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Abstract: The active magnetic bearings system plays a vital role in high-speed rotors technology,
where many research articles have discussed the nonlinear dynamics of different categories of this
system such as the four-pole, six-pole, eight-pole, and sixteen-pole systems. Although the twelve-pole
system has many advantages over the eight-pole one (such as a negligible cross-coupling effect,
low power consumption, better suspension behaviors, and high dynamic stiffness), the twelve-pole
system oscillatory behaviors have not been studied before. Therefore, this article is assigned to
explore the effect of the magneto-electro-mechanical nonlinearities on the oscillatory motion of
the twelve-pole system controlled via a proportional derivative controller for the first time. The
normalized equations of motion that govern the system vibrations are established by means of
classical mechanics. Then, the averaging equations are extracted utilizing the asymptotic analysis.
The influence of all system parameters on the steady-state oscillation amplitudes is explored. Stability
charts in a two-dimensional space are constructed. The stable margin of both the system and control
parameters is determined. The obtained investigations reveal that proportional gain plays a dominant
role in reshaping the dynamics and motion bifurcation of the twelve-pole systems. In addition, it is
found that stability charts of the system can be controlled by simply utilizing both the proportional
and derivative gains. Moreover, the numerical simulations showed that the twelve-poles system can
exhibit both quasiperiodic and chaotic oscillations besides the periodic motion depending on the
control parameters’ magnitude.

Keywords: twelve-pole system; proportional derivative controller; Poincaré-map; bifurcation di-
agram; frequency spectrum; stability; multi-stable solutions; periodic-motion; chaotic-motion;
quasiperiodic-motion

1. Introduction

An active magnetic bearings system (AMBS) is a mechanism that supports rotating
shafts applying a controllable magnetic force without any physical contact. The working
principle of the AMBS is illustrated schematically in Figure 1, where this system consists
of six basic elements that are the stator, rotor, electromagnetic poles, proximity sensors,
digital controller, and power amplifiers. The stator is the stationary part of the active
magnetic bearings on which the electromagnetic poles are fixed. Electromagnetic poles are
the element that provides a controllable electromagnetic attractive force to suspend the
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rotor system within the stator in its hovering position. To make sure the provided force
is controllable, the rest of the elements (i.e., the proximity sensors, digital controller, and
power amplifiers) are required to form what is known as a closed-loop control system.
Simply, the AMBS is works as follows: (1) the proximity sensors measure the instantaneous
vibrations x(t) and y(t) of the rotor; (2) the measured signals x(t) and y(t) are sent to the
digital controller to manipulate them according to the provided control algorithm; (3) the
manipulated signals (i.e., control signals) are fed back again to the power amplifiers, which
in turn apply controlled electrical currents to the electromagnetic poles; and (4) finally, the
electromagnetic poles generate a corresponding attractive magnetic force that allows the
rotor system to rotate without lateral oscillations in X and Y directions. The frictionless
feature of AMBS provides many advantages over the conventional bearings system such as
the clean environmental operations of the machines, less maintenance, long working time,
and no necessity for lubrication. Accordingly, the huge engineering applications and many
advantages of the AMBS have attracted scientists and engineers to design and investigate
the dynamical characteristic of the different configurations for such systems. Ji et al. [1]
presented analytical investigations for the bifurcation behaviors of the four-pole AMBS.
The authors concluded that the four-pole system may suffer from a sensitivity to the initial
conditions. In addition, the Hopf, saddle-connection, and saddle-node bifurcations were
reported. Saeed et al. [2,3] studied the vibrations control of the six-pole system. They
discussed the oscillatory characteristics of the system in both the radial and Cartesian
control strategies. They reported that the six-pole system can exhibit small vibration
amplitudes and complex bifurcation behavior in the case of Cartesian control. On the other
hand, it is found that the six-pole system can exhibit a simple bifurcation behavior such as
the Duffing oscillator with strong vibrations in the radial control. The eight-pole AMBS with
different configurations and control techniques has been extensively investigated [4–17].
Ji et al. [4,5] and Saeed et al. [6] presented theoretical and numerical investigations for the
eight-pole system at the primary and super harmonic resonance conditions. The authors
reported the dominance of the nonlinearities and the complexity of the motion bifurcation.
The modal oscillations of the eight-pole AMBS was examined by Yang et al. [7]. The system
steady-state orbital oscillations were investigated utilizing the asymptotic analysis along
with the phase-difference energy-ratio method. The introduced analysis illustrated that
the system could perform either quasiperiodic or elliptic motion only. Saeed et al. [8,9]
introduced two novel control methods to mitigate the nonlinear vibrations of the eight-pole
system at the primary resonance. The first control technique was to couple the rotor system
to a second-order filter linearly, while the second control method was to connect the rotor
system to a second-order filter in a nonlinear form. Recently, Saeed et al. [10] investigated
the influence of the dynamical behaviors of the eight-pole AMBS including the rub-impact
force between the rotor and stator. The authors concluded that the eight-pole system may
respond with periodic, quasiperiodic, or chaotic motion depending on the magnitude of the
impact stiffness coefficient and the value of dynamical friction. The eight-pole rotor system
with time varying stiffness coefficient was investigated extensively by Zhang et al. [11–16],
where Shilnikov multi-pulse chaotic behavior was reported.

