturing complex linguistic structures, DNNs have enabled great
breakthroughs in natural language processing (NLP) [7–9]. Among the NLP tasks, machine
translation (MT) is a successful representative, and its main task is using computer software
to translate text or speech from one language to another.

It is a common belief that machine translation has experienced three major develop-
ment waves: rule-based machine translation (RMT) [10], statistical machine translation
(SMT) [11], and neural machine translation (NMT) [12]. SMT has been the mainstream
driving force during the past two decades. However, this approach may ignore the long de-
pendency beyond the length of phrases and thus cause inconsistencies in translation results
such as incorrect gender agreements. It also suffers in separate components such as word
aligners, translation rule extractors, and other feature extractors. Compared with the SMT

Appl. Sci. 2021, 11, 10915. https://doi.org/10.3390/app112210915 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app112210915
https://doi.org/10.3390/app112210915
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210915
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210915?type=check_update&version=2

Appl. Sci. 2021, 11, 10915 2 of 17

method, NMT has a simple architecture, and it is able to capture long dependency in the
sentence, which shows a great potential in becoming a new trend of language translation.

The dominant NMT approach is the “Embed-Encode-Attend-Decode” paradigm.
Recurrent neural network (RNN) [13], convolutional neural network (CNN) [14], and
self-attention/feed-forward network (SA/FFN) [15] architectures are the most commonly
used approaches based on this paradigm. In particular, Google has proposed Transformer,
which relies entirely on self-attention to compute representations of its input and output
without using sequence-aligned RNNs or CNNs [15]. The Transformer model aims to deal
with long-range dependencies when solving the sequence-to-sequence tasks. This model
has outperformed many other models, which is thus the focus of our work.

Recent works have focused on large pretrained models, which are mostly built based
on the Transformer model, but with much larger capacity [15–18]. This approach utilizes
a combination of pretraining and supervised fine-tuning. The capacity of transformer
language models has increased significantly, from 100 million parameters [16], to 1.5 billion
parameters [17], and finally 17 billion parameters [9,18]. Although each increase has
brought significant performance improvements in downstream NLP tasks, training such
models requires large-scale specialized computing hardware such as Google’s TPUs [19].
These computing clusters are typically unaffordable for small/medium-sized enterprises.
On the other hand, these models are too complicated and their capacity is too large for us
to understand. That is, we know the models perform well, but we do not know the reasons.
They work similar to a “black-box” and are particularly unsuitable for teaching purposes.

The dominant approach to creating machine learning systems is to collect a dataset
of training examples demonstrating correct behavior for a desired task, train a system to
imitate these behaviors, and then test its performance on independent held-out examples.
This approach can provide trained models that work like domain experts, which has
been widely accepted. Many prior works have shown that trained models can yield a
better prediction accuracy from using a domain-specific bilingual corpus [20–22]. For
example, microblogs are an excellent linguistic resource. Ling et al. have shown that some
microblog users post “self-translated” messages targeting audiences who speak different
languages [21]. Based on this observation, the authors have introduced a method for
finding and extracting this naturally occurring Chinese–English parallel segments. Their
evaluation results have demonstrated that the automatically extracted parallel data obtain
significant translation quality improvements. Tian et al. have designed UM-Corpus as
a multi-domain and balanced parallel corpus [23]. It is a two million English–Chinese
aligned corpus from eight different text domains, including Education, Laws, Microblog,
News, Science, Spoken, Subtitles, and Thesis. Although using a domain-specific corpus for
model training has yielded promising results, we believe that there is a lack of a bilingual
corpus from domain experts. Therefore, determining how to leverage domain expertise
and build a new corpus is largely required.

In this work, we present an easy-to-use deep learning machine translation system,
built from the scratch, based on a domain corpus. The deep learning algorithm takes in
English text as input and uses an encoder-decoder model with an attention mechanism
based on Google’s Transformer to translate the text to Chinese output. The model was
trained using a simple self-designed entropy loss function and an Adam optimizer on
paired English and Chinese text sentences from the news area of the UM-Corpus. The
parallel training process of our model can be performed on common laptops, desktops,
and servers with one or more GPUs. During training time, we not only track loss over
training epochs but also measure the quality of our model’s translations using the BLEU
score (see Section 2.1.5).

The experimental results on the UM-corpus show that our trained model can achieve
a maximum BLEU score of 29.2. We can further improve this score by tuning other hyper-
parameters. We provide a web interface for users to build a domain-specific corpus and
configure training parameters. We also observe that training the model on high-end GPUs
is much faster than on a multi-core CPU, and thus the GPU is a very promising training

Appl. Sci. 2021, 11, 10915 3 of 17

platform for NMT. We conclude that our translation system is platform-portable, which is
suitable for teaching purposes and use scenarios in small/medium-sized enterprises. As a
case study, we compare the performance of our model to that of Baidu’s and show that our
model can compete with the production-level translation system.

To summarize, our contributions are as follows:

• We present a transformer-based machine translation system, which is built from
scratch, based on a domain corpus.

• Our translation system is easy to use with a web interface, so that domain experts can
extend the existing corpus and train the model in a fine-tuned manner.

• Our machine learning system is both portable and configurable and can be deployed
on laptops, desktops, or servers with multiple GPUs.

• Our translation system trained based on a domain corpus can achieve competing
performance with a production-level translation system.

2. Background and Related Work

This section introduces the background of neural machine translation (NMT) and
emphasizes prior works on the English–Chinese machine translation.

2.1. Neural Machine Translation

Due to the proliferation of deep learning, using deep neural networks for machine
translation tasks has gained great attention. We regard that Kalchbrenner and Blunsom
proposed the first successful DNN-based machine translation model, which is a new
concept for machine translation [24]. Compared with other models, the NMT model needs
less linguistic knowledge while producing a competitive performance. Since then, many
researchers have shown that NMT can perform much better than SMT.

