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Abstract: This study describes a contactless vital sign monitoring (CVSM) system capable of mea-
suring heart rate (HR) and respiration rate (RR) using a low-power, indirect time-of-flight (ToF)
camera. The system takes advantage of both the active infrared illumination as well as the additional
depth information from the ToF camera to compensate for the motion-induced artifacts during the
HR measurements. The depth information captures how the user is moving with respect to the
camera and, therefore, can be used to differentiate where the intensity change in the raw signal is
from the underlying heartbeat or motion. Moreover, from the depth information, the system can
acquire respiration rate by directly measuring the motion of the chest wall during breathing. We also
conducted a pilot human study using this system with 29 participants of different demographics such
as age, gender, and skin color. Our study shows that with depth-based motion compensation, the
success rate (system measurement within 10% of reference) of HR measurements increases to 75%, as
compared to 35% when motion compensation is not used. The mean HR deviation from the reference
also drops from 21 BPM to −6.25 BPM when we apply the depth-based motion compensation. In
terms of the RR measurement, our system shows a mean deviation of 1.7 BPM from the reference
measurement. The pilot human study shows the system performance is independent of skin color
but weakly dependent on gender and age.

Keywords: time-of-flight; contactless physiological measurement; heart rate monitoring; motion
artifacts compensation

1. Introduction

We demonstrate a contactless vital sign monitoring (CVSM) system based on a near-
infrared indirect time-of-flight (ToF) camera that can measure the heart rate (HR) and
the respiratory rate (RR) of an individual at a stand-off distance. The system utilizes a
vertical-cavity surface-emitting laser (VCSEL) illuminated indirect ToF camera, which
measures both grayscale intensity and depth information simultaneously. We use grayscale
intensity information as well as the distance information from two regions of interest (ROI)
of a participant to determine the HR and RR. The HR is derived from periodic intensity
change on a participant’s face induced by blood flow from the heartbeats, while the RR is
determined by measuring the periodic change of chest wall movement during breathing.
We find that the motion artifacts can dominate the underlying HR signal especially when
an active illumination source such as VCSEL lasers are used. In this study, we use the
depth information from the ToF camera to compensate for these motion artifacts since the
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depth information can be used to differentiate the grayscale intensity variations caused by
underlying heartbeat versus the user’s motion.

We conducted a pilot human study with 29 participants of varying demographics
to show that when using distance-based motion compensation, the success rate of HR
measurement increases to 75%, as compared to only 35% when distance-based motion com-
pensation is not used. The mean deviation from the reference HR measurement is −6.25
BPM if we apply the depth signal for motion compensation, while the deviation increases
to 21 BPM when motion compensation is not used. At the same time, our study shows that
the mean deviation of our RR measurement is 1.7 BPM, which is comparable to the pulse
oximeter we used in this study. Our results further show that the system performs well
among participants of various demographics such as skin color, gender, and age. Such sys-
tems could be useful in applications such as vehicle driver/occupant monitoring systems,
remote and in-patient patient monitoring systems, telemedicine systems, or unobtrusive
health screening systems.

2. Background and Motivation

Contactless physiological monitoring systems working at a remote distance have
attracted much attention over the past decades. Especially after the COVID-19 pandemic
in early 2020, there has been an increased demand for contactless physiological moni-
toring systems for health monitoring/screening at a safe distance to reduce the spread
of viruses. Out of many potential physiological parameters, heart rate and respiration
rate have attracted much attention. Table 1 briefly summarizes the characteristics of var-
ious approaches in monitoring HR/RR. To date, most contactless HR/RR measurement
systems rely on photoplethysmography (PPG) using RGB (red-green-blue) cameras with
visible light illumination [1–8]. Several approaches, such as the skin-tone or blind-source
separation-based algorithm, are proposed for the removal of external artifacts and consid-
erably improve the reliability of HR measurement [9–16]. However, in some application
scenarios such as vehicle driver monitoring or patient monitoring in hospitals, RGB camera-
based systems face challenges from fluctuating or very low background illumination [17].
Moreover, because melanin, which gives rise to skin color, has ~5X higher absorption
in visible wavelength of 530 nm as compared to 850 nm [18], the performance of RGB
camera-based systems can vary among users of different skin colors [6,10,17]. By using
near-infrared illumination, such skin color dependence can be mitigated to achieve more
uniform performance among wider demographics. Due to the benefits of being indepen-
dent of background illumination and users’ skin color, remote HR and RR monitoring
systems using a near-infrared light source can be a valuable alternative.