The dynamical characteristics and motion bifurcation of the sixteen-pole AMBS system
were explored under different control algorithms [17–23]. Saeed et al. [17,18] introduced a
detailed investigation for the sixteen-pole system with constant stiffness coefficients. They
studied the influence of Cartesian and radial control methodologies on both the bifurcation
characteristics and vibration reduction of the AMBS system. The authors reported that
the rotor system has quartic stable periodic motions in the case of Cartesian control, while
the system behaves like a Duffing oscillator with a hardening spring characteristic at
the radial control case. Zhang and his team introduced a detailed investigation for the
sixteen-pole AMBS’ having time-varying stiffness coefficients [19–23]. The capability of
the active magnetic bearings system on generating a controllable magnetic attractive force
without physical contact with the rotor has attracted scientists and engineers to employ
the AMBS with some control algorithms to serve as an adaptive actuator that can be
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used to reshape the dynamical behaviors of some rotating machinery [24–33]. Ishida and
Inoue [24] proposed a novel nonlinear absorber using four-pole AMBS to suppress the
lateral vibration of a nonlinear rotor system. Saeed et al. [25–32] employed the AMBS as an
active actuator to control and reshape the oscillatory behaviors of the rotating machines by
applying different control techniques. Srinivas et al. [33] introduced an important review
study that summarized the huge applications of the rotor active magnetic bearings system.
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Figure 1. Closed-loop control system of active magnetic bearings system.

According to the above discussions, it is noticed that nonlinear dynamical behaviors
of the twelve-pole rotor system have not been studied before [34–37]. However, the
twelve-pole system has many advantages over the eight-pole system such as low power
consumption, negligible cross-coupling, better suspension behaviors, and high dynamic
stiffness [37]. Therefore, this article is dedicated to exploring the dynamical characteristics
of the twelve-pole system for the first time. The nonlinear equations of motion that
govern the system dynamics in X and Y directions are established, and the corresponding
averaging equations are extracted. The effects of the different parameters on the lateral
oscillation amplitudes are discussed. The stability charts in a two-dimensional space
are established. The stable limits of the system and control parameters are reported.
The acquired results illustrated that the twelve-pole system can respond with periodic,
quasiperiodic, or chaotic oscillations depending on the system and control parameters.
In addition, the obtained stability charts confirmed the possibility of controlling both the
motion bifurcation and vibration amplitudes of the studied system using the control gains.

2. Twelve-Pole System Nonlinear Model

Figure 2 depicts a schematic diagram for the twelve-pole rotor system. The rotor
is investigated as a two-degree-of-freedom system that oscillates in X and Y directions.
The twelve electromagnetic poles are responsible for controlling the system vibrations via
generating controllable attractive forces RX and RY in both the horizontal and vertical
directions, respectively. Therefore, the differential equations that govern the system motion
can be expressed as follows [38,39]:

m
..
x(t) = meψ2 cos(ψt) + RX (1)

m
..
y(t) = meψ2sin(ψt) + RY (2)

where m is the rotor mass, d2x
dt2 =

..
x(t) and d2y

dt2 =
..
y(t) are the horizontal and vertical

accelerations of the rotor system, e is the eccentricity of the rotating disc, ψ is the disc
angular speed, and RX and RY are the net attractive forces of the twelve poles in X- and
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Y-direction. By considering the symmetric design of the twelve-pole system, the attractive
force of each opposite pair of the poles ( f j, j = 1, 2, . . . , 6) can be expressed as follows [39]:

f j =
µ0N2 A cos(ϕ)

4

[ (
I0 − Ij

)2(
c0 − δj

)2 −
(

I0 + Ij
)2(

c0 + δj
)2

]
, j = 1 · · · 6 (3)

where µ0 is the free space permeability, N the number of turns of each coil for the twelve
poles, A is the cross-sectional area of each pole, I0 is the permanentized electrical current,
Ij is the control current in the jth pole, c0 is the nominal air gap size as shown in Figure 2b,
(c0 − δj) is the instantaneous air gap of the jth pole.
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Accordingly, for the small displacements x and y of the rotor system, δj can be ex-
pressed as follows:

δ1 = x cos(α)− y sin(α), δ2 = x, δ3 = x cos(α) + y sin(α)
δ4 = x sin(α) + y cos(α), δ5 = y, δ6 = −x sin(α) + y cos(α)

}
(4)

where, α = 30o is the angle between every successive two poles (See Figure 2b). The control
currents Ij are designed such that the forces f1, f2, and f3 are proportional to the displace-
ment x(t) and velocity

.
x(t), while f4, f5, and f6 are proportional to the displacement y(t)

and velocity
.
y(t). Therefore, the control currents are designed as follows:

I1 = I2 = I3 = k1x + k2
.
x, I4 = I5 = I6 = k1y + k2

.
y (5)

where k1 is known as proportional gain, while k2 represents the derivative gain. Now,
by substituting Equations (4) and (5) into Equation (3), and then expanding the result-
ing equations up to the third order using Maclaurin series, we can obtain the forces
fi, (i = 1, 2, . . . , 8) as given in Appendix A. Accordingly, the net attractive forces RX and
RY of the twelve-pole system in the horizontal and vertical directions can be expressed
as follows:

RX = f2 + ( f1 + f3) cos(α) + ( f4 − f6) sin(α) (6)

RY = f5 + ( f4 + f6) cos(α) + ( f3 − f1) sin(α) (7)

Substituting Equations (6) and (7) into Equations (1) and (2), and then replacing
the original variables and parameters with the following dimensionless variables and

parameters: x∗ = x
c0

, y∗ = y
c0

, t∗ = ζt,
.
x∗ =

.
x

ζc0
,

.
y∗ =

.
y

ζc0
,

..
x∗ =

..
x

ζ2c0
,

..
y∗ =

..
y

ζ2c0
, p =
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c0
I0

k1, d = c0ζ
I0

k2, f = e
c0

, Ω = ω
ζ , ζ =

√
4µ0 I2

0 N2 Acos(ϕ)/mc3
0, with omitting the asterisks

for simplicity, we have

..
x + 2µ

.
x + ω2x− (α1x3 + α2xy2 + α3x2 .

x + α4
.
xy2 + α5xy2 + α6x

.
x2

+α7xy
.
y) = Ω2 f cos(Ωt)

(8)

..
y + 2µ

.
y + ω2y− (α1y3 + α2yx2 + α3y2 .

y + α4
.
yx2 + α5y

.
x2

+ α6y
.
y2

+α7yx
.
x) = Ω2 f sin(Ωt)

(9)

The normalized nonlinear dynamical system that is given by Equations (8) and (9)
describes the relative oscillations (x and y) of the twelve-pole system in X and Y directions
with respect to the nominal air gap size c0, where the dimensionless coefficients µ, ω, αj
(j = 1, 2, . . . , 7) are given in Appendix B. To investigate the performance of the proposed
control method, bifurcations behaviors, and stability conditions of the twelve-pole system,
asymptotic analysis is employed to obtain the autonomous amplitude-phase equations
and the corresponding nonlinear algebraic system of Equations (8) and (9) as given in the
following section.

