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Abstract: In the processing of remotely sensed data, classification may be preceded by feature
extraction, which helps in making the most informative parts of the data emerge. Effective feature
extraction may boost the efficiency and accuracy of the following classification, and hence various
methods have been proposed to perform it. Recently, Singular Spectrum Analysis (SSA) and its
2-D variation (2D-SSA) have emerged as popular, cutting-edge technologies for effective feature
extraction in Hyperspectral Images (HSI). Using 2D-SSA, each band image of an HSI is initially
decomposed into various components, and then the image is reconstructed using the most significant
eigen-tuples relative to their eigen-values, which represent strong spatial features for the classification
task. However, instead of performing reconstruction on the whole image, it may be more effective to
apply reconstruction to object-specific spatial regions, which is the proposed objective of this research.
As an HSI may cover a large area, multiple objects are generally present within a single scene.
Hence, spatial information can be highlighted accurately by specializing the reconstruction based
on the local context. The local context may be defined by the so-called superpixels, i.e., finite sets
of pixels that constitute a homogeneous set. Each superpixel may undergo tailored reconstruction,
with a process expected to perform better than non-spatially-adaptive approaches. In this paper,
a Superpixel-based SSA (SP-SSA) method is proposed where the image is first segmented into
multiple regions using a superpixel segmentation approach. Next, each segment is individually
reconstructed using 2D-SSA. In doing so, the spatial contextual information is preserved, leading
to better classifier performance. The performance of the reconstructed features is evaluated using
an SVM classifier. Experiments on four popular benchmark datasets reveal that, in terms of the
classification accuracy, the proposed approach overperforms the standard SSA technique and various
common spatio-spectral classification methods.

Keywords: hyperspectral image; superpixel segmentation; evaluation; 2D-singular spectrum analysis
(2D-SSA); feature extraction

1. Introduction

Recent advancements in hyperspectral sensors resulted in the increased availability
of Hyperspectral Images (HSI) and a boost in their circulation among the remote sensing
community. HSI data enables the discrimination of objects even with minor differences
as it contains several contiguous spectral bands acquired from the visible to the infrared
region [1] so that every small spectral difference can, in principle, be captured. The
information is available in the form of a 3-D structure that contains a 2-D spatial scene
along with a 1-D spectral signature. These unique characteristics of HSI have made them
popular in several application areas, such as agriculture [2], mineralogy [3], land cover
classification [4], target detection [5], and others. However, effective classification of HSI is
still an open challenge.
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Several classification techniques, such as K-nearest neighbor (KNN) [6], support vector
machine (SVM) [7], multinomial logistic regression (MLR) [8], Extreme Learning Machine
(ELM) [9], and Sparse Representation Classifier (SRC) [10] have been proposed in the past
decades. The richness in spectral information attracted research efforts on pixel-based
processing and classification. SVM is the most popular and widespread classifier due to its
lower generalization error rate that makes it capable of identifying even minor changes
in spectral signatures. Due to the high spectral dimensionality compared to a generally
limited number of class-specific training samples, it is quite difficult to properly estimate
the model parameters. Hence, there is a need to adopt effective spatial-spectral feature
extraction approaches to overcome the aforementioned challenges.

To deal with the issue of higher spectral dimensionality, several linear (e.g., Principal
Component Analysis (PCA) [11], Independent Component Analysis (ICA) [12], and Linear
Discriminant Analysis (LDA) [13]) and non-linear (manifold learning [14]) dimensionality
reduction (DR) methods have been introduced. Band selection approaches may also be
utilized to select the most informative bands out of several available bands [15,16]. Spectral
features alone, however, may not be sufficient to score very high accuracy values. To
improve performance, it is necessary to incorporate spatio-spectral features that help
increasing the separability of classes.

Recently, various spatial feature extraction techniques have been proposed. Math-
ematical Morphology is one of the most popular approaches that is extensively utilized
by researchers. The concept of Extended Morphological Profiles (EMP) for FE in HSI
was first proposed by Benediktsson et al. [17]. This technique utilizes morphological
opening and closing transformations to extract spatial geometrical information. Later,
Dalla Mura et al. [18] proposed Morphological Attribute Filters (MAP) for the spatial
FE. From that point onwards, several variations of Attribute Profiles (AP) were created.
Ghamisi et al. [19] conducted a comprehensive survey on the evolution in Attribute Profiles.

Texture Descriptors, including Wavelet transform [20], Gray-Level Co-occurrence
Matrix (GLCM) [21], Local Binary Patterns (LBP) [22], and Gabor filters [23], have also been
used in the literature for spatial FE. Filtering, i.e., moving-window-based processing, is
another approach to extract spatial-spectral features. Various edge-preserving filters, such
as Bilateral Filters [24], Trilateral Filters [25], Guidance filters [26], and Domain Transform
Recursive Filters [27] have been introduced for spatial FE in the literature. The texture and
noise variations are minimized by performing smoothing operations; however, important
details, such as edges and lines, are well preserved by these filters [28].

In addition to these techniques, 2D-SSA is another interesting approach for spatial
feature extraction. Using this approach, each band image of HSI is initially decomposed
into varying trends, oscillations, and noise. Later, HSI is reconstructed using the selected
oscillations and trends [29,30]. In 2D-SSA, the spatial structural information is extracted by
utilizing the characteristics of the surrounding pixels in a specific embedding window. It
can withstand high levels of noise and generally achieves good data classification results.

2D-SSA suffers, however, from several limitations, such as reduced utilization of the
abundant spectral information available in data, and over-smoothing or under-smoothing
of classification results because of the fixed embedding window size. To overcome the
challenge of selecting the optimal embedding window size, recently, multi-scale 2D-SSA
has been proposed for the effective extraction of discriminative spatial features under
different noise conditions [31,32].

Superpixel segmentation techniques have gained popularity in recent years due to
their capability of exploiting spatial structural information adaptively in an image. In [33],
a survey on superpixel segmentation as a preprocessing step in HSI analysis was presented.
A superpixel-based classification via multiple kernels (SCMK) approach was proposed
in [34]. In [35], a region-based relaxed multiple kernel (R2MK) method was proposed
that combines the multiscale spectral and spatial features using a kernel collaborative
representation classification technique.
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To obtain superior classification performance and solve the problem of optimal su-
perpixel number selection, an adjacent superpixel-based multiscale spatial-spectral kernel
(ASMGSSK) was proposed in [36]. In [37], a multiscale segmentation-based SuperPCA
model (MSuperPCA) was developed, which can effectively integrate multiscale spatial
information to obtain the optimal classification result by decision fusion.