Table 1. Comparison of HR measuring devices.

System Signal
Strength Contactless Skin Color

Independent
Ambient Light
Independent

Direct * RR
Measurement

Wearable EKG (Polar H10 belt) ++ 6 6

Pulse Oximete (Masimo Mightysat + 6 6 6

RGB Camera [1–8] = 6 6 6

Infrared Camera [19–23] - 6

ToF Camera [24], [This] -
Doppler Radar [25] - -

* A direct measurement measures chest movement meanwhile an indirect RR measurement uses the modulation of the HR signal to extract

RR [26,27]; +/=/- indicates system has advantage/neutral/disadvantage in certain category; /6 indicates system has certain capability

Over the past few years, HR/RR measurement systems using near-infrared cameras
or even RGB/Depth cameras (such as Microsoft Kinect) [19–24,28,29] have been studied
to show their capability of measuring HR/RR. In this study, we propose a system that
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leverages the existing ToF cameras in many consumer electronics and vehicles to perform
HR and RR monitoring. The ToF camera used in this study is an indirect ToF using a
modulated VCSEL laser as its light source [30]. The benefit of this type of ToF camera is that
it can extract the grayscale and depth information at the same time. The grayscale image
is directly acquired through the exposure of the imaging sensor while the depth image is
acquired by examining the phase change of the returned light [30]. Compared to previous
studies, one of the main advantages and technical advancements of this study is that we
demonstrate a method that combines both the depth and grayscale intensity information
from the ToF camera to compensate for motion artifacts. Motion artifacts are known to be a
challenging issue for contactless PPG systems, but even more so for systems that operate in
the near-infrared wavelengths because the absorption by hemoglobin is much weaker in the
near-infrared compared to visible wavelengths [31,32]. As a result, the PPG signal strength
between 850 nm to 1000 nm is only about 1/8th the peak amplitude at 530 nm. Since the
ToF camera directly measures the body motion of a participant, we find this information
useful in distinguishing intensity changes caused by body motion versus heartbeat, which
would allow us to compensate for motion-induced artifacts. In addition, by measuring the
motion of the chest wall using the ToF camera, we can at the same time directly measure
the RR of a participant, instead of extracting RR from HR or other indirect body motion
when an RGB camera is used [26,27]. Furthermore, to our knowledge, this is the first study
that investigates the performance of a ToF-based HR/RR monitor system over larger and
diverse demographics [32]. A more detailed comparison between this study and previous
studies using IR cameras is presented in Table 2. Since indirect ToF cameras are being
widely used in many consumer electronics, our CVSM system would enable low-cost,
reliable, and multi-modality physiological signal monitoring on various platforms and
application scenarios in the future. For example, such a system can be mounted in a vehicle
to help monitor the physiological condition of the driver in a continuous manner. If any
unexpected events such as falling asleep or heart attack were to happen, the CVSM system
can then alert the autonomous/assisted driving system of the vehicle to bring the vehicle
to a safe stop

Table 2. Summary of recent studies on IR camera-based HR/RR monitoring system.

Reference Wavelength
(nm)

Camera
Type

Avg. HR
Error (BPM)

Measures
RR?

Avg. RR
Error (BPM)

[19] 675/800/842 NIR 0.76 No N/A
[21] 940 NIR 13.6 No N/A
[24] 850 ToF 3.46 No N/A
[29] 850 NIR 2 No N/A
This 850 ToF 6.25 Yes 1.7

3. Experiment Setup

The indirect ToF camera used in this study is a CamBoard Pico Flexx camera (PMD
Technologies AG, Siegen, Germany). This camera contains a 3D CMOS sensor with a
resolution of 171 × 224, and a field of view of 62° × 45°. The illumination source on the
camera is an 850nm VCSEL with eye-safe power output and an operating distance from 0.1
to 4 m. This ToF camera comes with a compact form factor of 68 mm × 17 mm × 7.35 mm
and consumes only 300 mW average power, which makes it ideal for mobile application
scenarios. In our experiment, the ToF camera is connected via USB to a laptop (2019
Lenovo X1 Extreme), which is used to both control the camera and process the recorded
3D video to extract HR and RR. The ToF camera is mounted on a stand positioned at
the same height and ~60 cm away from the participants, which allows us to capture a
participant’s face and chest region in one frame (Figure 1). To provide a reference HR and
RR reading, a contact-based finger pulse oximeter capable of recording both HR and RR
with accuracy down to +/− 1 BPM (Mighty Sat Rx, Masimo, Irvine, CA, USA) is placed on
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one of the participant’s index fingers. All measurements are made under the illumination
of fluorescent light (mounted on the ceiling, powered by AC electricity at 60 Hz), no special
control of ambient light illumination is applied during the study.