2.1.1. Formulating the NMT Task

In the MT task, the language model (LM) can actually give the most important
information: the emergence probability of a particular word (or phrase) that is conditioned
on previous words. Thus, the key to improve the translation performance is to build
a better language model. The NMT task is designed as an end-to-end learning task. It
directly processes a source sequence to a target sequence. The learning objective is to
find the correct target sequence given the source sequence, which can be seen as a high
dimensional classification problem that tries to map the two sentences in the semantic
space.

Given a parallel corpus C having a set of parallel sentence pairs (x, y), the training
objective is to maximize the likelihood L in terms of θ, which is shown in Equation (1) L:

Lθ = ∑
(x,y)∈C

logp(y|x; θ), (1)

where x = x1, . . . , xn denotes an input sentence, y = y1, . . . , yn represents its translation,
and θ is a set of parameters to be learned. Given the source sentence, the probability of a
target sentence is calculated as shown in Equation (2):

p(y|x; θ) =
m

∏
j=1

p(yj|y<j, x; θ) (2)

where m is the number of words in y, yj is the current generated word, and y<j are the
previously generated words. At the inference time, beam search is typically used to find
the translation that maximizes this probability.

2.1.2. The NMT Structure

The most commonly used NMT approach is the “Embed-Encode-Attend-Decode”
paradigm, which is illustrated in Figure 1. When the encoder receives one source sentence,

Appl. Sci. 2021, 11, 10915 4 of 17

it reads the source sentence word by word and compresses the variable-length sequence
into a fixed-length vector. This process is encoding, i.e., the encoder converts words in the
source sentence into word embedding. These word embeddings are then processed by
neural layers and converted to representations that capture contextual information. These
contextual representations are called the encoder representations. The decoder uses an
attention mechanism, the encoder representations, and previously generated words to
generate the decoder representations, which in turn are used to generate the next target
word. The encoder and decoder can be of RNN [13], CNN [14], or self-attention and
feed-forward [15].

Figure 1. A standard NMT model based on the encode-attend-decode modeling approach.

While NMT has shown great potential in capturing the dependencies inside the
sequence, it still suffers a huge performance reduction when the input sentences are too
long. This is due to the limited feature representation ability in a fixed-length vector.
Thus, the attention mechanism came into being. It works as an intermediate component
between Encoder and Decoder, which facilitates the word correlation in a dynamic manner
(Figure 1). As a matter of fact, the inspiration for applying the attention mechanism on
NMT comes from human behavior in reading and translating text data: human beings
often read text repeatedly to mine the word dependency within the sentence.

2.1.3. NMT with Attention Mechanism

Recently, fully attention-based NMT has shown promising performance. In particular,
the attention mechanism has worked as a driving force in text feature extraction rather
than having an auxiliary role. Among them, Transformer is one representative, which is a
fully attention-based model from Google [15].

Different from prior RNN- or CNN-based models, Transformer is a complete attention-
based NMT model. That is, it is of self-attention with a feed-forward connection, which
can be a feature extractor allowing the entire sentence to be “read” and modeled once. It is
a common practice to stack multiple layers, which leads to an improved translation quality.

Formulating Self-Attention Layers. The attention mechanism is calculated across the
decoder and encoder in Equations (3) and (4):

eji = a(sj−1, hi), (3)

aji =
exp(eji)

∑m
k=1 exp(eki)

, (4)

where eji is an alignment score, a is an alignment model that scores the match level of the
inputs around position i and the output at position j, s(j−1) is the decoder hidden state
of the previously generated word, and hi is the encoder hidden state at position i. The
calculated attention vector is then used to weight the encoder hidden states to obtain a
context vector as

cj =
n

∑
i=1

ajihi, (5)

Appl. Sci. 2021, 11, 10915 5 of 17

This context vector, is fed to the decoder along with the previously generated word and
its hidden state to produce a representation for generating the current word. A decoder
hidden state for the current word sj is computed by

sj = g(sj−1, yj−1, cj), (6)

where g is an activation decoder function, s(j−1) is the previous decoder hidden state, and
y(j−1) is the embedding of the previous word. The current decoder hidden state sj, the
previous word embedding, and the context vector are fed to a feed-forward layer f and a
softmax layer to compute a score for generating a target word as output:

P(yj|y<j, x) = so f tmax(f (sj, yj−1, cj)), (7)

2.1.4. NMT Model Training

When training an NMT model, the first step is to transfer the words to vectors, i.e.,
word embedding. The most frequently used words in one language will be chosen, and the
remaining words are treated as unknown words. To overcome the problem of unknown
words, the most common practice is subword tokenization with methods such as byte-pair
encoding (BPE) [25], word-piece model (WPM) [26], or sentence-piece model (SPM) [27].

During the training time, the encoder-decoder model is fed by a parallel corpus.
The learning objective is to minimize the cross-entropy loss between the predicted target
words and the actual target words in the reference. The model parameters are initialized
randomly. The training process could be formulated as updating its parameters periodically
until obtaining the minimum loss of the neural network. This loss minimization is an
optimization problem, and we can use gradient descent methods such as SGD, Adam,
ADAGRAD, and Adafactor [28]. Among them, Adam is able to train models very fast, but
it suffers in converge speed. In contrast, SGD can converge better, but it requires a long
time for training. Designing a learning schedule that combines several optimizers can help
train a model efficiently [29].

Training is done for a large number of iterations till the model converges. That is,
the model evaluation does not change by a significant amount over iterations. In the
implementation, we will refine the parameters after it processes a batch of training samples.
We have to take care of the hyperparameter tuning, including learning rate, number of
layers, and so on.