Recently, deep learning techniques have become quite popular in the classification
of HSI data due to their ability to extract discriminant and abstract features by using a
series of hierarchical layers. The initial layers usually extract texture and edge information,
whereas deeper layers highlight more complicated features. Some of the most popular
deep learning frameworks include stacked autoencoders (SAE) [38], Deep Belief Net-
works (DBN) [39], Convolution Neural Networks (CNN) [40], Recurrent Neural Networks
(RNN) [41], Generative Adversarial Networks (GAN) [42], etc.

Although deep learning approaches have several advantages, they also pose signif-
icant challenges in HSI applications. First of all, to achieve better classification result,
often deep learning techniques demand large volumes of training samples. Moreover, a
large number of hyper-parameters (like the kernel sizes, learning rate, etc.) are involved
in training complex deep learning networks mainly designed for feature extraction and
classification. Hence, the process becomes computationally expensive.

The disadvantages of combining SSA with structured approaches to incorporating
spatial information may be overcome by using more flexible ways to spatially partition
the dataset. In line with this consideration, in this work, a superpixel-based SSA (SP-
SSA) algorithm was proposed as a means to increase the classifier performance. Instead
of performing direct reconstruction, an object-specific reconstruction is performed to
accurately preserve the local contextual information. Superpixel segmentation is first
applied on the input HSI to generate a segmented HSI where each sub-region carries
similar characteristic features, and its shape and size is adjusted according to the local
image structure information. Next, 2D-SSA is individually applied on each segmented
region to produce the reconstructed HSI. Lastly, the final classification map is generated
by using the popular SVM classifier. The major novel contributions of this work are
highlighted in the following list:

1. Direct reconstruction is usually performed in standard 2D-SSA algorithms, where the
full image is reconstructed. In HSIs, however, object-specific reconstruction is always
better than direct reconstruction, as, in this way, local contextual information can be
captured accurately. In this work, a novel SP-SSA approach is proposed that performs
object-specific reconstruction.

2. Superpixel segmentation and 2D-SSA are combined together for the first time for
accurate spatial-spectral feature extraction. Using SP-SSA, each superpixel, i.e., object-
specific spatial region is reconstructed.

3. Superior classifier performance is achieved with the proposed method in comparison
to other state-of-the-art methods, even with a comparatively small number of training
samples.

The remainder of this paper is organized as follows. A detailed description of the
proposed method is presented in Section 2. The experimental setup, results, and analysis
are described in Section 3. Finally, some conclusions and future work are discussed in
Section 4.

2. The Proposed Methodology

The proposed SP-SSA method includes three stages as described in Figure 1. In
stage 1, superpixel segmentation is applied on the input HSI to obtain the segmented HSI.
In stage 2, each segmented region is reconstructed using 2D-SSA to obtain the reconstructed
HSI. In the final stage, an SVM classifier is applied on the reconstructed HSI to build the
final classification map. A detailed description of each of these stages is presented in the
subsections below.
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Figure 1. Flowchart of the proposed method.

2.1. Superpixel Segmentation

Superpixel segmentation approaches have gained popularity in recent years as these
approaches have several benefits. Using superpixels, the computational complexity can be
drastically reduced by computing features on more meaningful regions rather than acting
on each individual pixel in HSI [43]. Simple Linear Iterative Clustering (SLIC) [44] is one
of the most popular gradient-ascent-based superpixel segmentation approaches, where an
initially defined tentative set of cluster points are iteratively refined using a gradient-ascent
method until some convergence criteria are met. This algorithm has lower computational
complexity as it applies the k-means method locally. The algorithm includes four key steps
that can be summarized as follows.

The first step is cluster center initialization. Let the input HSI be denoted as Hb ≡
{hb

1, hb
2, . . . , hb

N} with N pixels, where {hb
i } represents the value at the ith pixel for the bth

spectral band and i = 1, 2, . . . N; b = 1, 2, . . . B. B is the total number of spectral bands. Each
pixel can be labeled as Ai = [hi, ri, ui], where hT

i = [h1, h2, . . . , hB]
T is the spectral vector

and [ri, ui]
T is the position vector. The K number of initial cluster centers Cj = [hj, rj, uj]

T

are sampled on a regular Q×Q (Q =
√

N
K ) grid and are, thus, equally spaced apart [45].

The next step is the cluster assignment step, where each pixel is assigned to the nearby
cluster center based on the computed distance measure D. Distance is computed within a
2Q× 2Q window around the cluster center. The distance between the cluster center Cj and
pixel Ai is calculated as follows (Equation (1)):

D = Dspectral +
w
Q

Dspatial (1)

where w is the weighting factor between spectral and spatial features. The spectral and
spatial distance between pixel i and j are represented as in Equations (2) and (3) below.

Dspectral =

√√√√ B

∑
b=1

(
hb

i − hb
j

)2
(2)

where Dspectral is the measure of homogeneity within the superpixels.

Dspatial =
√
(ri − rj)2 + (ui − uj)2 (3)

where (ri, ui) denotes the location of pixel i in the superpixels. The spatial distance Dspatial
ensures regularity and compactness in the generated superpixels.

In the third step, the cluster centers are updated with the mean value of all pixels
belonging to the same cluster. The second and third steps are iteratively repeated until
convergence is achieved.

In the final step, post-processing is performed to enforce connectivity by reassigning
disjoint pixels to nearby superpixels.

2.2. 2D-SSA

SSA is capable of decomposing a series into multiple independent components or
subseries, where each extracted eigenvalue represents an individual component of the
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original series. The SSA can be applied to the respective spectral bands of the hypercube,
thereby, decomposing the 2-D scene, and then reconstructing it using the respective main
components while removing the noise contribution. As a data cube is decomposed in this
way, the local structure and main spatial trends are typically found in the first component.
Hence, when all images within the hyperspectral cube are decomposed and only the first
components are selected to individually reconstruct each of them, a resulting cube with
minimum noise is generated. The SSA can be implemented using the following four steps:

2.2.1. Embedding

Imagine a HSI dataset H, with a size of Nx × Ny × B, where Nx, Ny indicates the band
image size and B represents the total number of available bands. Each band image Hb

(b ∈ B) can be expressed as follows:

Hb =


Hb

1,1 Hb
1,2 · · · Hb

1,Ny

Hb
2,1 Hb

2,2 · · · Hb
2,Ny· · · ·· · · ·· · · ·

Hb
Nx ,1 Hb

Nx ,2 · · · Hb
Nx ,Ny


Nx×Ny

(4)

Next, a 2D window Qb is defined, whose dimensions are Mx ×My.