Figure 1. Experimental configuration for proof-of-concept HR, RR measurements using the Pico Flex
indirect ToF camera.

To determine the HR and RR of a participant, two ROIs are used to extract HR and
RR of the participant (Figure 2): ROI-1 is used for HR extraction while ROI-2 is used for
RR extraction. The location of ROI-1 that covers both the nose and cheek is calculated by
evaluating the relative position between the participant’s eyes and nose with a 66-point
facial landmark detection algorithm [33]. The ROI-2 region that represents the upper chest
regions is determined from the relative position between the jawline and the shoulder
using a pose estimator [34]. Specifically, the system uses both grayscale intensity and depth
information from ROI-1 to derive the HR while only the depth information from ROI-2
(upper chest) is used to derive the RR.

One advantage of using an indirect ToF camera for physiological monitoring is that
it can operate under low or complex ambient light conditions. The enhanced immunity
against external lighting conditions is a result of the narrow band-pass filter (centered at
850 nm) placed in front of the optical lens as well as the background illumination suppres-
sion from the detection mechanism used in the indirect ToF camera [30]. To demonstrate
the benefits of being independent of ambient lighting in physiological measurements,
we show the results of HR measurement under various lighting conditions: a dark en-
vironment, a bright environment, and an environment where ambient light is switched
on/off periodically. Figure 3 shows the (a) raw intensity from ROI-1 when measured under
the dark/bright environment and the (b) corresponding frequency domain information.
When measuring under the dark environment, all ambient lights are switched off and
the background illumination is reduced to <1 Lux. When measuring under the bright
environment, in addition to the ambient fluorescent lighting, an 100 W halogen lamp is
placed 1 m from the participant to create an illumination of 960 Lux. In both cases, since
our system relies on the built-in VCSEL laser for illumination, a clear HR signal can still be
seen in the time domain and the correct HR rate is obtained using a Fourier transform.
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Figure 2. Two ROIs used for RR and HR extraction: ROI-1 is used for HR measurements while ROI-2
is used for RR measurements.

Figure 3. (a) Raw intensity signal from ROI-1 measured in dark/bright environment. The grayscale
intensity shows a clear HR signal. (b) Frequency domain HR measured in dark/bright environment.
The highest peak in the frequency domain correspond to measured HR.

We also demonstrate that the ToF camera can operate under more extreme lighting
conditions. Figure 4 shows a measurement obtained with ambient light switched on and
off at an interval of 5 s. When the ambient light is turned off, the background illumination
intensity is less than 1 Lux while when the ambient light is turned on, the background
illumination is 330 Lux. No significant effects of ambient light being turned on/off are
seen in Figure 4a and a correct HR measurement is still obtained with a Fourier transform.
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Figure 4. (a) Raw intensity signal from ROI-1 measured under alternating dark and bright environ-
ment. The ambient is swithced on/off at an interval of 5 s. (b) Frequency domain HR measured
under alternating lighting condition. The highest peak in the frequency domain correspond to
measured HR.

Motion artifact is a key source of noise in contactless HR measurements, especially
on a system with low power and active illumination such as the one in this study. When
no motion or very limited motion is present, the HR can be obtained directly from the
raw grayscale intensity from the ToF camera, as is shown in Figure 5a, during which the
participant is asked to remain as still as possible. However, in more realistic scenarios, when
the users are behaving naturally, there will inevitably be more motion artifacts present
in the raw intensity data (Figure 5b). Such motion artifacts are especially obvious in our
system where active illumination from a point source is used. Intensity changes caused by
the user moving closer or further from the light source can be many times stronger than
the underlying heartbeat signal, leading to erroneous HR measurements (Figure 5b).

Figure 5. (a) Raw intensity signal (blue) and depth signal (red) from ROI-1 when participants are
intentionally staying still. The grayscale intensity shows a clear HR signal. (b) Raw intensity signal
(blue) and depth signal(red) from ROI-1 when motion artifact is present. The grayscale intensity is
dominated by motion induced intensity artifacts.