2.1.5. Model Evaluation

It is common to use bilingual evaluation understudy (BLEU) to evaluate NMT tasks.
This metric is used to measure the differences between a model generated target sentence
and its reference sentence. BLEU is defined in Equations (8) and (9):

BLEU = BP · exp(
N

∑
n=1

wn log pn), (8)

BP = { 1, c > r
e1− r

c , c ≤ r
(9)

where pn is n-gram corrected accuracy, wn is 1
n , c is the length of the translated sentence, r

is the length of the reference sentence, and N = 4. The larger the BLEU is, the better.

2.2. English–Chinese Machine Translation

English–Chinese machine translation has been investigated for several decades. We
summarize the prior NMT work in terms of designing new learning models and leveraging
language features.

Appl. Sci. 2021, 11, 10915 6 of 17

2.2.1. Designing New Learning Models

Hassan et al. address the problem of how to define and accurately measure human
parity in translation and describe Microsoft’s machine translation system [30]. They see
that the translation quality of the latest neural machine translation system is at human
parity. To address the issue of duplicate or missing translations, Lin et al. proposed neural
machine translation improvements based on a novel beam search evaluation function [31].
They show that the proposed methods can effectively improve the English to Chinese
translation quality.

SMT often performs better than NMT in translation adequacy and word coverage.
Thus, it is a promising direction to combine the advantages of NMT and SMT. Zhou et
al. propose a deep neural network-based system combination framework leveraging both
minimum Bayes-risk decoding and multi-source NMT, which take as input the N-best
outputs of NMT and SMT systems and produce the final translation [32]. This approach
has been shown to significantly outperform the conventional system combination methods.

Xiong et al. propose to enhance encoding components with different levels of com-
position [33]. This model takes (1) the original word embedding for raw encoding with
no composition and (2) a particular design of external memory in a neural turing machine
(NTM) for more complex compositions. An empirical study on Chinese–English translation
shows that their model can improve by 6.52 BLEU points. Wang et al. describe the Sogou
neural machine translation systems for the WMT 2017 Chinese–English news translation
tasks [34]. Their translation systems are built based on a multi-layer encoder-decoder
architecture with attention mechanism. The best translation is obtained with ensemble
and reranking techniques. Their translation system achieved the highest BLEU among all
20 submitted systems.

Tencent neural machine translation systems were designed for the WMT 2020 news
translation tasks [35]. Their systems are built on deep Transformer and several data
augmentation methods. They propose a boosted in-domain finetuning method to improve
single models. They achieved a BLEU score of 36.8 on the Chinese–English task. In 2021,
Tencent introduced a system based on the Transformer with several novel and effective
variants. Their constrained systems achieve very good BLEU scores.

2.2.2. Leveraging Chinese Features

Chinese phonologic features play an important role in the sentence pronunciation.
To improve the machine translation performance, Yang et al. propose a novel phonology-
aware neural machine translation (PA-NMT) model where Chinese phonologic features are
leveraged for translation tasks with Chinese as the target [36]. A separate recurrent neural
network (RNN) is constructed in the NMT framework to exploit Chinese phonologic fea-
tures to facilitate the generation of more native Chinese expressions. Experimental results
on the English-to-Chinese task show that the proposed method significantly outperforms
state-of-the-art baselines.

Neural machine translation (NMT) faces the challenge of out-of-vocabulary (OOV)
word translation. Han et al. address this OOV issue and improve the NMT adequacy
with a harder language, such as Chinese, whose characters are even more sophisticated in
composition [37]. They integrate the Chinese radicals into the NMT model with different
settings to address the unseen word challenge in Chinese-to-English translation. The
experiments on standard Chinese-to-English NIST translation shared task data from 2006
and 2008 show that their designed models outperform the baseline model in a wide range
of state-of-the-art evaluation metrics.

3. Our Methods

This section provides a detailed description of our methods for English–Chinese
translation based on the Transformer model. We introduce our methods in terms of word
segmentation, data preprocessing, model training, and deployment.

Appl. Sci. 2021, 11, 10915 7 of 17

3.1. Word Segmentation

The task of word segmentation is to divide a string of written language into its
component words. In English, the space is a good approximation of a word delimiter.
However, the equivalent to word spacing is missing in languages such as Chinese.

Here, we use the BPE (byte pair encoding) algorithm to perform tokenization on
the raw dataset [25]. Specifically, we use SentencePiece, which is an unsupervised text
tokenizer for neural network-based text generation systems, where the vocabulary size
is predetermined prior to the neural model training. SentencePiece allows us to make an
end-to-end system that does not depend on language-specific pre-/post-processing.

For English, the segmenter splits the punctuation and separates some affixes such as
possessives. For Chinese, which is written without spaces between words, SentencePiece
treats the input text as a sequence of Unicode characters. Whitespace is also handled as a
normal symbol. Thus, we can detokenize the text without any ambiguities. Based on this
tool, we can perform word segmentation efficiently, which is shown in Figure 2.

Figure 2. Tokenizing a Chinese sentence based on SentencePiece.

Each sentence is transformed into a sequence of integers, each integer being the index
of a token in the dictionary. Only the top N frequent words will be taken into account. The
N is set to 32,000 for both the English and the Chinese vocabulary.

3.2. Data Preprocessing and Loading

After training the word segmentation model, we preprocess the data with the pytorch
tool, i.e., torch.utils.data.Dataset. The main tasks include three steps. The first is to
reorder the English–Chinese parallel corpus according to the length of English sentences.
In this way, we aim to ensure that the sentences within a batch are of the same length. Then,
we perform word segmentation for the parallel sentences with the trained model and map
each word to a unique ID in the vocabulary. The third step is that we add a starting symbol
and an ending symbol for each embedding sentence, which thus generates a tensor for
model training.