Qb =


Hb

i,j Hb
i,j+1 · · · Hb

i,j+My−1

Hb
i+1,j Hb

i+1,j+1 · · · Hb
i+1,j+My−1

· · · ·· · · ·· · · ·
Hb

i+Mx−1,j Hb
i+Mx−1,j+1 · · ·Hb

i+Mx−1,j+My−1


Mx×My

(5)

where 1 ≤ Mx ≤ Nx, 1 ≤ My ≤ Ny, and 1 < Mx My < Nx Ny. Each pixel is spatially
positioned by (i, j) within the image Hb. The pixels in a window Qb can be rearranged into
a column vector Cb

i,j ∈ RMx My according to the reference position (i, j) as follows:

Cb
i,j = [Hb

i,j, Hb
i,j+1, . . . , Hb

i,j+My−1, Hb
i+1,j, Hb

i+1,j+1, . . . , Hb
i+Mx−1,j+My−1]

T (6)

To scan the whole image Hb, this 2-D window is slid across it from top left to bottom
right until it has visited every position on the entire image (see also Figure 2 for a graphical
explanation).

Hb
i,j

1
Ny

Nx

My

Mx
i

j1

Qb

[MxMy x 1]

Cb
i,j

(a) (b) (c)

SVD

(d)

Figure 2. Moving window across the image Hb to create the trajectory matrix Zb.

As a result, the trajectory matrix Zb of all feasible 2-D windows of image Hb of size
Mx My × (Nx −Mx + 1)(Ny −My + 1) can be obtained as follows:

Zb =

[
(Cb

1,1)
T , (Cb

1,2)
T , . . . , (Cb

1,Ny−My+1)
T , (Cb

2,1)
T , . . . , (Cb

Nx−Mx+1,Ny−My+1)
T
]

Mx My×(Nx−Mx+1)(Ny−My+1)
(7)
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Note that the trajectory matrix Zb has a structure of Hankel–block–Hankel (HbH). Zb

can be expressed as follows:

Zb =


Pb

1 Pb
2 · · · Pb

Nx−Mx+1
Pb

2 Pb
3 · · · Pb

Nx−Mx+2· · · ·· · · ·· · · ·
Pb

Mx
Pb

Mx+1 · · · Pb
Nx


Mx×(Nx−Mx+1)

(8)

Each of the submatrices Pb
i corresponds to a Hankel structure as follows:

Pb
i =



Hb
i,1 Hb

i,2 · · · Hb
i,Ny−My+1

Hb
i,2 Hb

i,3 · · · Hb
i,Ny−My+1

· · · ·
· · · ·
· · · ·

Hb
i,My

Hb
i,My+1 · · · Hb

i,Ny


My×(Ny−My+1)

(9)

2.2.2. Singular Value Decomposition (SVD)

After obtaining the trajectory matrix Zb, SVD is applied to determine the eigenvalues(
λ1 ≥ λ2 ≥ · · · ≥ λMx My

)
, and the corresponding eigenvectors

(
U1, U2, · · ·, UMx My

)
of(

Zb
(
Zb
)T
)

. It is possible to rewrite Zb as follows:

Zb = Zb
1 + Zb

2 + · · ·+ Zb
Mx My

(10)

where the ith elementary matrix is Zb
i =
√

λiUiVT
i and its Principal Components (PCs) are

defined as Vi =
(Zb)TUi√

λi

2.2.3. Grouping

A subsequent operation is eigenvalue grouping, during which the total set of Mx My
individual components in (10) are divided into m subsets, designated as S = [S1, S2, . . . , Sm].
By selecting one or more elementary matrices Zb

i from each subset, it is possible to derive
the main information contained in an image without being disturbed by high noise levels.
As a result, the trajectory matrix Zb can be represented as follows:

Zb = Zb
S1
+ Zb

S2
+ · · ·+ Zb

Sm
(11)

The reconstruction of a single band scene of HSI using various numbers of components
(Zb

i ) is compared in Figure 3. In general, the component with the highest eigenvalue is the
most informative one, containing key features with the lowest noise contribution. With
the inclusion of additional components, the reconstructed scene begins to resemble the
actual scene. The reconstructed image obtained by grouping the 1st–5th components and
1st–10th components are very similar with marginal differences (Figure 3c,d). Hence, a
small number of key components are sufficient to reconstruct the scene satisfactorily.
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(a)                                         (b)

(c)                                         (d)

Figure 3. Implementation of 2D-SSA on a HSI scene (a) Original scene at 667 nm. (b) 1st component
grouping. (c) 1–5th component grouping. (d) 1–10th component grouping, where Mx = 5, and My = 5.

2.2.4. Diagonal Averaging

Zb, in this case, does not necessarily belong to the HbH matrix type. It is projected into
a 2D-signal by applying the Hankelization process in two steps; first inside every block (9)
and next block-to-block (8) by averaging the anti-diagonal elements in the matrix. Thus,
it is possible to obtain a reconstructed image that contains the distinctive spatial features
based on the local contextual information present in a 2D window defined by the user.

2.3. Novelty of the Proposed SP-SSA Method

The proposed approach integrates SSA and superpixel segmentation for the first
time to extract improved the spatio-spectral features from HSI. Reconstruction of object-
specific spatial sections, rather than the entire image, may be more effective. Hence, in
the proposed work, 2D-SSA is applied individually to each superpixel segmented region
to extract the local contextual information accurately. The pseudo-code for the proposed
SP-SSA algorithm is outlined in Algorithm 1.

Algorithm 1: Proposed SP-SSA algorithm for HSI classification.

Input: HS image, H ∈ Rn×b

Ground Truth GT
number of superpixels: K
Embedding Window Size:Mx ×My
Eigen Value Grouping: EV

Output: Classification Map clsmap generated by SVM.
1: for b = 1 to B do
2: Perform SLIC superpixel segmentation to obtain segmentation map L from hb

containing K superpixel segments
L = SLIC (hb,K) (as outlined in Section 2.1)

3: for k = 1 to K do
4: hb

′

k = reconstruct2DSSA(L,Mx,My,EV) (as outlined in Section 2.2)
5: end for
6: end for
7: Obtained Reconstructed HSI H

′ ∈ Rn×b

8: clsmap = SVM (H
′
, GT)

For each superpixel, the reconstruction (reconstruct2DSSA (Algorithm 1)) is applied
to the rectangular Region of Interest (ROI) surrounding the superpixel (Figure 4). The
ROI is created based on the location information of the pixels available in that particular
segment. Only the reconstructed pixels specific to those pixels in the selected superpixel are
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stored as spatial features, while the remaining reconstructed pixels in the ROI are discarded
as they do not belong to the superpixel under test. The same procedure is applied to all
other superpixels, and the HS image is reconstructed using the proposed SP-SSA approach.
This procedure collects local object-specific superpixel-based spatial features for each band
in the image.