Therefore, in this study, depth information is used to compensate for the intensity vari-
ation caused by motion artifacts. The underlying logic in the motion artifacts compensation
is three-fold: First, because active illumination from a point source is used, the change
of grayscale intensity is nonlinearly correlated to the relative position between the head
and the camera. Secondly, the depth information recorded by the ToF camera should
contain no heart rate component since the micromotion created by the heartbeat is too
small to be measured by the ToF camera. Lastly, after the motion artifacts are removed,
the compensated intensity information should have a minimum correlation with the depth
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information. In other words, the motion compensation is achieved when the relationship
in Equation (1) is satisfied, where Icomp, Iraw, and Draw are compensated grayscale intensity,
raw average intensity across all pixels in ROI-1, and raw average depth signal across all
pixels in ROI-1 respectively. a is the linear coefficient and b is the nonlinear coefficient that
minimize the correlation between Draw and Iraw

a∗(Draw)−b

Icomp =
Iraw

a ∗ (Draw)−b ; where a, b = argmin
a,b

Correlation(
Iraw

a ∗ (Draw)−b , Draw) (1)

Ideally, the intensity variation caused by the distance variation between the partic-
ipants’ faces and the light source should be inversely proportional to the square of the
distance (i.e. inverse square law of light propagation). However, in reality, skin conditions
as well as the illumination angle change from person to person [35,36] and we found
that different values of the nonlinear coefficients are needed to minimize the correlation
between the Draw and Icomp across different participants. In this study, the range of the
nonlinear coefficient is set between 0.1 and 5.

Based on the above logic, we compensate for the motion artifact and extract HR
using the following steps (Figure 6): (a) ROI-1 is defined and tracked in all frames using a
Kanade–Lucas–Tomasi feature tracker [37]; (b) the intensity across pixels within ROI-1 is
averaged; (c) within a time window, using the relationship described in Equation (1), we
calculate the compensated intensity Icomp that has the minimum correlation between the
depth signal Draw and Icomp; (d) a bandpass filter between 40 BPM and 150 BPM (which is
the common resting HR range) is applied to the compensated signal Icomp; (e) a Fourier
transform of the data is taken on the motion-compensated intensity signal Icomp to find
the HR, where HR is determined as the frequency component with the highest amplitude.
In this study, we compare the performance of the motion-compensated HR results against
the results that “do not use the motion compensation”. The results that “do not use motion
compensation” refer to HR reading derived using the same steps above except for the step
of using the depth information to compensate for the motion artifacts.

Figure 6. HR extraction process from the 3D video streams of a ToF camera.

RR extraction is more straightforward as we directly measure the chest wall movement
from respiration using the depth signal from the chest region. Specifically, RR is extracted
using the following steps (Figure 7): (a) ROI-2 is defined and tracked in all frames; (b)
calculate the average depth across all pixels within ROI-2; (c) apply Fourier transform to
the depth signal and apply bandpass filter between 5 BPM to 30 BPM to find the highest
peak as the RR value.
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Figure 7. RR extraction process from the 3D video streams of a ToF camera.

To test the effectiveness of the HR/RR monitoring system, 29 participants from varying
demographics were recruited in the study so that performance among different skin colors,
genders, and ages could be compared. The study is approved by the Institutional Review
Board at the University of Michigan and informed consent was obtained from every
participant. All 29 participants were classified as either lighter skin color group or darker
skin color group based on their Fitzpatrick skin type, a numerical classification for skin
type based on a self-reported questionnaire [38]. Participants with skin type I–III were
classified into the lighter skin color group, while participants with skin type IV–VI were
classified into the darker skin color group. A total of 17 participants in this study were
within the lighter skin color group, while the remaining 12 participants were considered
as being within the darker skin color group. In terms of gender, 18 participants were
male and 11 participants female. As for age, we recruited participants from 18 years old
to 72 years old. All participants were divided into groups older than 35 years old and
younger than 35 years old. In this study, 8 participants were older than 35 years old and
the remaining 21 participants were younger than 35 years old. The demographics of the
participants are shown in Table 3. A total of 10 60 s videos at 10 frames per second are
obtained from each participant. To mimic the real-world scenario, participants were asked
to sit in front of the camera and are allowed to move as they see comfortable (such as
leaning backward/forward) but they were asked to look toward the camera during the
measurements. Among the 290 measurements, 4 measurements were excluded in the study
due to the failure of the face recognition algorithm to identify the regions of interest (ROIs).
In the end, 286 measurements were used in the study.