3.3. Model Training

We use the PyTorch functional API to create a Transformer model [15]. After shuffling
the news dataset, we create training, validation, and test sets with a 70–10–20% split. As a
result, there are 176,943 bilingual sentences for training, 25,278 for validation, and 50,556
for testing. The network is trained with a batchsize of 32, an optimizer of Adam, and a
self-designed loss function for a total of 40 epochs. The training loss reduces to 2.08, and
the validation loss converge reaches 4.10. The parameters of our trained model are around
400 MB. The following subsections specifically show how we train the transformer-based
NMT model.

3.3.1. The Transformer Model

Rather than using the RNN or CNN structure, Transformer is the first encoder-decoder
model purely relying on the self-attention mechanism [15]. To be exact, Transformer only
consists of self-attention and a feed-forward neural network. A real-world neural network
can have many stacked encoder layers and decoder layers.

Figure 3 shows the network architecture of the Transformer model. We see that the
encoder consists of multi-head self-attention and a position-wise feed-forward network.
It takes the sum of input embedding and positional embedding as input. The decoder
consists of masked multi-head self-attention, multi-head self-attention, and a position-wise
feed-forward network. The decoder takes the sum of output embedding and positional
embedding as input. A typical transformer model has 6 layers of encoder and 6 layers

Appl. Sci. 2021, 11, 10915 8 of 17

of decoder. However, our trained model is much larger than this configuration and is
available upon request.

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

+
Positional
Encoding

Output
Embedding

Masked Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

+
Positional
Encoding

Multi-Head
Attention

Add & Norm

LinearSoftmaxOutput
Probabilities

Inputs Outputs

Figure 3. The Transformer model architecture.

3.3.2. Training Optimizer

We used the Adam optimizer with β1 = 0.9, β2 = 0.98 and ε = 10−9. We varied the
learning rate (lr) over the period of training, according to Equation (10):

lr = d−0.5
model ·min(step_num−0.5, step_num · warmup_step−1.5), (10)

where step_num denotes the current step number, and warmup_step is the number of steps
used to warm up the training process. This corresponds to increasing the learning rate
linearly for the first warmup_steps training steps and decreasing it thereafter proportionally
to the inverse square root of the step_num. Here, warmup_steps = 4000. Figure 4 shows
the implementation of the training optimizer. These parameters are selected in a trial-and-
error approach.

3.3.3. Parallel Training

Training deep learning models with a large amount of training data is not a trivial
task, which is performed in a high-performance computing infrastructure with a large
number computing nodes or accelerators. Training NMT models also consumes a lot of
computing resources. Thus, we choose to train our transformer model in a parallel way.

Training NMT models comes with many forms of parallelization, including data
parallelism, model parallelism, pipeline parallelism, and hybrid forms of parallelism. In
data parallelism, a number of workers load an identical copy of the deep learning model.
The training data are partitioned into non-overlapping chunks and fed into the model
replicas of the works for training. In model parallelism, the NMT model is partitioned,
and each worker loads a different portion of the NMT model for training. The workers
that hold the input layer of the model are fed with the training data. By contrast, pipeline
parallelism combines the two aforementioned forms of parallelism.

Appl. Sci. 2021, 11, 10915 9 of 17

1 c l a s s TrainOpt :
" " " Optim wrapper t h a t implements r a t e . " " "

3
def _ _ i n i t _ _ (s e l f , model_size , f a c t o r , warmup, optimizer) :

5 s e l f . opt imizer = optimizer
s e l f . _s tep = 0

7 s e l f . warmup = warmup
s e l f . f a c t o r = f a c t o r

9 s e l f . model_size = model_size
s e l f . _ r a t e = 0

11
def s tep (s e l f) :

13 " " " Update parameters and r a t e " " "
s e l f . _s tep += 1

15 r a t e = s e l f . r a t e ()
for p in s e l f . opt imizer . param_groups :

17 p [’ l r ’] = r a t e
s e l f . _ r a t e = r a t e

19 s e l f . opt imizer . s tep ()

21 def r a t e (s e l f , s tep=None) :
" " " Implement ‘ l r a t e ‘ above " " "

23 i f s tep i s None :
s tep = s e l f . _s tep

25 return s e l f . f a c t o r * (s e l f . model_size * * (− 0 . 5) * min (s tep * * (− 0 . 5) , s tep * s e l f .
↪→ warmup * * (− 1 . 5)))

Figure 4. The implementation of the training optimizer.

In this work, we aim to train our NMT model on diverse available computing resources
such as laptop CPUs, desktop CPUs, and server CPUs with one or multiple GPUs. In
addition, we mainly use data parallelism to speed up the training process. As shown in
Figure 5, the entire English–Chinese parallel corpus is partitioned into a large number
of batches, and each batch of the training data is distributed to a processor of a GPU or
multi-core CPU. Thus, we have to ensure that we have sufficient batches so as to fully
utilize the whole GPU processor or multiple GPUs. Our implementation is built based on
the DataParallel module of the PyTorch framework. Note that we have to use suitable APIs
to create the model and perform data movements between CPUs and GPUs. The batch size
is set to be 32.

English-Chinese
Parallel Corpus

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

Training data is partitioned
into batches

Each batch is distributed to a
processor of GPUs or CPUs

Figure 5. Data parallelism for training the transformer model.

3.4. Model Deployment

Once an NMT model has been trained, it can be used to translate a sentence into
another language, i.e., the inference or decoding stage. Note that there is a clear distinction
between training and inference: we only have access to the source sentence at the decoding
time. We must initialize the transformer model and fill the model with parameters from
the pytorch model data. We also must normalize the input sentence into a tensor which
is taken into the decoder model (Figure 3). Then, the input sentence is translated into the
output sentence with our trained model.