(rmin, umax) (rmax, umax)

(rmax, umin)(rmin, umin)

Figure 4. Possible Region of Interest (ROI) around the superpixel segment. (r, u) denotes the location
of pixel i in superpixels. rmin, rmax represents the minimum and maximum row index, and umin, umax

are the corresponding min and max column indices.

2.4. Classification

The selection of an appropriate classifier is critical in assessing the performance of the
above-mentioned features, especially in hyperspectral images with a limited number of
training samples. SVM is the most widely used supervised statistical learning framework
among pixel-wise classifiers. With the help of a kernel function, data can be mapped to
a higher-dimensional space via a nonlinear transformation, aiming to determine the best
hyperplane for separating samples belonging to different classes. The performance of SVM
in HSI classification is outstanding despite the variation of the data dimensions [46,47].
Hence, in this work, the SVM classifier is utilized to evaluate the performance of the
reconstructed features.

3. Results and Discussion

This section reports the outcome of testing the proposed approach on some of the
most popular benchmark datasets and compares it with other, state-of-art classification
approaches.

3.1. Dataset Description

In this subsection, the datasets used for testing the proposed approach are presented
and described.

3.1.1. Indian Pines

The first dataset, named “Indian Pines” (IP), was collected over Northwestern Indiana,
USA, with the airborne AVIRIS sensor; it includes a total of 220 bands covering wavelengths
from 0.4 to 2.5 µm. About 70% of the imaged area is agricultural land, while the remaining
portions are forests. Due to the comparatively low spatial resolution (20 m/pixel) of the
sensor, this dataset is challenging as it contains highly mixed pixels. The number of samples
obtained per class is also unbalanced, which further complicates classification. The size of
the scene is 145× 145 pixels, and its Ground Truth (GT) data defines 16 different classes.
The pseudo-color image, the GT map, and the class names for the dataset are all included
in Figure 5.



Appl. Sci. 2021, 11, 10876 9 of 21

Alfalfa

Corn-notill
Corn-mintill

Corn

Grass-pasture

Grass-trees

Grass-pasture-mowed

Hay-windrowed

Oats

Soybean-notill

Soybean-mintill

Soybean-clean

Wheat

Woods

Buildings-Grass-Trees-Drives

Stone-Steel-Towers

(a) (b) (c)

Figure 5. (a) False Color Composite Image, (b) Ground Truth Image and (c) Class names for the
Indian Pines Dataset.

3.1.2. Pavia University

The ROSIS sensor was instrumental to the collection of this dataset over the University
of Pavia, Italy. The dataset is called “Pavia University” (PU). It has a spatial resolution
of 1.3 m and originally comprises 115 spectral bands covering wavelength ranges from
0.43 to 0.86 µm. In the final analysis, 103 bands are used after the elimination of noisy
channels. The image has a size of 610× 340 pixels, and it has nine challenging classes
with nearly similar spectral reflectances. Detailed information about the false-color image,
Ground Truth, and class names is displayed in Figure 6.

Asphalt

Meadows

Gravel

Trees

Painted metal sheets

Bare Soil

Bitumen

Self-Blocking Bricks

(c)

Shadows

(b)(a)

Figure 6. (a) False Color Composite Image, (b) Ground Truth Image and (c) Class names for the Pavia
University Dataset.

3.1.3. Salinas Dataset

The “Salinas” (SAL) dataset was captured over the Salinas Valley, California, USA,
using the AVIRIS Sensor. The sensor has 224 channels with spectral range varying from
0.43 µm to 2.5 µm. This scene has a size of 512 ×217 pixels and spatial resolution of 3.7 m
per pixel. The number of bands reduces to 204 after discarding 20 water absorption bands:
[108–112], [154–167], 224. The scene is mainly an agricultural area, with 16 classes in its
Ground Truth. A false color representation, the Ground Truth, and the class names for the
Salinas dataset are shown in Figure 7.
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Brocoli_green_weeds_1

Brocoli_green_weeds_2
Fallow

Fallow_rough_plow

Fallow_smooth

Stubble

Celery

Grapes_untrained

Soil_vinyard_develop

Corn_senesced_green_weeds

Lettuce_romaine_4wk

Lettuce_romaine_5wk

Lettuce_romaine_6wk

Lettuce_romaine_7wk

Vinyard_untrained

Vinyard_vertical_trellis

(a) (b) (c)

Figure 7. (a) False Color Composite Image, (b) Ground Truth Image, and (c) Class names for the
Salinas Dataset.

3.1.4. Houston 2018

The 2018 IEEE GRSS Data Fusion Contest (DFC) triggered public dissemination of
this rich dataset, which was included in our tests to increase their statistical significance.
The image of the Houston campus and its surrounding area was captured by the IRTES
CASI-1500 sensor at a GSD of 1 m over Houston, Texas, USA. It has 601× 2384 pixels
and 50 spectral bands with wavelengths ranging from 380 to 1050 nm sampled at 10 nm
intervals. The scene contains 20 urban landcover classes. The false-color composite image,
ground truth image, and class names for the Houston 2018 dataset are provided in Figure 8.

Healthy grass

Stressed grass
Artificial turf

Evergreen trees

Deciduous trees

Bare earth

Water

Residential buildings

Non-residential buildings

Roads

Sidewalks

Crosswalks

Major thoroughfares

Highways

Railways

Paved parking lots
Unpaved parking lots

Cars

Trains

Stadium seats

(a)

(b) (c)

Figure 8. (a) False-Color Composite Image, (b) Ground Truth Image, and (c) Class names for the Houston-2018 Dataset.

3.2. Experimental Setup

Our proposed approach was evaluated by comparing its performance with eight
state-of-the-art approaches for HSI feature extraction (Algorithm 2, see Section 3.4.5). These
include SVM [7], Edge Preserving Filter (EPF) [26], superpixel-based classification via
multiple kernels (SCMK) [34], region-based relaxed multiple kernel (R2MK) [35], adjacent
superpixel-based multiscale generalized spatial-spectral kernel (ASMGSSK) [36], Multiscale
superpixel-based PCA (MsuperPCA) [37], 2D Singular Spectrum Analysis (2D-SSA) [29],
and 2D Multiscale Singular Spectrum Analysis (2D-MSSA) [31]. A common way to measure
the efficiency of feature extraction is through the accuracy of the classifier scored by the
experiments. As a result, the classification setup must be appropriate with the current
state-of-the-art. In light of this, SVMs have demonstrated themselves to be robust and
efficient in multi-class classification applications.

The LIBSVM toolbox [48] is used to implement SVM as the default classifier for all
of the involved methods. A Gaussian RBF kernel is utilized for SVM implementation,
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and a grid search is applied to tune both key parameters of RBF-SVM; the penalty c and
the gamma γ. The SVM parameters are kept constant across all competitive experiments
for a fair comparison. To avoid systematic errors and reduce random discrepancies, all
experiments were independently carried out ten times each with different training and
testing subsets, with no overlap between each training and the corresponding testing
subset. This was intended to ensure good statistical significance for our experiments.

