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Abstract: Mining enterprises are widely introducing digital technologies and automation is one of
such tools. Granularity monitoring, namely, the size determination of rock mass pieces is a common
operational component of the processes that extract minerals by open-pit mining. The article proposes
an approach that, in addition to the lump size distribution, makes it possible to estimate the lump
form distribution as well. To investigate the effectiveness of monitoring the form of blasted rock mass
lumps, the authors conducted experiments in four stages related to the rock condition. They include
geological occurrence, explosive crushing, trommelling, and mill crushing. The relationship between
these stages is presented and the change in the lumps fragment form is traced. The present article
proposes an informational and analytical model of the processes at mining enterprises, extracting
minerals by open-pit mining, as well as an algorithm for determining the lumps form and obtaining
their distribution in the rock mass.
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1. Introduction

Digitalization is the most significant tool in the formation of the modern world econ-
omy [1,2]. Digital technologies are involved in all spheres of human activity and are a
universal trigger for the creation of new approaches to solving ordinary issues [3,4]. Min-
ing industry is not an exception [5,6]. The task of determining the rock fragmentation at
the mining enterprises is one of the most important and constantly clarified issues [7,8].
There are a number of approaches to determine the rock fragmentation at the following
various stages of mining production: geological research [9,10], blasting [11,12], influence
on technological processes and apparatuses [13,14], and quality characteristics of finished
products [15,16]. However, the introduction of digital technologies, the extended use of
information models of mining production, as well as the introduction of new analytical
algorithms that help to conduct advanced analysis in several operations, repartitions, en-
terprises, etc., will allow us to optimize technological processes and obtain more profit
without significant costs [17,18].

The determination of rock fragmentation is an urgent task for mining enterprises; it is
covered in many scientific papers [19,20]. In particular, an article by P.K. Singh et al. [21]
evaluates the relationship between fragmentation (lump size) and drilling and blasting
parameters. Ninety-one blasts are conducted with varying blast designs and charging
patterns, and their impact on the rock fragmentation are documented. Software for the
estimation of rock fragmentation is presented. Similar issues are covered in a work by
Binay Kumar Singh et al. [22]. The article describes the relationship between fragment size
and such factors as burden, bench height/drilling depth, stemming column, powder factor,
and hole diameter using special software for digital image analysis. A paper by Riika M.
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Ylitalo et al. [23] shows the effect of detonator location and rock fragmentation. Detonator
location is studied for open-pit bench blasting. The best detonator position is the middle
of the explosive charge length. The middle detonator position significantly improves
rock fragmentation. The fragment size ×50 was reduced by 11–24% in the field tests. An
experimental study of rock fragmentation under different stemming conditions [24] uses
model explosions to study grindstone composition. Nine blasts with cylindrical granite
specimens were carried out under different stemming conditions. All the similar works,
for instance, refs. [25,26], present a relationship between the parameters of drilling and
blasting and fragmentation.

Another great direction is the application of various approaches and technologies
to rock fragmentation analysis by decoding images of rock pieces [27,28]. For example,
an article by Thomas Bamford et al. [29] considers the process of creating a deep neural
network trained to predict the size of rock fragments from a photograph. A total of
61,853 images of blasted rock fragments were used to train and tune the neural network.
A paper by Mohammad Babaeian et al. [30] presents the developed regression model
for determining the average size of a lump and obtaining the rock pieces distribution.
A work by Jian Tao et al. [31] is the closest to the idea of the present study. The paper
uses integrated analytical modeling, finite element simulation, and image processing
to investigate mechanical forces on rock fragmentation. The work identifies significant
correlations between the fragment aspect ratio and its size and uniformity of distribution,
highlighting the potential use of the fragment form as an indicator for evaluating the
blasting performance alongside conventional grading analysis.

The main hypothesis of the present study was the assumption that the analysis of the
rock mass fragmentation at all stages of the production cycle in open-pit mining should be
carried out. In this case, lumps of rock mass were used as products or materials. In this
instance, to increase the information content of such analytical system it was necessary to
take into account the lump form in addition to the size estimation of the rock mass. An
analytical review and the optimization of equipment operation or technological parameters
should be carried out on the basis of changes in rock fragmentation at all stages of the
production cycle.