3. Analytical Investigation and Autonomous Amplitude-Phase Equations

This section is dedicated to obtaining an analytical solution for the twelve-pole system.
Accordingly, the first-order approximate solution for Equations (8) and (9) can be sought
utilizing the multiple-time scale perturbation procedures as follows [40]:

x(t, ε) = x0(T0, T1) + εx1(T0, T1) (10)

y(t, ε) = y0(T0, T1) + εy1(T0, T1) (11)

where ε is an artificial parameter used as a book-keeping parameter only, T0 = t and T1 = εt
represent the fast and slow time scales, respectively. So, the ordinary derivatives d

dt and d2

dt2

can be written using the chain rule for derivatives as:

d
dt

= D0 + εD1,
d2

dt2 = D2
0 + 2εD0D1, Dj =

∂

∂Tj
, j = 0, 1 (12)

Depending on the system nonlinearities, the coefficients of Equations (8) and (9)
should be scaled as follows to execute the multiple time scales procedure:

µ = εµ̂, αj = εα̂j, f = ε f̂ , j = 1, . . . , 7 (13)

Now, by inserting Equations (10)–(12) into Equations (8) and (9), and equating the
coefficients that have the same power of ε, we get

O
(

ε0
)

:(
D2

0 + ω2
)

x0 = 0 (14)(
D2

0 + ω2
)

y0 = 0 (15)

O
(

ε1
)

:(
D2

0 + ω2)x1 = −2D0D1x0 − 2µ̂D0x0 + α̂1x3
0 + α̂2x0y2

0 + α̂3x2
0D0x0

+α̂4y2
0D0x0 + α̂5x0(D0y0)

2 + α̂6x0(D0x0)
2 + α̂7x0y0D0y0

+ f̂ Ω2 cos(ΩT0)

(16)
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(
D2

0 + ω2)y1 = −2D0D1y0 − 2µ̂D0y0 + α̂1y3
0 + α̂2y0x2

0 + α̂3y2
0D0y0

+α̂4x2
0D0y0 + α̂5y0(D0x0)

2 + α̂6y0(D0y0)
2 + α̂7y0x0D0x0

+ f̂ Ω2 sin(ΩT0)

(17)

The solutions of homogeneous differential equations given by Equations (14) and (15) are:

x0(T0, T1) = A(T1)eiωT0 + A(T1)e−iωT0 (18)

y0(T0, T1) = B(T1)eiωT0 + B(T1)e−iωT0 (19)

where A(T1) and B(T1) are two unknowns that will be determined in the subsequent steps
of analysis, and A(T1) and B(T1) are the conjugate functions of the unknowns A(T1) and
B(T1). By inserting Equations (18) and (19) into Equations (16) and (17), yields(

D2
0 + ω2)x1 = [−2iω(D1 A) − 2iµ̂ωA + 3α̂1 A2 A + 2α̂2 ABB + α̂2 AB2 + iα̂3ωA2 A + 2iα̂4ωABB

−iα̂4ωAB2 + 2α̂5ω2 ABB− α̂5ω2 AB2 + α̂6ω2 A2 A+iα̂7ωAB2]eiωT0 +
[
α̂1 A3

+α̂2 AB2 + iα̂3ωA3 + iα̂4ωAB2 − α̂5ω2 AB2 − α̂6ω2 A3 +iα̂7ωAB2]e3iωT0

+ 1
2 Ω2 f̂ eiΩT0

(20)

(
D2

0 + ω2)y1 = [−2iω(D1B) − 2iµ̂ωB + 3α̂1B2B + 2α̂2BAA + α̂2BA2 + iα̂3ωB2B + 2iα̂4ωBAA
−iα̂4ωBA2 + 2α̂5ω2BAA− α̂5ω2BA2 + α̂6ω2B2B+iα̂7ωBA2]eiωT0 +

[
α̂1B3

+α̂2BA2 + iα̂3ωB3 + iα̂4ωBA2 − α̂5ω2BA2 − α̂6ω2B3 +iα̂7ωBA2]e3iωT0

− 1
2 iΩ2 f̂ eiΩT0

(21)

To obtain a bounded solution for Equations (20) and (21), the possible resonant
conditions should be determined first, which are the primary (i.e., Ω = ω) and subharmonic
(i.e., Ω = 3ω) resonance cases. Accordingly, to investigate the system dynamics at primary
response condition, the detuning parameter σ is introduced to distinguish the closeness of
the rotor angular speed to the twelve-pole system natural frequency as follows:

Ω = ω + σ = ω + εσ̂ (22)

By introducing Equation (22) into Equations (20) and (21), we get(
D2

0 + ω2)x1 = [−2iω(D1 A) − 2iµ̂ωA + 3α̂1 A2 A + 2α̂2 ABB + α̂2 AB2 + iα̂3ωA2 A
+2iα̂4ωABB− iα̂4ωAB2 + 2α̂5ω2 ABB− α̂5ω2 AB2 + α̂6ω2 A2 A + iα̂7ωAB2