Stratified sampling was used to randomly obtain the training and testing subsets.
For training, 3%, 2%, 1%, and 0.2% samples per class were selected for the IP, PU, SAL,
and Houston 2018 datasets, respectively. Additionally, four objective quality indices are
utilized to evaluate image classification results: namely the OA, the average accuracy (AA),
the kappa coefficient, and class-by-class accuracy. All experiments were conducted using
MATLAB R2018b software, installed on a personal computer with an Intel core i5-6200
CPU clocked at 2.30 GHz, and 16 GB RAM.

3.3. Parameter Sensitivity Analysis

Table 1 displays the best parameter settings for the competing algorithms, found
by experimentation. For the proposed SP-SSA algorithm, the size of the 2-D embedding
window was set to 5× 5 pixels for the IP and Salinas dataset; whereas, for the PU and
Houston 2018 dataset, the window size was set at 3× 3 pixels. For the IP and SAL datasets,
superpixels were set at 100. However, the amount of superpixels in the PU and Houston
2018 datasets were set to 150 and 500, respectively. The effect of window size variation
for different number of superpixels on the classification performance for the experimental
datasets is provided in Figure 9.

As each superpixel is reconstructed individually, smaller window sizes are preferred
since they lead to better image reconstructions. Using a large window may smooth the
results too much and result in mixing errors. A 2D-SSA algorithm was presented in [29] for
feature extraction in HSI, where various window sizes, such as 5× 5, 10× 10, 20× 20, 40×
40, and 60 × 60, were examined. The IP and SAL datasets produced the best classification
accuracy when the window size was set at 10 × 10. When analyzing the PU and Houston
dataset, the window sizes of 5 × 5 showed the best classification results. Since the optimal
window size may vary depending on the dataset, ref. [31] adopts a multiscale strategy to
improve the generalization ability.
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Figure 9. Effect of window size variation for different number of superpixels on the classification performance for the
(a) Indian Pines (b) Pavia University, and (c) Salinas, and (d) Houston 2018 datasets.
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Table 1. Parameter settings for different algorithms in the Indian Pines, Pavia University, Salinas, and Houston 2018 Datasets.

Method Indian Pines, Salinas Pavia University Houston 2018

SVM NA NA NA

EPF δs = 3, δr = 0.2, r = 3, and ε = 0.01 δs = 3, δr = 0.2, r = 3, and ε = 0.01 δs = 5, δr = 0.1, r = 3, and ε = 0.02

SCMK σ = 2−6; spnum = 600; µ1 = 0.2, µ2 = 0.2 σ = 2−4; spnum = 900; µ1 = 0.2, µ2 = 0.4 σ = 2−5; spnum = 1600; µ1 = 0.1, µ2 = 0.3

R2MK σ = 2−6; spnum = [20,50,100,200,400,800]; µ = 0.2 σ = 2−5; spnum = [50,100,200,400,800,1600]; µ = 0.3 σ = 2−4; spnum = [50,100,200,400,800,1600,3200]; µ = 0.1

ASMGSSK r0 = 0.1; σ = 2−7; spnum = [100,200,400,800,1600,3200] r0 = 0.1; σ = 2−5; spnum = [200,400,800,1600,3200,6400] r0=0.2; σ = 2−4; spnum = [200,400,800,1600,3200,6400]

MsuperPCA Fundamental spnum = 100; scale no = 4 Fundamental spnum = 20; scale no = 6 Fundamental spnum = 100; scale no = 8

2DSSA Window Size: 10× 10; EVG = 1st Window Size: 5× 5; EVG = 1− 2nd Window Size: 5× 5; EVG = 1− 2nd

2DMSSA Window Size: 5× 5, 10× 10, 20× 20, 40× 40, 60× 60 Window Size: 5× 5, 10× 10, 20× 20, 40× 40, 60× 60 Window Size: 5× 5, 10× 10, 20× 20, 40× 40, 60× 60

SP-SSA spnum: 100; Window Size: 5× 5; EVG = 1 spnum: 150; Window Size: 3× 3; EVG = 1− 2nd spnum: 500; Window Size: 3× 3; EVG = 1− 2nd

3.4. Experimental Result and Analysis

In this section, the four HSI data sets outlined in Section 3.1 are utilized, and several ex-
periments are performed to examine the efficacy of the proposed SP-SSA method. Figure 10
compares the classification results obtained with varying numbers of training samples on
four datasets. It can be noted that better classification performance is evident when larger
numbers of labeled samples are utilized for training; after passing the percentages used in
this work; however, the accuracy level mostly plateaus, and no further significant improve-
ment is observed. Our proposed approach attains the best classification accuracy in almost
all cases, regardless of the number of samples, proving its robustness. Classification results
from all four data sets are provided in Tables 2–5 and quantitatively support the dominance
of the proposed method. Individual classification maps generated by the proposed SP-SSA
method and all the compared approaches are displayed in Figures 11–14.
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Figure 10. Effect of training sample variation on the classification performance for the (a) Indian Pines (b) Pavia University,
(c) Salinas, and (d) Houston 2018 datasets.

3.4.1. Results from the Indian Pines Dataset

Based on the results shown in Table 2, the proposed method achieves the best values
across three metrics, and its accuracy exceeded 89% on almost all classes. In the tables, the
best results in each row are highlighted in bold font. When comparing SP-SSA with raw
HSI data, the OA improved substantially from 76.42% to 98.15%. In addition, comparisons
between SVM and other methods indicated that the incorporation of spatial features can
enhance the classification performance compared to considering spectral features alone.
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Superpixel-based methods, such as SCMK, R2MK, ASMGSSK, and MsuperPCA tech-
niques, yield higher classification accuracy as compared to non-superpixel based techniques
(EPF, 2D-SSA, and 2D-MSSA); by grouping spectrally identical regions, superpixels offer
a powerful way to exploiting spatial/contextual information. It can also be noted that
methods considering multi-scale windows (ASMGSSK, MsuperPCA, and 2D-MSSA) per-
form better with respect to fixed-window methods. Due to the different window sizes,
unique local spatial features can be exploited, which allows better covering of different
sizes of land cover classes and different scales of spatial features. On the downside, the use
of multiscale approaches involves heavier processing burdens. As the proposed method
reconstructs each superpixel individually, better classification results are obtained.

Table 2. Classification results for the Indian Pines Dataset with 3% training for SVM, EPF, SCMK, R2MK, ASMGSSK,
MsuperPCA, 2D-SSA, 2D-MSSA, and SP-SSA algorithms.