2. Materials and Methods

The proposed method of the study was based on two main assumptions:

(1). When evaluating the grading composition, the parameter of the lump form and
its distribution should be taken into account in addition to the average lump size,
etc. This will significantly increase the information component of the technological
processes;

(2). Analytical algorithms linking the parameters of rock fragmentation and technological
processes and equipment should be developed for each technological operation
separately, as well as to analyze and implement interrelationships with subsequent
and previous stages.

Figure 1 shows a scheme of technological operations of a mining production with
a detailed section of the ore dressing process. As a rule, it includes the following stages:
geological research, blasting, trommelling, crushing, grinding, and flotation.

In this study, the validity of the hypothesis was tested experimentally in the four
stages shown in Figure 1. Figure 2 presents the scheme of information-analytical model for
these processes.
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Figure 2. Scheme of the information-analytical model. I and A are the two components of this model. Component I describes
the information model and a list of the main variables. Additional parameters of the existing model are highlighted in red
with N*. Black, solid lines highlight operations that are typical for mining enterprises.

As indicated in Figure 1, this parameter is related to the measurement of the rock
fragmentation and takes into account the rock pieces form. It should be emphasized that
the authors of the work chose the most characteristic parameters of each technological
operation in order to simplify the information model of these processes.

In addition to the information component, the model presents the analytical compo-
nent (A). This is due to the relationship between blasting parameters—explosive weight,
borehole diameter and depth, borehole grid, and fragmentation obtained as a result of
blasting. There are a significant number of approaches to optimize drilling and blasting
parameters to obtain the desired rock fragmentation during the blasting phase [32,33]. The
dotted lines and red color show that the analytical algorithms of each operation should
move to multistage analytics of all operations at once. In the context of present study, this
approach will additionally provide the optimization of technological processes and appara-
tuses. This will allow, in turn, to more accurately formulate the inverse task of adjusting
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the parameters of technological parameters. As the increased information component will
redefine existing and indicate new dependences between input and output parameters of
all production stages. In this case, the increase in profits for a company that applies this
model to its process control systems for mining operations is evident.

The following three forms of pieces were defined: cubic (all sides are equal), square
(one of the sides is twice as big as the others), and spilt (one of the sides is three or more
times bigger than the others). Thеdivision into forms is approximate and rather crude. In
reality, it is better to take more variants of forms. However, demonstrating the division
into forms even at the elementary level with an indication of the possible effectiveness will
be evident when using a broader classification of forms. In this case, division into three
simple classes will greatly simplify the experiments.

To determine the lumps form and obtain their distribution in the rock mass, we
propose to use the theory of neural networks and the recognition algorithm [34,35] shown
in Figure 3.
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Figure 3. Algorithm of the system for recognizing the distribution of lumps of rock mass by their
fragment form.

It should be noted that such an algorithm can be applied to image the entire rock
mass. In this instance, we will obtain a picture of the lumps’ distribution by fragment
form for the whole size range. However, it is more expedient to load the images after the
procedure of automatic determination of the rock fragmentation and to output the images
with pieces of rock mass of a certain size (range). Thus, in addition, it will be possible to
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obtain the fragment form distribution within each fraction, which gives more information
to the system.

3. Experiments

To prove the hypothesis, experiments were carried out in a granite (crushed stone)
quarry in the Leningrad region of the Russian Federation. Four technological stages were
used for the experiments—geological including the study of the rock structure, blasting
stage, trommelling, and crushing at the factory.

The geological stage of the experiment consisted of taking rock samples (samples
were taken from three different areas of the rock massif, it allowed us to take into account
the effect of heterogeneity) and further sample preparation—sawing and grinding, pho-
tographing samples using macroscopy against a measuring tape and counting the average
grain size, evaluating the uniformity of grain structure, and evaluating grain fragment form
by hand. Mineral resources are represented by igneous rocks—gneiss granites and gneisses,
which do not differ from each other in physical and mechanical properties and belong to a
single technological type of raw materials—moderately fractured rocks of III–IV categories,
with compressive strength from 77 to 276, on average 180–200 MPa; average volumetric
weight—2.67 t/m3. The strength coefficient according to Prof. Protodyakonovòs’ scale is
in the range of 12–16. Figure 4 shows several fragments of rock samples prepared for the
experiment.
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Figure 4. Experimental rock samples.