Table 3. Demographics of the participant population.

Group: Number of Participants Age Range Skin Type Range
29 18–72 years II-IV

Subgroup: (Female Male) (<= 35 years >35 years) (I-III IV-VI)
11 18 21 8 17 12

4. Experiment Results

The raw and processed data from the two ROIs are illustrated in Figures 8 and 9.
Figure 8 shows a 30 s segment of a typical 60 s recording of both the raw intensity and
depth signal for ROI-1. The second row corresponds to the raw intensity information and
the bottom row corresponds to the depth information from the same ROI-1. In ROI-1,
the maximum motion from ROI-1 to the camera is as large as 15 cm. As a result, the raw
intensity data is strongly inversely correlated to the depth information from the same ROI,
suggesting that the raw signal is dominated by the motion artifacts. The grayscale intensity
after motion compensation is shown on the top row of Figure 8 where most of the motion
artifacts in the depth information are removed. From the time-domain signal, the heart rate
signal becomes recognizable compared to the motion-dominated raw signal. The effect
of the motion artifacts as well as the benefits of depth-based motion compensation is also
evident in the frequency domain. When comparing the frequency domain signal of the
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raw intensity and the depth signal, we can see the two spectra are similar to each other
in shape, and they also share many common lower frequency components. Even though
a weak frequency peak near the reference HR of 83 BPM can be seen, it is overshadowed
by the frequency component from the motion artifacts. After the motion compensation,
we can see that in the frequency domain signal of the compensated signal (Figure 8b, top),
these artifact frequencies are suppressed and a clear HR frequency near 83 BPM can be
seen in the compensated spectrum.

As for the respiration rate measurement, Figure 9 shows a typical depth signal from
the ROI-2 (chest) region corresponding to a RR of 9 BPM. The amplitude of chest wall
displacement caused by the respiration motion is approximately 4 mm. Because of this
small amplitude, such motion could be affected by other factors such as overall body
motion as well the blockage of clothing. Some potential solutions to mitigate these issues
will be discussed in the discussion section.

Figure 8. (a) Time domain signal for HR extraction: HR signal after motion compensation (top), raw
grayscale signal (middle) and raw depth signal (bottom). (b) Frequency domain HR signal: with
motion-compensation (top), without motion compensation (bottom).

The pilot human study with 29 participants illustrates the improvement in overall
performance achieved for the HR measurements by using depth information compensa-
tion. In the study, the mean HR reading during the 60 s of measurement is considered
as the ground truth and the “correct measurement” from our system is defined as a HR
measurement that is within 10 percent of the ground truth. The top bar graph in Figure 10
demonstrates the distribution of measurement error rate after compensation, while the
bottom bar graph demonstrates the distribution of measurement error rate without depth
compensation. With depth information used to compensate for motion artifacts, 75% of
the HR measurements (214 out of 286 measurements) are correct. On the other hand, with-
out compensation, only 35% of the HR measurements (100 out of 286 tests) are correct. It is
also worth noticing that with motion compensation, many of the erroneous measurements
are below 30% error rate, as compared to between 50 and 60% for the uncompensated case.
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Figure 9. ROI-2 (chest) region depth signal, showing the periodic chest wall movement from
respiration. The amplitude of the chest wall movement is 4 mm.

Figure 10. HR measurements error rate on all 286 measurements with motion compensation (top)
and without motion compensation (bottom).
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To analyze the agreement between the reference device (finger pulse oximeter) against
our system, we plot the Bland–Altman plot for the HR from the 29 participant study
in Figure 11. The left plot illustrates the results with motion compensation, and the
right plot illustrates the results without using motion compensation. The x-axis is the
average HR reading of the reference oximeter and our ToF-based system, while the y-axis
is the deviation of the HR measured in the ToF system from the reference oximeter reading.
With compensation, the mean value of the deviation is −6.25 BPM, and 95% of the deviation
falls within +/− 35 BPM of the mean deviation. In contrast, without compensation the
mean value of the deviation is 21 BPM, and 95% of the deviation falls within +/− 36 BPM
of the mean deviation. The large standard deviation rises from the extreme erroneous
values of the measurement system. These extreme values rise from camera noises as well
as intensity artifacts that are not reflected in the depth signal. After the dominating motion
artifacts are removed, the system could wrongly pick up these artifacts as HR. This also
explains why the wrong measurements of the uncompensated signal groups around the
top left corner of the plot since the dominating motion artifacts are typically at a lower
frequency compared to HR. Additionally, because the motion artifacts are likely to be
mistakenly picked as HR, it also leads to the seemingly small standard deviation of errors
for the uncompensated HR measurements.