Class Samples SVM EPF SCMK R2MK ASMGSSK MsuperPCA 2DSSA 2DMSSA SP-SSA

Alfalfa 46 12.65 22.22 62.79 92.86 95 87.8 54.55 87.8 92.11
Corn-notill 1428 75.18 92.85 92.55 94.06 94.85 97.09 91.81 95.25 98.25

Corn-mintill 830 82.46 83.44 90 93.32 97.37 90.11 88.96 96.65 97.99
Corn 237 47.86 79.39 85.59 95.41 96.14 99.53 80.89 89.2 96.98

Grass-pasture 483 69.25 68.04 89.67 97.3 99.05 95.81 90.61 92.41 97.04
Grass-trees 730 80.19 96.72 99.56 98.36 99.21 98.61 93.23 99.54 99.51

Grass-pasture-mowed 28 88.89 88.46 69.23 80 100 96 92.59 92 100
Hay-windrowed 478 93.46 100 98 98.18 98.32 95.07 98.46 99.54 99

Oats 20 36.12 47.37 100 52.63 47.06 94.12 42.11 83.33 100
Soybean-notill 972 76.74 82.96 88.29 90.16 96.57 95.27 87.12 96.91 93.63

Soybean-mintill 2455 79.51 97.03 95.54 97.48 98.5 96.66 93.1 97.19 99.03
Soybean-clean 593 50 86.99 93.18 95.79 97.29 95.27 90.96 96.07 98.6

Wheat 205 99.01 96.94 92.23 100 97.21 98.9 99.48 98.91 100
Woods 1265 88.74 99.26 98.91 99.48 99.27 99.02 96.42 99.82 99.62

Buildings-Grass-Trees-Drives 386 65.18 87.87 99.45 94.37 96.73 88.95 90.16 94.24 98.46
Stone-Steel-Towers 93 41.32 97.75 72.73 92.94 97.5 93.9 97.75 98.81 89.74

OA:: 76.42 91.25 93.82 95.98 97.54 96.04 91.95 96.83 98.15
AA:: 67.91 82.96 89.23 92.02 94.38 95.13 86.76 94.86 97.5
K:: 73.05 89.98 92.95 95.32 97.2 95.49 90.82 96.39 97.89

Figure 11 displays the classification maps produced by various approaches for the
Indian Pines dataset. For the SVM approach, the classification map appears very noisy if
spatial features are not considered. Through the use of neighborhood spatial information,
the EPF and 2D-SSA techniques can suppress spot-wise misclassification to a large extent,
but these methods do not preserve the detailed structures of the HSI well enough.

However, by adopting superpixel-based approaches, the generated classification
map becomes much smoother, and more accurate estimates are obtained in the detailed
region. With the utilization of multi-scale approaches (like ASMGSSK, MSuperPCA, and
2D-MSSA), the amount of misclassification is further reduced. Still, even with multi-scale
approaches, landcover boundaries are frequently misplaced. As can be observed from
Figure 11, the proposed approach effectively solved the above-mentioned problems due to
its considerate utilization of spectral and spatial features.
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Figure 11. (a) Ground Truth Image, Classification Maps of (b) SVM (c) EPF (d) SCMK (e) R2MK
(f) ASMGSSK (g) MsuperPCA (h) 2D-SSA (i) 2D-MSSA (j) SP-SSA for Indian Pines dataset.

3.4.2. Results from the Pavia University Dataset

Quantitative results are presented in Table 3. The proposed SP-SSA method still
achieved higher classification accuracy and ranked first among all the compared methods,
closely followed by the ASMGSSK algorithm. Also, in comparison to EPF, SCMK, R2MK,
2D-SSA, MSuperPCA, and 2D-MSSA techniques, the average improvement of the proposed
approach is over 4.41%, 3.64%, 2.09%, 2.37%, 1.3%, and 1.48%, respectively. For comparison,
the top results in the tables are boldfaced. In Figure 12, different classification maps are
shown, based on various testing methods applied to the PU dataset.

According to Figure 12, the classification map for SVM still continues to remain noisy.
Both EPF and 2D-SSA can generate a relatively smooth result; however, some significant
regions remain undetected (e.g., the detailed areas). The superpixel-based methods (SCMK,
R2MK, ASMGSSK, and MSuperPCA) and SSA-based approach (2D-SSA and 2D-MSSA)
offer significantly improved performance, but the proposed 2D-SSA method remains the
most promising approach as it outperforms all the compared algorithms.

Table 3. Classification results for the Pavia University Dataset with 2% training for SVM, EPF, SCMK, R2MK, ASMGSSK,
MsuperPCA, 2D-SSA, 2D-MSSA, and SP-SSA algorithms.

Class Samples SVM EPF SCMK R2MK ASMGSSK MsuperPCA 2DSSA 2DMSSA SP-SSA

Asphalt 6631 90.79 96.33 94.01 95.43 99.23 97.19 97.12 97.61 98.94
Meadows 18,649 99.54 98.06 99.14 99.78 99.76 99.83 99.52 99.45 99.85

Gravel 2099 53.12 80.86 83.69 90.81 91.85 89.73 89.35 90.53 94.17
Trees 3064 81.9 83.81 87.34 93.8 98.22 95.53 96.24 95.76 99

Painted metal sheets 1345 93.04 100 99.17 100 99.17 100 99.47 99.46 100
Bare Soil 5029 89.64 94.15 96.46 96.81 99.6 98.01 95.76 98.52 99.74
Bitumen 1330 55.48 89.74 86.86 91.71 99.42 94.54 85.97 97.21 98.85

Self-Blocking Bricks 3682 87.92 91.47 90.97 90.97 94.69 93.05 89.11 92.64 95.62
Shadows 947 90.75 90.19 97.12 98.17 98.59 98.89 95.69 88.67 98.76

OA:: 90.71 94.53 95.3 96.85 98.67 97.64 96.57 97.46 98.94
AA:: 82.47 91.62 92.75 95.28 97.84 96.31 94.25 95.54 98.33
K:: 87.57 92.73 93.76 95.82 98.23 96.87 95.44 96.63 98.6
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Figure 12. (a) Ground Truth Image, Classification Maps of (b) SVM (c) EPF (d) SCMK (e) R2MK
(f) ASMGSSK (g) MsuperPCA (h) 2D-SSA (i) 2D-MSSA (j) SP-SSA for the Indian Pines dataset.

3.4.3. Results from the Salinas Dataset

The visual classification maps and quantitative results obtained by various classifiers
on the Salinas dataset are shown in Figure 13 and Table 4, respectively. In the table, the
best results are shown in bold. Based on the visual quality as well as objective metrics,
it can be observed that the proposed SP-SSA method outperformed other competing
approaches. In addition, compared with the 2D-SSA method that globally reconstructs
the image using fixed-size embedded windows, the SP-SSA method considers the local
spatial information by reconstructing each superpixel individually, which helps in further
reducing the disturbances and improving the class assignment.