When doing inference, we can select the most likely word at each step in the output
sequence. The simplest decoding algorithm is beam search decoding, which expands all the

Appl. Sci. 2021, 11, 10915 10 of 17

possible next steps and keeps the k most likely, where k is a user-specified parameter and
controls the number of beams or parallel searches through the sequence of probabilities.
The development set source sentences are decoded using combinations of beam size and a
length penalty and the combination that gives the best evaluation metric score.

3.5. A DL-NMT Web Interface

For ease of use, we develop a Web interface for the machine translation system, which
is shown in Figure 6. We aim to provide users with an easy-to-use interface for model
training, corpus management, and model deployment. Thus, it has three modules for
corpus, project, and model management.

Figure 6. The DL-NMT web interface design.

3.5.1. Corpus Management

Many prior works have shown that the trained models can yield a better prediction
accuracy from using a domain-specific bilingual corpus [20–22]. To this end, we provide
domain experts to add or edit paired sentences. In this way, the domain experts can
build their own corpus. For instance, teachers who majored in Business English can
integrate their expertise of English–Chinese paired sentences into a corpus with our web
interface. On the other hand, we also provide access to the existing bilingual corpus. At
the initialization stage, users can choose to import the UM-Corpus of eight different text
domains, including Education, Laws, Microblog, News, Science, Spoken, Subtitles, and
Thesis, into our backend platform. Note that users can also edit the existing corpus with
our web interface. With the help of this web interface, we aim to build a sufficiently large
and diverse corpus from various domains to train NMT models.

3.5.2. Project Management

Our web interface provides a consequence of functions to manage the training process.
We name an NMT model training process as a project. As a result, we can create, edit, or
delete a project. To enable the ease of use, we provide a web interface to configure a model
training task. The training parameters are listed in Table 1. Once ready, we use a one-stop
button to start the training process. For the trained model, we can save it in a specified
directory.

Appl. Sci. 2021, 11, 10915 11 of 17

Table 1. The configurable training parameters.

Parameters Notes Defaults
src_vocab_size English vocabulary size 32,000
tgt_vocab_size Chinese vocabulary size 32,000
batch_size Number of samples selected for one training 32
epoch_num Number of epochs 40
d_model Feature dimensions of the model 512
max_len Max length of sentence 60
beam_size Beam size for bleu 3
early_stop Early stop for loss increase 5
optimizer Use an optimizer for training Adam
use_gpu Whether or not to use a GPU 0

3.5.3. Model Management

Our web interface manages the trained NMT models. With the interface, users can
import or delete a model. In particular, we provide an interface for users to input an
English sentence, make a translation, and output a Chinese sentence. This is particularly
suitable for teaching purposes, e.g., a live classroom demonstration. That is, we train the
NMT model with the interface and then use the interface to demonstrate how well the
trained model performs.

4. Results and Discussion
4.1. Experimental Setup

Hardware and Software. Our DL-NMT system can be deployed onto laptops, desktops,
and servers with GPUs. In this work, we run the translation system on the platforms as
shown in Table 2. The table also lists the frequency, the number of cores on each CPU,
whether it has GPUs, the Linux kernel, and the GCC/OpenMP version.

Table 2. The hardware and system software.

CPUs Freq.|#Core GPUs Category Linux Kernel OpenMP
Intel Core i7-7500U 2.7 GHz | 2 N/A Laptop v4.15.0 GCC v7.5.0
Intel Core i7-7700K 4.2 GHz | 4 N/A Desktop v4.15.0 GCC v7.5.0
Intel Xeon Platinum 9242 2.3 GHz | 96 N/A Server v3.10.0 GCC v4.8.5
Intel Xeon Silver 4210 2.2 GHz | 40 NVIDIA Titian RTX Server v4.18.0 GCC v8.4.1

Intel Xeon Silver 4210 2.2 GHz | 40
NVIDIA GeForce
RTX 2080Ti

Server v4.18.0 GCC v8.4.1

Intel Xeon Silver 4210 2.2 GHz | 40
NVIDIA GeForce
RTX 2060 SUPER

Server v4.18.0 GCC v8.3.1

Dataset Details. We use the news dataset from the UM-Corpus, which is a large English–
Chinese parallel corpus. It provides a two million English–Chinese corpus from eight text
domains, covering several topics and text genres, including Education, Laws, Microblog,
News, Science, Spoken, Subtitles, and Thesis [23]. We train our models with the news subset
of 252K sentences consisting of 10,635K Chinese words and 5672K English words. We split
the training samples into 176,943 training pairs, 25,278 validation pairs, and 50,556 test pairs.
Note that our web interface provides users with access to build a new corpus.

4.2. Performance Results
4.2.1. Training Accuracy

We train models on an NVIDIA RTX 2080Ti and NVIDIA Titan RTX. Since their
memory is limited (11 GB and 24 GB), we use different batch sizes of 8 and 16, respectively,
to avoid the out-of-memory (OOM) error. At the same time, to ensure the stability of the
model, we use the gradient accumulation method to expand the batch size in another form.
Gradient accumulation is to accumulate the gradients of several batches and then update

Appl. Sci. 2021, 11, 10915 12 of 17

the network parameters. The number of batches accumulated in each update is called the
accumulation step. Figure 7 shows the training process on these two GPUs, respectively.
Each curve describes the trend of loss (of the training set and validation set) and BLEU
value of the validation set. We see that the training process on both GPUs is basically
consistent. As the number of epochs increases, the train loss continues to decrease. In
addition, the loss and BLEU values of the verification set are stable at half way. As a matter
of fact, too many training iterations would lead to the problem of overfitting, which has a
negative impact on the translation quality. Thus, we run the verification process for every
five iterations to avoid the overfitting issue.