+ 1
2 (ω + σ)2 f̂ eiεσ̂T0

]
eiωT0 +

[
α̂1 A3 + α̂2 AB2 + iα̂3ωA3 + iα̂4ωAB2 − α̂5ω2 AB2

−α̂6ω2 A3 +iα̂7ωAB2]e3iωT0

(23)

(
D2

0 + ω2)y1 = [−2iω(D1B) − 2iµωB + 3α̂1B2B + 2α̂2BAA + α̂2BA2 + iα̂3ωB2B
+2iα̂4ωBAA− iα̂4ωBA2 + 2α̂5ω2BAA− α̂5ω2BA2 + α̂6ω2B2B + iα̂7ωBA2

− 1
2 i(ω + σ)2 f̂ eiεσ̂T0

]
eiωT0 +

[
α̂1B3 + α̂2BA2 + iα̂3ωB3 + iα̂4ωBA2 − α̂5ω2BA2

−α̂6ω2B3 +iα̂7ωBA2]e3iωT0

(24)

To have a bounded solution for Equations (23) and (24), the coefficients of eiωT0 should
vanish. So, the solvability conditions of Equations (23) and (24) are:

−2iω(D1 A)− 2iµ̂ωA + 3α̂1 A2 A + 2α̂2 ABB + α̂2 AB2 + iα̂3ωA2 A + 2iα̂4ωABB− iα̂4ωAB2

+2α̂5ω2 ABB− α̂5ω2 AB2 + α̂6ω2 A2 A + iα̂7ωAB2 + 1
2 (ω + σ)2 f̂ eiσ̂T1 = 0

(25)

−2iω(D1B)− 2iµ̂ωB + 3α̂1B2B + 2α̂2BAA + α̂2BA2 + iα̂3ωB2B + 2iα̂4ωBAA− iα̂4ωBA2

+2α̂5ω2BAA− α̂5ω2BA2 + α̂6ω2B2B + iα̂7ωBA2 − 1
2 i(ω + σ)2 f̂ eiσ̂T1 = 0

(26)

To investigate Equations (25) and (26), the unknown functions A(T1) and B(T1) can
be expressed in the polar form such that [40]:

A(T1) =
1
2

a(T1)eiθ1(T1), B(T1) =
1
2

b(T1)eiθ2(T1) (27)
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Inserting Equation (27) into Equations (25) and (26) and reverting to the original
system parameters (i.e., t = T1

ε , σ̂ = σ
ε . µ̂ = µ

ε , f̂ = f
ε , α̂j =

αj
ε , j = 1, . . . ., 7), and then

separating the real and imaginary parts of the resulting equations, we can obtain the
following autonomous system of the first-order nonlinear differential equations:

da
dt = F1(a, b, ϕ1, ϕ2) = −µa + 1

8 (α3)a3 + 1
4 α4ab2 + 1

8 (−α4 + α7)ab2 cos(2ϕ2 − 2ϕ1)

− 1
8 (

α2
ω − α5ω)ab2 sin(2ϕ2 − 2ϕ1) +

1
2ω (ω + σ)2 f sin ϕ1

(28)

db
dt = F2(a, b, ϕ1, ϕ2) = −µb + 1

8 (α3)b3 + 1
4 α4ba2 + 1

8 (−α4 + α7)ba2 cos(2ϕ2 − 2ϕ1)

+ 1
8 (

α2
ω − α5ω)ba2 sin(2ϕ2 − 2ϕ1)− 1

2ω (ω + σ)2 f cos ϕ2
(29)

dϕ1
dt = F3(a, b, ϕ1, ϕ2) = σ + 1

8 (
3α1
ω + α6ω)a2 + 1

4 (
α2
ω + α5ω)b2 + 1

8 (
α2
ω − α5ω)b2 cos(2ϕ2 − 2ϕ1)

+ 1
8 (−α4 + α7)b2 sin(2ϕ2 − 2ϕ1) +

1
2aω (ω + σ)2 f cos ϕ1

(30)

dϕ2
dt = F4(a, b, ϕ1, ϕ2) = σ + 1

8 (
3α1
ω + α6ω)b2 + 1

4 (
α2
ω + α5ω)a2 + 1

8 (
α2
ω − α5ω)a2 cos(2ϕ2 − 2ϕ1)

− 1
8 (−α4 + α7)a2 sin(2ϕ2 − 2ϕ1) +

1
2bω (ω + σ)2 f sin ϕ2

(31)

where ϕ1 = σt− θ1, ϕ2 = σt− θ2. Now, by substituting Equation (27) into Equations
(18) and (19), and then inserting the resulting equations into Equations (10) and (11), yields

x(t) = a(t) cos(Ωt− ϕ1(t)) (32)

y(t) = b(t) cos(Ωt− ϕ2(t)) (33)

Accordingly, Equations (32) and (33) represent the periodic solution of the twelve-
pole system given by Equations (8) and (9), where the amplitudes (a(t) and b(t)) and the
corresponding phase angles (φ1(t) and φ2(t)) are functions of time that evolve depending
on the nonlinear dynamical system given by Equations (28)–(31). Therefore, at the steady-
state periodic vibrations of the twelve-pole system, we have da

dt = db
dt = dϕ1

dt = dϕ2
dt = 0.