Figure 11. Bland–Altman plot for HR measurements on all 286 measurements with motion compen-
sation (left) and without motion compensation (right).

The RR measurements are also examined for the pilot study of 29 participants.
Figure 12 shows the percentage of 286 ToF-based RR measurements that fall into dif-
ferent bins of deviation from the reference Masimo pulse oximeter. The mean deviation
from the reference reading is found to be 1.7 BPM while 60% of measurements are within
+/− 2 BPM from the reference RR measurements. However, in our measurements, we can
also sometimes see deviation as large as 10 BPM, these errors can be attributed to large
body motion as well as the loose clothing that the participants are wearing. Some examples
will be discussed in the discussion section.
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Figure 12. Percentage of ToF–based RR measurements versus deviation from reference oximeter.

4.1. HR Measurement vs. Motion Artifacts

To compare the performance between distance compensated and non-distance com-
pensated HR measurements against different levels of motion, we plot the percentage of
correct measurements versus a motion score (Figure 13). The blue bars are for the HR
data with compensation, while the red bars are for the HR data without depth information
compensation. In this study, we define motion score as the standard deviation of the mean
depth change of the ROI-1 to the optical center of the camera, where depth change is
calculated as the difference between depth Draw of ROI-1 and the mean depth of ROI-1
over the 60 s measurement.

MotionScore = std(Abs((depthROI−1)− mean(depthROI−1)) (2)

Since the motion in real-life situations can sometimes be of an irregular pattern, the mo-
tion score defined in this study reflects amplitude and frequency of a participant’s motion.
The higher the motion score, the larger and more frequent the motion artifacts are. For ex-
ample, a motion score below 0.3 cm is typical of a participant sitting still, while a motion
score above 1 cm is typical of participants adjusting for a comfortable position e.g., sitting
restlessly while sitting. It is worth noticing that a motion score of 1 cm does not necessar-
ily mean the participant moves only 1 cm during the measurements. For example, in a
measurement with a motion score of 1 cm, the maximum ROI-1 deviation from the mean
position can exceed 4 cm. The blue bars are for the HR measurements with compensation,
while the red bars are for the HR measurements without depth information compensation.
As can be seen from the plot, the performance of the motion-compensated HR measure-
ments outperforms the uncompensated measurements across every motion score category.
Even when small motion is introduced (motion score from 0 to 0.3 cm), the distance-
compensated HR measurement outperforms the uncompensated measurement by more
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than 75% in terms of success rate. Once the motion becomes larger, the performance of the
uncompensated HR measurement plummets, indicating that the raw signal is dominated
by motion artifacts. At the same time, the success rate of the motion-compensated HR also
drops, but to a lesser extent. For example, when motion score exceeds 0.9 cm, ~35% of
compensated measurements are correct meanwhile close to none of the uncompensated
HR measurements are correct. This is of great significance because motion artifacts are a
dominant source of noise in contactless HR measurement, especially with near-infrared
wavelength where the absorption of blood is much weaker. We believe the performance
of the ToF-based HR measurement system under larger motion could be improved with
future development of both the motion compensation model as well as higher performance
ToF cameras. We will discuss such future developments in more detail in the discussion
section.

Figure 13. Percentage of correct HR measurement within each motion score category.

4.2. Different Skin Color

One of the challenges for an RGB-based HR/RR monitoring system is that different
skin colors could affect the signal quality because of strong melanin absorption in the visible
wavelength range [18]. In contrast, the absorption of melanin is much lower at near-infrared,
which allows the ToF-based system to perform more uniformly among demographics of
different skin colors. Figure 14 shows the error rate of the HR measurements among
participants with darker skin color and lighter skin color. Participants with Fitzpatrick
skin type I–III (17/29 participants) are considered as light skin color, while participants
with skin type IV–VI (12/29 participants) are considered as darker skin color. Among the
lighter skin color group, the percentage of success rate measurement is 74% with the
mean deviation of the measurements being −6.1 BPM. As for the darker skin color group,
the same success rate of 74% is achieved with the mean deviation from the reference at
−5.8 BPM.



Appl. Sci. 2021, 11, 10913 14 of 21

Figure 14. HR measurements error rate within groups of: lighter skin color (top) and darker skin
color (bottom).