The experiment at the blasting stage was conducted using the photoplanimetric
method, piece-by-piece measurement of blasted rock mass pieces, and sieve analysis. It
should be noted that such methods of experimentation were used because of the impossibil-
ity of using automated methods of visual control, etc. However, the experiments described
in this paper can be performed using automatic control systems. These systems will
make it possible to obtain significant experimental data and to more accurately determine
parameters such as the average lump size and the distribution of rock fragmentation.

As part of the experiment, photo-fixing of the area of rock mass breakdown at a
distance of 6 m was carried out at the end of blasting (Figure 5). Red-and-white measuring
tape was applied to the breakdown areas, with red-and-white strips alternating at 1 m
intervals. The measuring tape was overlaid every 10 m. The measuring tape was necessary
to determine the scale, and to measure and determine the form of the blasted rock mass
pieces. Additionally, two samples were taken from two places of rock explosion (with a
volume of 2 special vehicles—a Belaz dump truck). These samples were poured onto a
specially prepared flat area. The fragment form was determined; each piece of the blasted
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rock mass was measured and weighed. Additionally, the rock fragmentation was defined
using special software and compared with the results obtained.
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Figure 5. The area of the rock mass explosion.

The crushing and trommelling stages were carried out manually in the same way as
the blasting stage. Samples of material for the experiment were taken directly from the
conveyor at three points—the beginning, middle and end of the belt—every hour during
the entire shift. The volume of each sample to be taken was 1 linear meter.

4. Results and Discussion

Figure 6 presents the results of an experiment with a general fragment form distribu-
tion for all the experiments.
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Figure 6. The experiment results: overall fragment form distribution for all experiments.

In the figure, you can see the following trend in the form change: the number of cubic
pieces decreases after each stage of crushing, and the number of spilt and square pieces
increases.

Figure 7 shows the same results but averaged over three experiments.
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Figure 7. The experimental results: general fragment form distribution (mean values for three
experiments).

By analyzing Figure 7, it can be seen that the fragment form during the natural
formation of the rock (geological stage) is distributed in such a way that the percentage
of spilt minerals is almost twice as large as cube and square. We decided to compare the
change in a set of cubic together with square and spilt forms. The result is presented in
Figure 8.
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Figure 8. The experimental results: comparison of the distribution of a cubic together with square
and spilt fragment form based on the mean values for the three experiments.

By analyzing Figure 8, the following result is obtained: when evaluating a set of cubic
and square forms with a spilt one, a ratio of 51.3 to 48.7 is observed. Thus, the set of
irregular (spilt) and regular (cube and square) forms is uniform, which is probably not
accidental. In addition, when analyzing Figure 8, one can see an increase in the spilt form
from the first to the third technological stage and a decrease in the cubic one. At the same
time, the graph shows the linear nature of this change. At the next stage of the experiment,
we drew an approximating curve and assessed the nature of its change (Figure 9).
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Figure 9. Experimental results: distribution comparison of cubic and square and spilt fragment forms
based on the mean values for the three experiments. Approximating curve shows these changes.
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The analysis of the results presented in Figure 9 and the search for an approximating
dependence shows an unexpected result for the researchers themselves. The change in the
spilt form and the change in the set of square and cubic forms from the first to the third
stage shows the dependences y = 7.7167x + 19.956 and y = −7.7167x + 80.044, respectively.
That is, the coefficient at x of the linear approximating curve y for these dependences turns
out to be the same, but with different signs. At the same time, the coefficient R2 is the same
in both cases and is quite high, 0.9603. A uniform value indicates that the correct data
set was analyzed, and a high R2 value means that the change in form obeys a linear law.
The authors assume, however, that this change obeys a linear law until the time when the
cubic and square form are in a 50/50 ratio (that is, close to the natural distribution). The
coefficient at x showing the rate of change of parameters from stage to stage can be related
to very important parameters—yield of fines, oversize, etc. In this case, it is also possible to
relate the technological parameters and refining coefficients of various empirical formulas
to this equation obtained in the estimation of the fragment form distribution.