Substituting da
dt = db

dt = dϕ1
dt = dϕ2

dt = 0 into Equations (28)–(31), we can obtain the following
nonlinear coupled algebraic equations:

−µa + 1
8 (α3)a3 + 1

4 α4ab2 + 1
8 (−α4 + α7)ab2 cos(2ϕ2 − 2ϕ1)− 1

8 (
α2
ω − α5ω)ab2 sin(2ϕ2 − 2ϕ1)

+ 1
2ω (ω + σ)2 f sin ϕ1 = 0

(34)

−µb + 1
8 (α3)b3 + 1

4 α4ba2 + 1
8 (−α4 + α7)ba2 cos(2ϕ2 − 2ϕ1) +

1
8 (

α2
ω − α5ω)ba2 sin(2ϕ2 − 2ϕ1)

− 1
2ω (ω + σ)2 f cos ϕ2 = 0

(35)

σ + 1
8 (

3α1
ω + α6ω)a2 + 1

4 (
α2
ω + α5ω)b2 + 1

8 (
α2
ω − α5ω)b2 cos(2ϕ2 − 2ϕ1) +

1
8 (−α4 + α7)b2

× sin(2ϕ2 − 2ϕ1) +
1

2aω (ω + σ)2 f cos ϕ1 = 0
(36)

σ + 1
8 (

3α1
ω + α6ω)b2 + 1

4 (
α2
ω + α5ω)a2 + 1

8 (
α2
ω − α5ω)a2 cos(2ϕ2 − 2ϕ1)− 1

8 (−α4 + α7)a2

× sin(2ϕ2 − 2ϕ1) +
1

2bω (ω + σ)2 f sin ϕ2 = 0
(37)

The above nonlinear algebraic system governs both the steady-state vibration ampli-
tudes (a and b) and the phase angles (φ1 and φ2) of the twelve-pole system in terms of the
rotor eccentricity ( f ), the angular speed (σ = Ω−ω, and the control gains (p and d). So, by
solving Equations (34)–(37) simultaneously using one of the petameters (i.e., σ, f , p, d) as
a bifurcation parameter, we can obtain the different response curves as in Figures 3 and 4,
etc. In addition, the solution stability of Equations (34)–(37) can be checked via using the
Jacobian matrix of the corresponding dynamical system given by Equations (28)–(31). To
check the solution stability of Equations (34)–(37), let the solution of Equations (34)–(37)
is (a0, b0, ϕ10, ϕ20) and assume (a1, b1, ϕ11, ϕ21) is a small deviation from this solution.
Accordingly, we can write

a = a0 + a1, b = b0 + b1, ϕ1 = ϕ10 + ϕ11, ϕ2 = ϕ20 + ϕ21 (38)
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By differentiating Equation (38), we have

da
dt

=
da1

dt
,

db
dt

=
db1

dt
,

dϕ1

dt
=

dϕ11

dt
,

dϕ2

dt
=

dϕ21

dt
(39)

Substituting Equations (38) and (39) into Equations (28)–(31) and expanding for the
small deviations a1, b1, ϕ11, and ϕ21 keeping the linear terms only, we have


da1
dt

db1
dt

dϕ11
dt

dϕ21
dt

 =


∂F1
∂a1

∂F1
∂b1

∂F1
∂ϕ11

∂F1
∂ϕ21

∂F2
∂a1

∂F2
∂b1

∂F2
∂ϕ11

∂F2
∂ϕ21

∂F3
∂a1

∂F3
∂b1

∂F3
∂ϕ11

∂F3
∂ϕ21

∂F4
∂a1

∂F4
∂b1

∂F4
∂ϕ11

∂F4
∂ϕ21




a1
b1
ϕ11
ϕ21

 (40)

The coefficients of the Jacobian matrix are given below in Appendix C. According to
the Hartman–Grobman theorem, the linear system given by Equation (40) is topologically
equivalent to the nonlinear system given by Equations (28)–(31). Therefore, the solution
stability of Equations (34)–(37) can be explored via the eigenvalues of the Jacobian matrix.
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4. Bifurcation Analysis, Stability Charts, and Control Performance

Depending on the mathematical modeling and analysis given above, the bifurcation
behaviors, stability conditions, and control performance of the twelve-pole rotor system are
discussed in this section. The steady-state vibration amplitudes (a and b) of the twelve-pole
rotor are plotted versus the different parameters by solving the derived nonlinear algebraic
Equations (34)–(37). In addition, the stability of these amplitudes is studied via the explo-
ration of the eigen values of Equation (40). In all response curves (i.e., Figures 3–6, 12–14,
19–21 and 25), the solid lines represent the stable solution, and the dotted lines refer to the
unstable solutions. As Equations (34)–(37) govern the steady-state oscillation amplitudes
of the rotor system that is governed by Equations (8) and (9), numerical simulations for the
plotted response curves are performed by solving Equations (8) and (9) using the Runge–
Kutta algorithm. The steady-stated oscillation amplitudes that were obtained numerically
by solving Equations (8) and (9) are plotted as small-circles (when sweeping the bifurcation
parameter forward) and as big-dots (when sweeping the bifurcation parameter backward).
The analytical and numerical results are obtained by adopting the following values of the
system parameters unless otherwise is mentioned: p = 1.22, d = 0.005, α = 30o, f = 0.01,
and Ω = ω + σ, σ = 0 [2–10].

4.1. Influence of the Proportional Gain (p) on the Rotor System Dynamics

Before proceeding further, we should remember that the normalized system param-
eters are defined such that p = c0

I0
k1, d = c0ζ

I0
k2, and f = e

c0
. Accordingly, it is easy to

deduce that the dimensionless coefficients p and d represent the dimensionless form of the
proportional and derivative gains, respectively, while f represents the eccentricity of the
rotating disc. In addition, the detuning parameter σ denotes the closeness of the system
angular speed Ω to its natural frequency ω (i.e., Ω = ω + σ). In the following, the stability
conditions, bifurcation analysis, and control performance of the twelve-pole system are
investigated in terms of the parameters p, d, f , and σ. Figure 3 illustrates the angular
speed response curves of the twelve-pole system at various values of the eccentricity (i.e.,
f = 0.005, 0.01, 0.015) when the proportional gain p = 1.22. In general, the figure shows
that the twelve-pole system has a complicated response near the perfect resonance (i.e.,
when Ω→ ω ), where the rotor system may possess two and/or three stable periodic solu-
tions besides the unstable one at the same angular speed. In addition, the figure confirms
that the vibration amplitudes of the twelve-pole system are monotonic increasing function
the eccentricity f . Moreover, Figure 3e,f illustrate that the twelve-poles system can lose its
stability at a specific angular speed interval (i.e., −0.002837 < σ < 0.007352) if f exceeds a
specific critical value (i.e., f = 0.015).