0 5 10 15 20 25 30 35 40
epochs

1

2

3

4

5

6

7

8

lo
ss

train loss
validation loss
validation BLEU

0

5

10

15

20

25

30

BL
EU

(a) RTX 2080Ti

0 5 10 15 20 25 30 35 40
epochs

1

2

3

4

5

6

7

8

lo
ss

train loss
validation loss
validation BLEU

0

5

10

15

20

25

30

BL
EU

(b) Titan RTX

Figure 7. The training process on RTX 2080Ti (a) and Titan RTX (b).

We compare the test performance of the trained models on two GPUs in Table 3.
The batch_size (bs) and the accumulation step (step) used in the gradient accumulation
method for each GPU are indicated in the table. The different GPU devices basically have
no impact on the model training effect. The gradient accumulation method can facilitate us
in achieving the same performance with small batches as with large batches.

Table 3. The best Dev BLEU and the Test Loss and BLEU on two GPUs.

GPU Best Dev BLEU Test Loss Test BLEU

RTX 2080Ti (bs = 8, step = 4) 26.86 4.15 26.86
Titan RTX (bs = 16, step = 2) 26.92 4.16 26.88

4.2.2. Decoding Stage

We use the beam search algorithm to look for the best solution in the inference stage.
It expands the solution space relative to the greed search and reduces the complexity
relative to the exhaustive search. The beam size is an important parameter of the beam
search algorithm, affecting performance and efficiency. We compare the test BLEU and the
test time based on different beam sizes (from 1 to 6) in Figure 8 and Table 4. The results
indicate that the translation performance and time consumption will increase as the beam
size increases. However, when the value of the beam size exceeds three, the performance
improvement is negligible, while the time consumption increases steeply. To conclude, the
best beam size is 3 on the Titan RTX.

Appl. Sci. 2021, 11, 10915 13 of 17

1 2 3 4 5 6
Beam size

25.0

25.5

26.0

26.5

27.0

27.5

BL
EU

BLEU

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
la
tiv

e
tim

e

Relative time

Figure 8. The test BLEU and relative test time (relative to beam size=1).

Table 4. The test BLEU and test time based on different beam sizes.

Beam Size 1 2 3 4 5 6

BLEU 26.06 26.71 26.88 26.92 26.94 26.96
Time (s) 1700 2497 2587 3070 4384 5308

4.2.3. Training Speed

The value of batch size and the compute capability of the processor affect the training
speed. We first compare the training time (per epoch) when using different batch sizes on
the same device. We choose the Titan RTX as the platform because it is fast enough and
has enough memory. Figure 9 shows that the training speed increases with the increase in
batch size, but the growth rate gradually slows down.

4 8 16 32
Batch size

5

10

15

20

25

30

35

40

Tr
ai
ni
ng

 ti
m
e
(m

in
)

Training time

Figure 9. The training time (minutes) per epoch on Titan RTX based on different batch sizes.

Meanwhile, we compare the training speed of the CPU and GPUs in Figure 10. Due to
the limitation of the memory space of the RTX 2080Ti and RTX 2060 Super, we use a batch
size of 8 and 16 on them, respectively. Meanwhile, we use a batch size of 32 on the Titan
RTX. The training time per epoch is 480 min, 250 min, 170 min, 22 min, 18 min, and 11 min
for the Intel i7-7500U CPU (Laptop), Intel i7-7700K CPU (Desktop), Intel Xeon Platinum
9242 CPU (Xeon server), Titan RTX, RTX 2080Ti (RTX2080), and RTX 2060 Super (RTX2060).
For the Xeon CPU sever, even when adopting a batch size of 96, the training time is around

Appl. Sci. 2021, 11, 10915 14 of 17

15× as long as that on the Titan RTX GPU. That is, the GPU has absolute superiority in
training neural networks.

Laptop Desktop Xeon Server RTX2060 RTX2080 Titan RTX0

100

200

300

400

500

Tr
ai
ni
ng

 ti
m
e
(m

in
)

Training time

Figure 10. The training time (minutes) per epoch on different devices.

4.3. Case Study

In addition to analyzing performance parameters, we also compare the actual trans-
lation of our model to the industry-level Baidu translation system. Here, the accuracy is
measured based on the options of native speakers. We randomly select three different
lengths of sentences as test cases and show the comparison results in Figure 11. Overall,
our model can translate English to Chinese correctly, especially for short sentences and
medium-length sentences (case 1 and case 2). However, the accuracy of the translation
is not sufficiently good. In addition, the beam search strategy (beam size is 3) is better
than the greed search strategy (beam size is 1) when decoding the sentence. In a nutshell,
by consuming a relatively short training time, our trained model is competitive with an
industry-level product such as the Baidu translation system. In the future, we will use a
more bilingual corpus for improved translation quality.

Figure 11. The translation cases of using Baidu translation system and our model.

4.4. Discussion

Implementing the Transformer-based translation system from scratch is indeed not
new. However, we believe that our translation system stands out and can be applied in
several scenarios. For now, large pretrained models have achieved promising results and
have been widely accepted. Although each increase has brought significant performance

Appl. Sci. 2021, 11, 10915 15 of 17

improvements in downstream NLP tasks, training such models requires large-scale special-
ized computing hardware such as Google’s TPUs. These computing clusters are typically
unaffordable for small/medium-sized enterprises. Our translation system is portable
across laptop CPUs, desktops CPU, and server CPUs with one or multiple GPUs. Such
platforms are typically affordable for small/medium-sized enterprises, and our translation
system can be used as a research infrastructure for such companies.