Similar performance among two skin color groups is also evident when we examine
the Bland–Altman plot in Figure 15. Both the mean deviation (−6.1 BPM for the lighter
skin color versus −5.8 BPM for darker skin color) and the 95% percentile range (+/−
35 BPM for the lighter skin color versus +/− 33 BPM for darker skin color) are very similar
between the two groups. Moreover, deviation distribution is also similar among the two
groups, indicating that the ToF system used in this study performs equally well among
participants of different skin colors. Thus, using near-infrared illumination, we are able to
achieve performance independent of skin color.

4.3. Different Gender and Age

We also investigate the performance of the ToF-based HR measurements system in
terms of the participant’s gender and age. Similar to the RGB camera-based system, no
significant performance difference is seen among participants of different gender and age.
Figure 16 shows the success percentage rate among participants of different gender, we
achieve a 77% success rate in the male group and a 72% success rate in the female group.
The mean HR deviation from reference is −5.6 BPM for the male group (18/29 participants)
and −7.2 BPM for the female group (11/29 participants) (Figure 17), respectively. Even
though the mean deviation differs slightly, the pattern of deviation data points looks
similar. Such differences may be attributed to different skin conditions or even different
skincare products used on the skin. Even though participants are asked not to use makeup,
there could still be residuals left on the participant’s face. Since the blood absorption at
infrared is already low, any further decrease of signal could affect the success rate of the
HR measurements.
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Figure 15. Bland–Altman plot for HR measurements within groups of: lighter skin color (left) and
darker skin color (right).

Figure 16. HR measurements error rate within groups of: male (top) and female (bottom).
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Figure 17. Bland–Altman plot for HR measurements within groups of: male (left) and female (right).

In terms of age, we separated the participants into a younger group (21/29 partici-
pants) and an elder group (8/29 participants) at the threshold of 35 years old. The success
rate/mean deviation is 84%/−7.7 BPM for the elder group and 71%/−5.89 BPM for the
younger group (Figures 18 and 19). The higher success rate among the elder participants
could be caused by elder participants staying more still during the measurements com-
pared to younger participants. In fact, the mean motion score for the younger group is
0.61 cm, compared to 0.47 cm for the elder groups. As we discussed before, the success
rate deteriorates as the motion score increases, which could explain the higher success rate
among elder participants.

Figure 18. HR measurements error rate within groups of: age > 35 (top) and age <= 35 (bottom).
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Figure 19. Bland-Altman plot for HR measurements within groups of: age > 35 (left) and age <= 35
(right).

5. Discussion

Even though the additional depth information from the ToF-based HR/RR mea-
surements system shows benefits in terms of motion compensation and respiration rate
measurements, we also noticed several external factors that can affect the performance,
which could help with the future improvement of the system’s performance if addressed.

5.1. Limitation of RR Measurements

In this study, the RRs are acquired by directly measuring the displacement of the
chest wall during respiration. In reality, it is often the case when the users’ bodies are
involuntarily moving while the system is measuring the respiration rate. Therefore, similar
to the HR measurement, the RR measurement could also suffer from motion-induced
artifacts. Even though such an issue is less pronounced in this study as the participants are
asked to sit in front of the camera, we still discuss possible methods to mitigate the effects
of body motion that is unrelated to respiration. Since the neck region usually moves with
the chest but does not show a strong respiration motion, we could use the depth signal on
the neck as a reference region to separate the respiration motion from other body motions.
Therefore, we could view the depth signal from the chest region as a superposition of
the general body motion and the chest wall motion from respiration. A blind source
separation method such as Independent Component Analysis (ICA) can then be applied
to the raw depth signals to extract the respiration motion. For example, Figure 20a shows
the raw depth signal from the neck and chest region, respectively. The depth signal from
the neck region records mainly the motion of the body since respiration does not cause
significant muscle contraction on the neck. As a comparison, the signal from the chest
region (Figure 20a bottom figure) is also affected by the overall body motion as the periodic
chest wall motion from respiration is masked. The signal after ICA separation is shown
in lFigure 20b. A clear pattern of the chest wall moving back and forth from the respiring
motion can now be seen in the top row of the separated signal. The respiratory rate, derived
from the first component in Figure 9, is measured as 15 BPM, while the reference pulse
oximeter also measures 15 BPM.
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Figure 20. (a) Time domain signal for RR extraction: Raw depth signal from neck region not
containing RR motion (top), raw depth signal from chest region containing RR motion (bottom).
(b) Depth signal after ICA separation: Signal component with RR motion (top), signal component
without RR motion compensation (bottom).