The twelve-pole dynamics at different values of the proportional gain is explored
through Figure 4, where Figure 4a,b show the system steady-state vibrations against σ at
p = 1.4, while Figure 4c,d depict the system steady-state vibrations against σ at p = 1.5
when fixing the eccentricity at f = 0.01. Comparing Figure 3c,d with Figure 4c,d, we can
notice two important phenomena. The first phenomenon (positive phenomenon) is that the
system dynamical behaviors became simpler when increasing p = 1.22 as in Figure 3c,d to
p = 1.5 as in Figure 4c,d, where the system exhibits a response similar to a Duffing oscillator
with hard spring characteristics. The second phenomenon (negative phenomenon) is that
the vibration amplitudes (a & b) at p = 1.5 are about twice the oscillation amplitudes when
p = 1.22.

The sensitivity of the twelve-pole system to the different magnitudes of the rotor
eccentricity (i.e., f = 0.005, 0.01, and 0.015) when the proportional gain kept fixed at
p = 1.5 is illustrated in Figure 5. The figure shows that the system vibration amplitudes
(a and b) are a monotonic increasing function of the eccentricity. In addition, the system
behaves as a Duffing oscillator with hard spring characteristics in both the horizontal and
vertical directions, where the system may have bistable periodic solutions at a specific
range of angular speeds. Comparing Figures 3 and 5, it is noticed that the twelve-pole
system may lose its stability to respond with aperiodic oscillations when Ω ∼= ω (i.e., when
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σ = 0.0) if the eccentricity f = 0.015 and the proportional gain p = 1.22 (see Figure 3e,f),
meanwhile increasing the proportional gain from p = 1.22 to p = 1.5, eliminates the
instability conditions as shown in Figure 5.
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Due to the dominant role of the proportional gain (p) in reshaping the vibration
characteristics of the twelve-pole system as demonstrated in Figures 3–5, the proportional
gain has been employed as a bifurcation parameter where p is plotted versus the vibration
amplitudes (a & b) of the twelve-pole system when f = 0.01 and σ = 0.0 as shown
in Figure 6. Clear from the figure is the great influence of the proportional gain on the
oscillation amplitudes and bifurcation of the system motion, where the figure shows that
the twelve-pole system has no solution as long as the proportional gain p < 1.098. In
addition, the figure depicts that the periodic solution of the twelve-pole system may lose
its stability if the gain p exceeds a specific limit (i.e., when p > 1.778). Moreover, Figure 6
demonstrates that the system may respond with a unique periodic solution or bistable
periodic solutions depending on the p magnitude within the interval 1.098 < p < 1.778.
It is simple to explain the absence of the solution for the twelve-pole system from the
engineering point of view when p < 1.098. By coming back to the definition of the system
natural frequency ω =

√
2pcos(α) + p− 3, where ω depends only on the proportional

gain because α is constant (i.e., α = 30o see Figure 3). Accordingly, the selection of the
proportional gain in a way that makes ω2 < 0 (i.e., p ≤ 1.098) is not acceptable from the
engineering standpoint, where the system has no solution if its natural frequency is an
imaginary value.

To obtain the stability boundaries of proportional control gain in more general form,
the stability charts for the twelve-pole system are obtained in both p− σ, and p− f planes,
as in Figure 7. The figure illustrates that the system has no solution as long p < 1.098
regardless of the values of σ and f , as demonstrated in Figure 7a,b, respectively, where the
absence of the solution depends on the magnitude of p and hence the magnitude of the
natural frequency ω as explained above.