On the other hand, the large pretrained models are too complicated, and their capacity
is too large for us to understand. That is, we know the models perform well, but we do not
know the reasons. They work similar to a “black-box” and are particularly unsuitable for
teaching purposes. Instead, our translation system can be used as a teaching demonstration
tool for students majoring in translation. In particular, we have provided a web interface to
manage the corpus, model training, and model prediction to ease the use of our translation
system. For instance, our system provides research professors with a web interface to
collect their translation expertise so as to build a new corpus.

5. Conclusions

In this work, we have implemented a deep learning machine translation system based
on a news corpus. The deep learning algorithm takes in English text as input and uses an
encoder-decoder model with an attention mechanism based on Google’s Transformer to
translate the text to Chinese output. The model was trained using a simple self-designed
entropy loss function and an Adam optimizer on paired English and Chinese text sentences
from the news area of the UM-Corpus. We train the model on high-end GPUs with a
parallel approach. During training time, we not only track loss over training epochs, but
measure the quality of our model’s translations using the BLEU score. The experimental
results on the UM-corpus show that our trained model can achieve a maximum BLEU score
of 29.2. We can further improve this score by tuning other hyperparameters and increasing
the complexity of our model, as well as by training on a larger subset of the data to avoid
biased results. As a case study, we compare the performance of our model to that of Baidu’s
and show that our model can compete with the production-level translation system.

For future work, we plan to train our models with large-scale GPU-based clusters. We
also want to incorporate language features into the model to improve its translation quality.
In addition, we will use a more bilingual corpus for improved translation quality.

Author Contributions: Conceptualization, L.Z. and J.F.; methodology, L.Z., J.F., and W.G.; validation,
W.G. and J.F.; writing—original draft preparation, L.Z. and W.G.; writing—review and editing, L.Z.
and J.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the National Natural Science Foundation of China
under Grant agreement 61972408.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data collected during this study may be obtained by contacting the
corresponding author at zhaolanxin21@yeah.net.

Acknowledgments: We thank the anonymous reviewers for their constructive comments and feedback.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; Kingsbury,

B. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE
Signal Process. Mag. 2012, 29, 82–97. [CrossRef]

2. Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech
Recognition. IEEE Trans. Speech Audio Process. 2012, 20, 30–42. [CrossRef]

3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105.

http://doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/TASL.2011.2134090

Appl. Sci. 2021, 11, 10915 16 of 17

4. Ciresan, D.C.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012
IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE Computer Society:
Los Alamitos, CA, USA, 2012; pp. 3642–3649.

5. Le, Q.V.; Ranzato, M.; Monga, R.; Devin, M.; Corrado, G.; Chen, K.; Dean, J.; Ng, A.Y. Building high-level features using large
scale unsupervised learning. In Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh,
Scotland, UK, 26 June–1 July 2012.

6. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

7. Lepikhin, D.; Lee, H.; Xu, Y.; Chen, D.; Firat, O.; Huang, Y.; Krikun, M.; Shazeer, N.; Chen, Z. GShard: Scaling Giant Models
with Conditional Computation and Automatic Sharding. In Proceedings of the 9th International Conference on Learning
Representations, ICLR 2021, Virtual, Austria, 3–7 May 2021.

8. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Burstein, J., Doran, C., Solorio, T., Eds.; (Long
and Short Papers); Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; Volume 1, pp. 4171–4186. [CrossRef]

9. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems 33, Proceedings of the Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Virtual, 6–12 December 2020; Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020.

10. Forcada, M.L.; Ginestí-Rosell, M.; Nordfalk, J.; O’Regan, J.; Ortiz-Rojas, S.; Pérez-Ortiz, J.A.; Sánchez-Martínez, F.; Ramírez-
Sánchez, G.; Tyers, F.M. Apertium: A free/open-source platform for rule-based machine translation. Mach. Transl. 2011,
25, 127–144. [CrossRef]

11. Koehn, P.; Och, F.J.; Marcu, D. Statistical Phrase-Based Translation. In Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for Computational Linguistics, HLT-NAACL 2003, Edmonton, AB,
Canada, 27 May–1 June 2003; Hearst, M.A., Ostendorf, M., Eds.; The Association for Computational Linguistics: Stroudsburg, PA,
USA, 2003.

12. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches. In Proceedings of the SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation, Doha, Qatar, 25 October 2014; Wu, D., Carpuat, M., Carreras, X., Vecchi, E.M., Eds.; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2014; pp. 103–111.

13. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

14. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning. In Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017; Volume 70,
pp. 1243–1252.

15. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach,
CA, USA, 4–9 December 2017; Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R.,
Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 5998–6008.

16. Radford, A.; Narasimhan, K. Improving Language Understanding by Generative Pre-Training, 2018. Available online:
https://gregraiz.com/wp-content/uploads/2020/07/language_understanding_paper.pdf (accessed on 11 May 2021).

17. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models are Unsupervised Multitask Learners. OpenAI
Blog 2019, 1, 9.

18. Rosset, C.; Xiong, C.; Phan, M.; Song, X.; Bennett, P.N.; Tiwary, S. Knowledge-Aware Language Model Pretraining. arXiv 2020,
arXiv:2007.00655.

19. Norrie, T.; Patil, N.; Yoon, D.H.; Kurian, G.; Li, S.; Laudon, J.; Young, C.; Jouppi, N.P.; Patterson, D.A. Google’s Training Chips
Revealed: TPUv2 and TPUv3. In Proceedings of the IEEE Hot Chips 32 Symposium, HCS 2020, Palo Alto, CA, USA, 16–18
August 2020; IEEE Computer Society: Los Alamitos, CA, USA, 2020; pp. 1–70. [CrossRef]

20. Ling, W.; Marujo, L.; Dyer, C.; Black, A.W.; Trancoso, I. Crowdsourcing High-Quality Parallel Data Extraction from Twitter.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, Baltimore, MD, USA, 26–27 June 2014; pp. 426–436.
[CrossRef]

21. Ling, W.; Marujo, L.; Dyer, C.; Black, A.W.; Trancoso, I. Mining Parallel Corpora from Sina Weibo and Twitter. Comput. Linguist.
2016, 42, 307–343. [CrossRef]

22. Ling, W.; Xiang, G.; Dyer, C.; Black, A.W.; Trancoso, I. Microblogs as Parallel Corpora. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics, ACL 2013, Sofia, Bulgaria, 4–9 August 2013; Long Papers; The Association for
Computer Linguistics: Stroudsburg, PA, USA, 2013; Volume 1, pp. 176–186.