Additionally, it was decided to analyze the set of cubic and square with spilt forms’
distribution for the data of each of the three experiments. The results are shown in
Figures 10–12.
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forms’ distribution based on the average values for the 1st experiment. Approximating curve shows
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forms distribution based on the mean values for the 3rd experiment. Approximating curve shows
these changes.

As shown in Figures 10–12, the trend continued in all three cases separately. At the
same time, the R2 coefficient varies from 0.8663 to 0.9885.

To analyze this in detail, the forms’ distribution was also plotted for each fraction.
Figure 13 shows the form distribution by fractions.
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In Figure 13, you can see that the 60–90-centimeter fraction is represented only by the
spilt and square form, and the 90–120-centimeter fraction is only cubic. In this case, no
characteristic change in the form distribution is observed.

Thus, the results obtained show that a change in the pieces’ form distribution in
combination with other measured parameters can provide additional knowledge about
the process and, therefore, should be taken into account in the integrated information and
analytical system of mining.

The authors emphasize that the results obtained from the form of the pieces were
obtained during the experiments that were conducted by hand. Part of the rock mass
was taken out by dump trucks (Belaz with a carrying capacity of 42 tons) on a flat site,
disassembled manually and a piece-by-piece measurement of each piece and sieve analysis
was performed, which gave the results presented above. However, this experiment is not
possible under industrial conditions due to its high labor intensity. For industrial systems, it
is necessary to develop special software that allows an assessment of the distribution of the
shape of pieces to be made in an automated mode. According to the algorithm presented in
Figure 3, the authors have developed a program that allows the fragment form parameter
and its distribution to be obtained from photographs of blasted rock mass. Figure 14
shows the interface of the software that allows the form distribution to be determined.
This fragment shows one of the steps of the algorithm in Figure 3. In this step, the user is
prompted to select the eight squares in the figure and confirm their actions. Everything
occurs in manual mode—a photo is loaded, and the user marks the eight squares
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Since, at the current stage of the study, it is necessary to determine the possibility of
form recognition to train and test the software performance, photographs obtained in the
Power Sieve3 (PS3) automatic particle size distribution system (size of rock pieces) are used
for form recognition. Figure 15 shows the stages of fragmentation recognition in Power
Sieve3 (PS3).
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The fragment form recognition system presents a fairly good result. The form recogni-
tion error does not exceed 20 percent in comparison with the experimental data, carried
out in manual mode by a piece-by-piece measurement of each piece and sieve analysis.
However, it must be emphasized that this system has been tested only on the available
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photographs of experiments and has not been applied in industrial conditions. In present
work, the system is presented as a demonstration of the possibility of creating such sys-
tems, and it certainly needs to be improved. Thus, the obtained conclusions described in
the article should be additionally confirmed by a larger series of experiments, while the
algorithm and the form recognition system should operate in a continuous mode. This
will require the adaptation of the developed system to these conditions. This will be a
continuation of the current research.

Thus, the work presents one of the components presented in Figure 2, which is
given additionally to explain the practical applicability of the obtained solutions. The
main idea of the paper is the need to determine (control) the pieces’ form at each stage
of mining/processing of the minerals. This paper presents how this information can
be obtained, i.e., the “I” component. During the experiment, the authors obtained this
information “manually” by measuring each piece. It has been proposed that in industrial
conditions, it is necessary to add a module for fragment form evaluation to the system that
determines the grading (average piece size)—this option will not require large investments
in hardware and software. For this purpose, the authors showed how a photo processed
by the software to determine the average size of a lump can be refined to determine the
form of lumps. Thus, the input information of the model is the images from this software,
obtained at each process. In the present work, pieces of rock of various shapes and sizes
were used as input information. The output information is the fragment form distribution.
During the experiment, the analytical component of this figure is that the fragment form
distribution was considered at four different stages. The result showed that optimization
should be carried out by considering the form distribution at all stages. For example,
when we analyze the distribution of the form at once on three technological stages, we can
conclude that the more spilt form there is, the greater the yield of fines is. In fact, during
blasting, the yield of fines was 10%, and after the third stage—30%. However, the natural
structure, i.e., geological stage, shows that the spilt form is half of a cube plus a square in
the aggregate and this fact requires analysis and verification with a larger volume of data.