To investigate the accuracy of the obtained stability charts shown in Figure 7, a
numerical simulation for the twelve-pole system (i.e., solving Equations (8) and (9) using
MATLAB ODE45) according to four points p1, p2, p3, and p4 that are shown in Figure 7a
and are introduced in Figure 8, Figure 9, Figure 10, Figure 11. It is clear that the point p1 is
located within the stable solution region. Accordingly, it is expected that the twelve-pole
rotor to respond with stable periodic oscillation when tuning the system parameters such
that p = 1.8, σ = −0.01, f = 0.01, and d = 0.005. Figure 8 shows the temporal dynamics
of the twelve-pole system according to the point p1 (i.e., p = 1.8, σ = −0.01, f = 0.01,
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and d = 0.005), where Figure 8a,b show the instantaneous oscillations of the system, and
Figure 8c illustrates the steady-state periodic orbit. In addition, both the corresponding
Poincaré-map and frequency spectrum for the system temporal oscillations is constructed,
as shown in Figure 8d–g. In general, Figure 8 confirms the stable periodic motion for the
studied system at p = 1.8, σ = −0.01, f = 0.01, and d = 0.005, where the orbital motion,
the Poincaré-map, and the frequency spectrum demonstrate that the temporal oscillations
contain a single frequency component.
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Figure 8. Numerical simulation for the twelve-pole system according to the marked point  in Figure 6a (i.e., when = 1.8, = −0.01): (a,b) temporal oscillations, (c) orbital motion, 
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Figure 8. Numerical simulation for the twelve-pole system according to the marked point p1 in Figure 6a (i.e., when p = 1.8, σ = −0.01): (a,b) temporal oscillations, (c) orbital motion,
(d,e) Poincaré return map, and (f,g) frequency spectrum.
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Figure 9. Numerical simulation for the twelve-pole system according to the marked point  in Figure 6a (i.e., when = 1.8, = 0.0): (a,b) temporal oscillations, (c) orbital motion, (d,e) 
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Figure 9. Numerical simulation for the twelve-pole system according to the marked point p2 in Figure 6a (i.e., when p = 1.8, σ = 0.0): (a,b) temporal oscillations, (c) orbital motion,
(d,e) Poincaré return map, and (f,g) frequency spectrum.
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Figure 10. Numerical simulation for the twelve-pole system according to the marked point  in Figure 6a (i.e., when = 2.0, = 0.0): (a,b) temporal oscillations, (c) orbital motion, 
(d,e) Poincaré return map, and (f,g) frequency spectrum. 
Figure 10. Numerical simulation for the twelve-pole system according to the marked point p3 in Figure 6a (i.e., when p = 2.0, σ = 0.0): (a,b) temporal oscillations, (c) orbital motion,
(d,e) Poincaré return map, and (f,g) frequency spectrum.
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Figure 11. Numerical simulation for the twelve-pole system according to the marked point  in Figure 6a (i.e., when = 2.0, = 0.01): (a,b) temporal oscillation, (c) orbital motion, 
(d,e) Poincaré return map, and (f,g) frequency spectrum. 
Figure 11. Numerical simulation for the twelve-pole system according to the marked point p4 in Figure 6a (i.e., when p = 2.0, σ = 0.01): (a,b) temporal oscillation, (c) orbital motion,
(d,e) Poincaré return map, and (f,g) frequency spectrum.
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Figure 9 simulates the temporal vibrations of the twelve-pole system according to
the point p2 (i.e., p = 1.8, σ = 0.0, f = 0.01, and d = 0.005) that marked in Figure 7a
within the unstable solutions region. Figure 9a,b illustrate the instantaneous oscillations of
the system, while Figure 9c shows the corresponding unstable periodic orbit. Figure 9a–c
show that the twelve-pole system exhibits unstable periodic oscillations when simulated
according to the point p2 that agrees accurately with the obtained stability chart is given
in Figure 7a. Moreover, to identify the nature of the system motion shown in Figure 9a,b,
the corresponding Poincaré-map and frequency spectrum are established as shown in
Figure 9d–g. Figure 9d–g depict that the rotor system performs a quasi-periodic oscillation
where the Poincaré-map is obtained as a closed curve. In addition, the frequency spectrum
shows that the temporal oscillations contain irrational frequency components.

Figures 10 and 11 simulate the twelve-pole system oscillations according to the points
p3 and p4 that are marked in Figure 7a, respectively. Figure 10 shows that the rotor
system has a quasiperiodic motion when simulated according to the point p3 (i.e., when
p = 2.0, σ = 0.0, f = 0.01, and = 0.005) that lies with the unstable solutions region. On the
other hand, the system responds with stable periodic motion when simulated according
to the point p4 (i.e., when p = 2.0, σ = 0.01, f = 0.01, and = 0.005) that lies with the
stable solutions region as shown in Figure 11. Depending on the obtained analytical and
numerical results investigations given in Figures 7–11, we can confirm the accuracy of the
obtained analytical solution that given by Equations (34)–(37) in describing the steady-state
motion of the twelve-pole system governed by Equations (8) and (9).

4.2. Influence of the Derivative Gain (d) on the Rotor System Dynamics

The influence of the second control parameter (i.e., the derivative gain d) on the
dynamical behaviors of the twelve-pole system is discussed through Figures 12–18. In
Figure 12, the twelve-pole system steady-state oscillation amplitudes are plotted against the
detuning parameter σ at various values of the derivative gain (i.e., when d = 0.005, 0.01,
and 0.015) when fixing the eccentricity and the proportional gain constant so that f = 0.015
and p = 1.22. Comparing Figure 12a,b with Figure 12c,d, it is noticed that the increase in d
from 0.005 to 0.01 eliminates the unstable motions of the twelve-pole system that appeared
in Figure 12a,b and reduces the vibration amplitudes (a & b) of the rotor system. However,
Figure 12c,d show that the system has a bistable solution near the perfect resonance
(i.e., when Ω→ ω ), and the nonlinearity characteristics still dominate the rotor response.
However, when increasing the derivative gain from d = 0.01 to d = 0.015, as depicted in
Figure 12e,f, it forces the twelve-pole system to respond linearly where the bifurcations of
the motions are suppressed.

The effect of the derivative gain on the steady-state oscillation amplitudes of the rotor
system when fixing p = 1.5 and f = 0.015 has been illustrated in Figure 13. It is clear
from the figure that the oscillation amplitudes are a monotonic decreasing function of the
derivative gain d, where the system may respond linearly, and the motion bifurcations
disappear at d = 0.015.
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The mechanism of the derivative gain d in eliminating the motion bifurcations and
reducing the system vibration amplitudes can be explained based on the definition of the
twelve-pole system linear damping coefficient µ =

(
cos(α) + 1

2

)
d. The linear damping

coefficient µ is a constant multiple of the derivative control gain d. Therefore, the increase in
d is a direct increase of µ, which in turn decreases the oscillation amplitudes and eliminates
the bifurcation of the system motion at a specific critical value. Accordingly, the derivative
gain is employed as a bifurcation parameter as shown in Figure 14, where the oscillation
amplitudes are plotted against d at various values of the proportional gain p (i.e., p = 1.22
and p = 1.5) when fixing f = 0.01 and σ = 0.0. Comparing Figure 14a,b with Figure 14c,d,
we can deduce that the amplitudes (a & b) are a monotonic decreasing function of the
derivative gain. In addition, the figures show that the system has a complex bifurcation
behavior at p = 1.22, while increasing the proportional gain to p = 1.5 can eliminate the
bifurcation of the system motion. Moreover, Figure 14 shows that the twelve-pole system
may lose its stability if d < 0.00435 when fixing p = 1.22, while increasing p to became 1.5
enhances the stability margin (i.e., the system loses its stability if d < 0.0005 when p = 1.5).