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.1007/s10590-011-9090-0
https://gregraiz.com/wp-content/uploads/2020/07/language_understanding_paper.pdf
http://dx.doi.org/10.1109/HCS49909.2020.9220735
http://dx.doi.org/10.3115/v1/w14-3356
http://dx.doi.org/10.1162/COLI_a_00249

Appl. Sci. 2021, 11, 10915 17 of 17

23. Tian, L.; Wong, D.F.; Chao, L.S.; Quaresma, P.; Oliveira, F.; Yi, L. UM-Corpus: A Large English-Chinese Parallel Corpus for
Statistical Machine Translation. In Proceedings of the Ninth International Conference on Language Resources and Evaluation,
LREC 2014, Reykjavik, Iceland, 26–31 May 2014; Calzolari, N., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J.,
Moreno, A., Odijk, J., Piperidis, S., Eds.; European Language Resources Association (ELRA): Luxemburg, 2014; pp. 1837–1842.

24. Kalchbrenner, N.; Blunsom, P. Recurrent Continuous Translation Models. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2013, Grand Hyatt Seattle, Seattle, WA, USA, 18–21 October 2013; pp. 1700–1709.

25. Sennrich, R.; Haddow, B.; Birch, A. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016;
Volume 1, pp. 1715–1725.

26. Schuster, M.; Nakajima, K. Japanese and Korean voice search. In Proceedings of the 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2012, Kyoto, Japan, 25–30 March 2012; IEEE Computer Society: Los Alamitos,
CA, USA, 2012; pp. 5149–5152.

27. Kudo, T.; Richardson, J. SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural
Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018:
System Demonstrations, Brussels, Belgium, 31 October–4 November 2018; Blanco, E., Lu, W., Eds.; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2018; pp. 66–71.

28. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
29. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s

Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144.
30. Hassan, H.; Aue, A.; Chen, C.; Chowdhary, V.; Clark, J.; Federmann, C.; Huang, X.; Junczys-Dowmunt, M.; Lewis, W.; Li, M.; et al.

Achieving Human Parity on Automatic Chinese to English News Translation. arXiv 2018, arXiv:1803.05567.
31. Lin, X.; Liu, J.; Zhang, J.; Lim, S.J. A Novel Beam Search to Improve Neural Machine Translation for English-Chinese. Comput.

Mater. Contin. 2020, 65, 387–404. [CrossRef]
32. Zhou, L.; Zhang, J.; Kang, X.; Zong, C. Deep Neural Network-based Machine Translation System Combination. ACM Trans.

Asian Low Resour. Lang. Inf. Process. 2020, 19, 65:1–65:19. [CrossRef]
33. Xiong, H.; He, Z.; Hu, X.; Wu, H. Multi-Channel Encoder for Neural Machine Translation. In Proceedings of the Thirty-Second

AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, LA, USA, 2–7 February
2018; pp. 4962–4969.

34. Wang, Y.; Cheng, S.; Jiang, L.; Yang, J.; Chen, W.; Li, M.; Shi, L.; Wang, Y.; Yang, H. Sogou Neural Machine Translation Systems for
WMT17. In Proceedings of the Second Conference on Machine Translation, WMT 2017, Copenhagen, Denmark, 7–8 September
2017; pp. 410–415.

35. Wu, S.; Wang, X.; Wang, L.; Liu, F.; Xie, J.; Tu, Z.; Shi, S.; Li, M. Tencent Neural Machine Translation Systems for the WMT20
News Translation Task. In Proceedings of the Fifth Conference on Machine Translation, WMT@EMNLP 2020, Online, 19–20
November 2020; pp. 313–319.

36. Yang, J.; Wu, S.; Zhang, D.; Li, Z.; Zhou, M. Improved Neural Machine Translation with Chinese Phonologic Features. In Natural
Language Processing and Chinese Computing, Proceedings of the 7th CCF International Conference, NLPCC 2018, Hohhot, China, 26–30
August 2018; Zhang, M., Ng, V., Zhao, D., Li, S., Zan, H., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2018; Volume 11108, pp. 303–315.

37. Kuang, S.; Han, L. Apply Chinese Radicals Into Neural Machine Translation: Deeper Than Character Level. arXiv 2018,
arXiv:1805.01565.

http://dx.doi.org/10.32604/cmc.2020.010984
http://dx.doi.org/10.1145/3389791

	Introduction
	Background and Related Work
	Neural Machine Translation
	Formulating the NMT Task
	The NMT Structure
	NMT with Attention Mechanism
	NMT Model Training
	Model Evaluation

	English–Chinese Machine Translation
	Designing New Learning Models
	Leveraging Chinese Features

	Our Methods
	Word Segmentation
	Data Preprocessing and Loading
	Model Training
	The Transformer Model
	Training Optimizer
	Parallel Training

	Model Deployment
	A DL-NMT Web Interface
	Corpus Management
	Project Management
	Model Management

	Results and Discussion
	Experimental Setup
	Performance Results
	Training Accuracy
	Decoding Stage
	Training Speed

	Case Study
	Discussion

	Conclusions
	References