It is also worth noticing that since the method of acquiring the respiration rate relies on
directly measuring chest wall movement, any type of clothing, such as a loose sweatshirt
or down jacket, that obfuscates the chest wall movement, will prevent the system from
acquiring RR. To overcome this limitation, some complementary methods such as deriving
RR from HR variability or using a thermal sensor to measure respiration rate can be
used in combination with the ToF camera to provide RR measurements in more versatile
environments [5,7,26,27].

5.2. Limitation of Motion Compensated HR Measurement Using ToF Camera

The results of the pilot human study suggest that the magnitude of motion contributes
the most to the failure of the HR measurements. When the motion score is relatively small
(<0.3 cm), the success rate is 84% while such success rate falls quickly as the motion score
increases. The adverse effects of larger motion to the HR measurements seem intuitive as it
both makes the ROIs harder to track as well as creates larger intensity artifacts for the ToF
camera to compensate. However, there are also some less noticeable factors that can also
contribute to the erroneous reading even when the motion artifacts are small.

To obtain a stable signal from a ROI, the ROIs needs to be stably and accurately tracked
in every frame. In some cases, reflective spots on the face as well as the changing head
pose/facial expression could introduce artifacts to the tracked ROI. For example, we find
that the light reflection from the participants’ eyes combined with the blinking motion can
sometimes cause the positions of the ROI to jitter, even though the participants are not
moving at that time. If such artifacts are present during measurement, it can mislead the
system to take the blinking frequency as HR.

In terms of the limitation of the depth-based motion compensation, other than the
obvious cases where significant motion overwhelms the underlying HR signal, we also
find the system performance degrading when local motions, such as involuntary muscle
twitches or facial expression changes [6,10], are present. Since the human face is not a rigid
body, these local motions can cause intensity artifacts without inducing a change in depth
signal at the same time, making them “invisible” to the depth-based motion compensation.

Therefore, the depth signal-based method is more effective toward motion artifacts
that induce depth variations that are large enough to be captured by the ToF camera.
As an example, global motions, especially scaling and translational motion, can be easily
captured by the ToF camera. Even though these larger motions cause large grayscale
intensity change on the ToF camera, they can be effectively removed to prevent them from
affecting HR measurement.

5.3. Future Improvements

Based on the previous discussion, we believe that the system performance can be
further improved by building a more precise model to compensate for motion-induced
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artifacts and by developing ToF cameras with higher resolution and frame rate. The model
we use in this study to compensate for the intensity change caused by motion is relatively
coarse as we only consider the average depth change within a larger ROI. If a model can
be developed to further utilize the point cloud generated by the ToF camera to take more
subtle movements such as head rotation/tilting into consideration, it would expand the
types of motion artifacts that the CVSM system can compensate. At the same time, efforts
are made to develop an indirect ToF camera with a higher resolution and frame rate [39].
Higher camera resolution could be useful in improving the ROI tracking performance of the
system while a higher frame rate would allow the system to capture the motion of higher
frequency without aliasing or motion blur. In addition, to compensate for micro-motion
that is not captured by the depth signal, other signal processing techniques such as sparse
frequency estimation could be combined with our depth-based motion compensation
method to improve the motion artifacts resilience of the system.

6. Conclusions

In conclusion, we demonstrate a contactless HR/RR monitoring system based on an
indirect ToF camera. The active illumination from an 850 nm VCSEL combined with the
depth information from the ToF camera can be used to compensate for the motion artifacts
that commonly dominate the underlying heartbeat signal. We show that the depth-based
compensation increases success rate (defined as the HR reading within 10% of the reference
HR measurement) to 75%, as compared to 35% when no depth compensation method is
used. The additional depth information also enables the direct measurement of RR from a
participant by measuring the chest wall movement during breathing. The RR measurement
from our system shows a mean deviation of 1.7 BPM compared to the reference RR reading.
Furthermore, the infrared active illumination makes this system less affected by factors
such as environmental lighting or the skin color of the user. In our pilot study with 29
participants, we show that our system performs similarly among participants of different
demographics such as skin color, age, and gender. In the future, this system could be
found useful in fields such as in-cabin driver monitoring and remote patient monitoring
where non-contact unobtrusive and environmentally agnostic physiological monitoring is
preferred [19,23,40,41].
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