Table 4. Classification Results for the Salinas Dataset with 1% training for SVM, EPF, SCMK, R2MK, ASMGSSK, MsuperPCA,
2D-SSA, 2D-MSSA, and SP-SSA algorithms

Class Samples SVM EPF SCMK R2MK ASMGSSK MsuperPCA 2DSSA 2DMSSA SP-SSA

Brocoli-green-weeds-1 2009 99.74 98.43 99.44 99.85 99.36 99.39 98.83 100 99.64
Brocoli-green-weeds-2 3726 100 99.92 100 98.62 100 99.82 100 100 99.96

Fallow 1976 93.34 99.31 99.9 100 99.71 99.89 99.64 99.64 100
Fallow-rough-plow 1394 96.37 97.28 98.52 98 98.26 98.56 97.38 97.54 98.67

Fallow-smooth 2678 91.19 99.06 97.77 99.42 98.72 99.75 98.42 99.25 99.63
Stubble 3959 100 99.92 98.54 99.92 100 100 100 100 100
Celery 3579 99.18 99.65 99.14 99.54 99.8 99.78 100 99.88 99.96

Grapes-untrained 11,271 91.38 92.49 94.6 95.2 96.77 95.76 95 96.31 97.91
Soil-vinyard-develop 6203 97.34 99.88 99.65 99.98 99.82 99.96 99.66 99.95 100

Corn-senesced-green-weeds 3278 93.96 97.37 98.96 97.42 98.47 98.24 96.73 98.3 98.82
Lettuce-romaine-4wk 1068 81.66 96.55 96.81 97.78 97.99 97.92 97.24 97.86 99.87
Lettuce-romaine-5wk 1927 98.03 100 100 100 100 100 100 100 100
Lettuce-romaine-6wk 916 98.85 97.01 97.41 99.55 99.69 99.76 99.74 99.69 99.69
Lettuce-romaine-7wk 1070 92.92 98.23 99.13 98.17 99.07 98.86 99.78 99.47 99.73

Vinyard-untrained 7268 82.69 90.41 91.32 92.28 95.89 92.98 94.21 95.58 97.7
Vinyard-vertical-trellis 1807 95.63 99.13 90.3 99.83 99.6 99.82 98.57 99.29 99.92

OA:: 93.64 96.56 96.82 97.5 98.43 97.89 97.63 98.33 99.1
AA:: 94.52 97.79 97.59 98.47 98.95 98.78 98.45 98.92 99.47
K:: 92.91 96.17 96.46 97.21 98.25 97.65 97.36 98.14 99
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Figure 13. (a) Ground Truth Image, Classification Maps of (b) SVM (c) EPF (d) SCMK (e) R2MK
(f) ASMGSSK (g) MsuperPCA (h) 2D-SSA (i) 2D-MSSA (j) SP-SSA for Salinas dataset.

3.4.4. Results from the Houston 2018 Dataset

The quantitative results for the Houston 2018 dataset with 0.2% training samples
from each class are presented in Table 5. The corresponding classification map is shown
in Figure 14. The best results from the tables are displayed in bold font for comparison.
As observed from Table 5, the proposed methods are robust and achieve good classifica-
tion results even for challenging scenes. The proposed approach improves accuracy from
68.19% to 83.57% for the SVM method. In this case also, the superpixel-based approaches
(SCMK, R2MK) display superior performance as compared to non-superpixel based meth-
ods (EPF, 2DSSA). Here also, multi-scale window approaches (ASMGSSK, MsuperPCA,
and 2D-MSSA) outperform fixed-window based methods as different scales of spatial
features are incorporated into the analysis. Figure 14 also highlights the superiority of the
proposed method. The salt and pepper noise is reduced by a greater extent, and a smoother
classification map is produced with the proposed method.

Table 5. Classification results for the Houston Dataset with 0.2% training for SVM, EPF, SCMK, R2MK, ASMGSSK,
MsuperPCA, 2D-SSA, 2D-MSSA, and SP-SSA algorithms.

Class Samples SVM EPF SCMK R2MK ASMGSSK MsuperPCA 2DSSA 2DMSSA SP-SSA

Healthy grass 9799 62.84 65.71 73 74.49 81.46 76.44 76.64 84.51 79.28
Stressed grass 32,502 84.4 85.08 83.83 86.42 89.88 88.67 83.7 90.99 91.33
Artificial turf 684 100 98.83 100 99.41 100 100 100 100 100

Evergreen trees 13,588 83.72 73.99 80.15 84.76 87.77 82.43 80.43 91.13 87.37
Deciduous trees 5048 43.98 36.75 50.54 51.74 63.82 55.89 46.38 58.26 73.94

Bare earth 4516 79.32 82.67 86.28 88.46 94.01 91.1 80.64 89.04 96.21
Water 266 66.42 67.8 61.89 68.06 83.08 68.18 74.62 66.92 85.71

Residential buildings 39,762 68.26 77.29 77.52 79.2 84.37 82 74.76 78.07 87.39
Non-residential buildings 223,684 82.57 85.51 87.3 88.31 91.64 89.18 86.05 90.63 92.73

Roads 45,810 40.41 43.7 46.79 47.33 58.86 51.39 42.75 53.25 63.89
Sidewalks 34,002 31.36 35.3 37.58 37.51 43.74 39.25 33.65 51.35 49.71

Crosswalks 1516 4.96 9.02 8.63 9.12 13.66 9.26 7.62 5.2 14.21
Major thoroughfares 46,358 50.97 55.91 59.41 63.04 72.53 65.1 58.17 60.83 75.48

Highways 9849 49.7 60.35 61.19 63.93 73.83 70.78 59.55 68.92 78.56
Railways 6937 79.92 85.83 92 89.52 95.29 88.07 80.22 95.84 97.29
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Table 5. Cont.

Class Samples SVM EPF SCMK R2MK ASMGSSK MsuperPCA 2DSSA 2DMSSA SP-SSA

Paved parking lots 11,475 54.91 63.2 74.02 69.99 84.58 74.63 64.9 74.18 84.33
Unpaved parking lots 149 58.78 83.11 83.67 77.03 81.63 85.71 81.08 81.76 93.06

Cars 6578 43.99 47 49.33 59.66 65.09 53.78 54.51 62.85 70.22
Trains 5365 40.83 40.54 58.92 51.3 77.4 61.14 52.66 79.19 79.96

Stadium seats 6824 86.42 93.25 87.78 93.86 96.62 94.18 83.53 98.71 98.43

OA:: 68.19 71.64 74.1 75.48 81.32 77.2 72.11 79.08 83.57
AA:: 60.69 64.54 67.99 69.16 76.96 71.36 66.09 74.08 79.95
K:: 59.13 63.41 66.52 68.28 75.82 70.55 63.94 72.61 78.73

(a)                 (b)                 (c)                 (d)                 (e)

(f)                 (g)                 (h)                  (i)                  (j)

Figure 14. (a) Ground Truth Image, Classification Maps of (b) SVM (c) EPF (d) SCMK (e) R2MK
(f) ASMGSSK (g) MsuperPCA (h) 2D-SSA (i) 2D-MSSA (j) SP-SSA for Houston 2018 dataset.