Summarizing the following obtained results, the authors want to emphasize their
scientific and practical significance:

- The use of information-analytical systems at mining enterprises is not new, they are
widely used and certainly bring additional profits and increase economic efficiency.
However, the relationships to be analyzed, as well as the mutual influence of changes
in some parameters throughout the various stages of mining production are not fully
defined. Regarding the process of rock fragmentation, mining enterprises usually
equilibrate the parameter of the average lump size: determine it at one or more stages
and conduct optimization measures to change this parameter [36,37]. The authors
of this work made an assumption and tried to prove it. This assumption says that
in addition to the parameter of the average lump size or the distribution of grading,
it is necessary to take into account the parameter of the lump form. The results
showed that even a rough assessment of the form (the division was carried out only
on three varieties) can provide an opportunity to optimize technological processes.
For example, changing the parameters of drilling and blasting, trying to obtain a
certain size of the average piece, you can obtain a lot of spilt-shaped material. This
form, firstly, is a substandard material of granite production; secondly, it fills the dump
trucks transporting rock mass from the quarry to the factory in a special way, it passes
through the crusher sieve (the smaller side) and the larger side will give the increased
load on operation of mechanisms, etc. In other words, the form of lumps affects the
parameter of bulk density, and the parameter of bulk density is very important for
many processes of mining production [38,39].

- The authors saw a certain ratio in the aggregate form of cube together with square
and spilt. At the stage of the geological measurement of the material, their ratio was
50 to 50; at the same time, after blasting, the ratio became 20 to 80, and after the fourth
stage, the ratio again approached 50 to 50. This might indicate that during blasting,
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the destruction is not along the boundaries of the mineral grains, but along the
inner section of the grains, or the boundaries of the mineral grains are not completely
destroyed (which is more likely). There is a pre-destruction effect, where the weakened
bonds between mineral grains are destroyed in the subsequent stages of mining, which
means that the resulting material has a special internal energy. This energy can be
leveled out in different ways in subsequent stages. If we concentrate only on the
average lump size, then, for example, the yield of fines at the blasting stage will be
normal, and at the stage of crushing and screening, it will exceed the norm.

A joint evaluation of the size of blasted rock mass pieces with the evaluation of the
fragment form may have a greater effect.

- The experiment conducted in the present paper is labor-intensive and very costly;
therefore, the form was evaluated and a simplified division of forms into three classes
was made. In reality, these classes may be much more, and therefore, the data for
obtaining relationships and interdependencies should also increase. In the authors’
opinion, the existing software complexes for determining the size of pieces in the
analysis of grading formation should be finalized with a module for identifying
the form. This will reduce the implementation and development resources. For this
purpose, the authors developed an algorithm, which was implemented in the software
and tested on experimental data. The authors want to emphasize the importance of
using the learning method of the algorithm with reinforcement and using a human
in the first stages to train the program. The algorithm developed by the authors was
tested based on photographs of a mountain range, the pieces’ form was determined
during the experiment (manual enumeration of the pieces). The convergence was
80%, which is a good result. This fact showed the workability and feasibility of the
assumptions made. However, according to the authors, the development of such a
module is an additional scientific work and requires more detailed elaboration and
more experimental data.

5. Conclusions

The results of the work indicate the effectiveness of the proposed new approach in
monitoring and controlling rock fragmentation. However, the conclusions obtained in
the course of the work require verification and an additional experiment with a large
amount of data. To do this, a similar experiment must be reproduced at facilities with
an installed automated system for the continuous determination of rock fragmentation.
The introduction of an additional parameter “lump form” and tracking its change and
establishing a connection between the change in shape and technological parameters
will provide additional information about the process. As the experimental data show,
this parameter will allow us to redefine the target functions when solving the issue of
optimizing technological processes and equipment operation.

Research aimed at improving the system for the automated determination of the
lumps’ form, the removal of a large amount of data on the form using the system, and the
study of form change throughout the technological cycle of open-pit mining enterprises
are a continuation of the present work.
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