3.4.5. Statistical Evaluation

The effectiveness of the proposed method was statistically evaluated using McNemar’s
test. The classification results for all the test cases were compared using this test. The
McNemar’s test is defined as in Equation (12), where it is assumed that two generic
algorithms, named Algorithm 1 and Algorithm 2 are compared.

Z =
f12 − f21√

f12 + f21
(12)

In the equation above, f12 indicates the number of samples correctly classified by Algorithm 1
and incorrectly classified by Algorithm 2, and f12 indicates the number of samples for the
opposite case. The performance of Algorithm 1 is better than Algorithm 2 if Z > 0. The
differences between Algorithm 1 and Algorithm 2 are statistically significant if |Z| > 1.96.
In our case, Algorithm 1 is the algorithm proposed in our manuscript, and Algorithm 2 is
—sequentially— each one from the list of standard algorithms: SVM, EPF, SCMK, R2MK,
ASMGSSK, MsuperPCA, 2DSSA, 2DMSSA.

McNemar’s test between the proposed SP-SSA algorithm and the algorithms listed
above for the Indian Pines, Pavia University, Salinas, and Houston 2018 datasets are
provided in Table 6. The test result clearly reveals that the classification results for the
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proposed method were significantly better—in a McNemar’s statistical sense—compared
with other approaches.

Table 6. Statistics of the McNemar Test for the Indian Pines, Pavia University, Salinas, and Houston
2018 datasets.

Z
Indian Pines Pavia University Salinas Houston 2018

Proposed Method (SP-SSA)

SVM 42.534 56.342 37.215 61.512
EPF 39.152 48.186 25.113 57.084

SCMK 27.467 37.428 21.421 43.115
R2MK 23.615 28.521 18.472 39.721

ASMGSSK 10.624 16.832 8.351 18.521
MsuperPCA 21.524 19.441 11.486 35.431

2DSSA 34.321 31.084 15.321 51.322
2DMSSA 16.819 23.217 9.091 27.634

3.5. Advantage of Proposed Method over 2D-SSA
3.5.1. Applying SP-SSA on General Images

In the proposed approach, 2D-SSA is applied on each and every superpixel segmented
region. Hence, it can be considered as a local 2D-SSA approach that can extract accurate
spatial information on each single object. In the case of global 2D-SSA, features are over-
smoothed, and features are not prominent for specific classes. In local 2D-SSA instead,
object-specific texture information can be highlighted. In Figure 15, the popular cameraman
image and an artificial test image are used to demonstrate the effectiveness of the proposed
approach over the 2D-SSA approach.

When the cameraman image is reconstructed using the 2D-SSA method, the Mean
Square Error (MSE) comes out to 115.8865; however, when the same image is reconstructed
using the proposed SP-SSA approach, the MSE reduces to 93.0468. A similar behavior is
also observed with the test image. With the proposed SP-SSA method, the MSE reduces
to 237.1038 from 287.5323. This signifies that the proposed method can reconstruct an
image with minimum error and can effectively integrate local information during the
reconstruction process.

(a)                                         (b)                                          (c)

(d)                                         (e)                                          (f)

Figure 15. (a) Cameraman image (b) 2D-SSA Reconstructed image [MSE = 115.8865] (c) SP-SSA
reconstructed image [MSE = 93.0468] (d) Test image (e) 2D-SSA Reconstructed image [MSE = 287.5323]
(f) SP-SSA reconstructed image [MSE = 237.1038].

3.5.2. Applying SP-SSA on HSI

The HSI is composed of a stack of 2D images carrying valuable information about
each spectral band. To demonstrate the effectiveness of the proposed method, a randomly
selected spectral band at 667 nm was considered for our analysis. Figure 16b,c contains the
scene as reconstructed by 2D-SSA and SP-SSA, respectively. Since the HSI was acquired
over a large area, it includes multiple objects with different textural information. This is a
typical case where object-specific reconstruction works better than direct reconstruction.
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Textural information can be highlighted accurately by using local reconstruction as opposed
to global reconstruction. The error in SP-SSA-based reconstruction is indeed lower as
compared to 2D-SSA-based reconstruction. The same conclusion can also be drawn from
Figure 16.

In the case of 2D-SSA-based reconstruction, the Mean Square Error (MSE) is 612.4349,
while, in the case of SP-SSA-based reconstruction, the MSE is 504.5685. Figure 16d,e
contains the difference image for 2D-SSA-based reconstruction and SP-SSA-based methods.
It can be clearly observed that edge information is preserved with the proposed method.
The SP-SSA-based reconstruction is applied to all spectral bands and generates a modified
hypercube with preserved local structure information and minimum noise level. These
latter features generally lead to better classification performance.

(a) (b) (c)

(d) (e)

Figure 16. (a) Original scene at band 667 nm (b) Reconstructed scene by 2D-SSA (c) Reconstructed
scene by SP-SSA (d) Difference image for the 2D-SSA reconstructed scene (e) Difference image for
the SP-SSA reconstructed scene.

4. Conclusions and Future Scope

Feature extraction is one of the most crucial steps in HSI classification. It is essential
to capture comprehensive spatial and spectral information for accurate feature extraction.
For image reconstruction, the conventional 2D-SSA algorithm usually extracts spatial
features directly by applying the embedding window to the entire image. However, HSI
scenes frequently encompass a broader area and contain several items. As a result, spatial
information pertaining to local objects must be recovered. To solve this problem, in the
proposed method, a superpixel-based SSA technique was presented, which can capture the
object specific spatio-spectral information accurately.

In this work, the original HSI was first divided into various semantic sub-regions by
the superpixel segmentation algorithm. Next, each segment was reconstructed individually
by applying 2D-SSA. The generated reconstructed HSI was then classified using the SVM
classifier, and the final classification map was produced. Local characteristics may be
collected effectively in the suggested method since 2D-SSA is applied at the superpixel
level. However, two parameters must be adjusted: the amount of superpixels and the
embedding window size. Future developments will aim at finding the optimal criteria to
determine the parameters of the procedure and to investigate relationships between the
characteristics of the HSI and quality of the results.
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