Accordingly, to investigate the stability boundaries of the derivative control gain as a
function of either the rotor eccentricity f or the detuning parameter d, the stability chart of
the twelve-pole system is established in both d− σ plane and d− f plane, as illustrated
in Figure 15. It is clear from Figure 15a that the system may lose its stability at a small
derivative gain (i.e., d < 0.0045) if the rotor angular speed Ω is closed to or equal the natural
frequency ω (i.e., when σ→ 0). However, increasing the derivative control gain in a way
so that d > 0.0045, guarantees the stability of the twelve-pole system oscillation regardless
of the rotor angular speed. Figure 15b shows the stability margin of the derivative gain as
a function of the eccentricity f . The figure illustrates that the increase in derivative gain
makes the twelve-pole system withstand the large eccentricities without losing its stability.
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Figure 16. Numerical simulation for the twelve-pole system according to the marked point  in Figure 14b (i.e., when = 0.004, = 0.01): (a,b) temporal oscillation, (c) orbital motion, 
(d,e) Poincaré return map, and (f,g) frequency spectrum. 
Figure 16. Numerical simulation for the twelve-pole system according to the marked point p1 in Figure 14b (i.e., when d = 0.004, f = 0.01): (a,b) temporal oscillation, (c) orbital motion,
(d,e) Poincaré return map, and (f,g) frequency spectrum.
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Figure 17. Numerical simulation for the twelve-pole system according to the marked point  in Figure 14b (i.e., when = 0.006, = 0.01): (a,b) temporal oscillation, (c) orbital motion, 
(d,e) Poincaré return map, and (f,g) frequency spectrum. 
Figure 17. Numerical simulation for the twelve-pole system according to the marked point p2 in Figure 14b (i.e., when d = 0.006, f = 0.01): (a,b) temporal oscillation, (c) orbital motion,
(d,e) Poincaré return map, and (f,g) frequency spectrum.
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Figure 18. Numerical simulation for the twelve-pole system according to the marked point  in Figure 14b (i.e., when = 0.006, = 0.02): (a,b) temporal oscillation, (c) orbital motion, 
(d,e) Poincaré return map, and (f,g) frequency spectrum. 
Figure 18. Numerical simulation for the twelve-pole system according to the marked point p3 in Figure 14b (i.e., when d = 0.006, f = 0.02): (a,b) temporal oscillation, (c) orbital motion,
(d,e) Poincaré return map, and (f,g) frequency spectrum.
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To validate the accuracy of the obtained stability charts shown in Figure 15, a numerical
simulation for the rotor system according to the three marked points (i.e., the points p1, p2 and
p3) in Figure 15b is performed, as shown in Figures 16–18. Figure 16 simulates the temporal
oscillations of the rotor system according to the point p1 (i.e., d = 0.004, f = 0.01, p = 1.22,
and σ = 0.0) that is marked in Figure 15b within the unstable solutions region. Figure 16a,b
shows the instantaneous vibrations of the twelve-pole system in X and Y directions, while
Figure 16c shows the corresponding steady-state orbital motion. In addition, the Poincaré-map
and frequency spectrum are shown in Figure 16d–g. Figure 16a–c confirm that the system
performs unstable periodic motion when simulated according to the point p1 that agrees with
the stability chart given in Figure 15b. Moreover, Figure 16d–g demonstrate that the rotor
system performs a quasiperiodic motion. The numerical simulations of the rotor temporal
oscillations according to the points p2 and p3 shown in Figure 15b have been illustrated in
Figures 17 and 18, respectively. Now, by comparing Figures 16–18 with the three marked
points (p1, p2 and p3) shown in Figure 15b, we can confirm the accurate correspondence
among the obtained stability chart and the numerical simulations.

Finally, the bifurcation behaviors of the twelve-pole system when utilizing the eccentricity
f as the bifurcation control parameter is discussed through Figures 19–21, where Figure 19a,b
shows the system amplitudes (a & b) versus the rotor eccentricity f when σ = 0.0 at various
values of the proportional gain p (i.e., when p = 1.22 and p = 1.5). It is clear from Figure 19a,b
that the twelve-pole system exhibits complex bifurcations behavior at p = 1.22. In addition,
the figure confirms that the system loses its stability at acritical values of the eccentricity.
However, the same Figures (Figure 19a,b) illustrate that the rotor system has a unique stable
solution along the f axis when fixing the proportional control gain to be p = 1.5. Accordingly,
we can conclude that the twelve-pole system is robust against instability when subjected to
large eccentricities when setting p = 1.5. Depending on Figure 19a,b, the system bifurcation
diagrams are established, as shown in Figure 19c,d, utilizing f as the bifurcation parameter
when p = 1.22 and p = 1.5. The bifurcation diagrams in Figure 19c,d are obtained via
plotting the Poincaré-map of Equations (8) and (9) versus the eccentricity f with a step-size
∆ f = 10−4 and zero initial conditions. Comparing Figure 19a,b with Figure 19c,d, we can
confirm the excellent corresponding between the analytic (i.e., Figure 19a,b) and numerical (i.e.,
Figure 19c,d) results. Figures 20 and 21 are a repetition for Figure 19, but when σ = −0.025
and σ = 0.025, respectively. By examining Figures 19–21 carefully, we can notice three
important phenomena. The first one is that the detuning parameter σ has a great influence on
the critical value of the eccentricity at which the system may lose its stability when p = 1.22.
The second phenomenon is that the twelve-pole system is stable along the f axis regardless
of the magnitudes of σ if the proportional gain p = 1.5. The third phenomenon is that the
steady-state oscillation amplitudes when p = 1.5 are greater than the steady-state oscillation
amplitudes at p = 1.22 along the stable interval of the f axis.
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Figure 19. (a,b) Oscillation amplitudes of the twelve-pole system versus , and (c,d) the corresponding bifurcation dia-
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grams at = −0.025, = 0.005 when = 1.22 and 1.5. 

Figure 19. (a,b) Oscillation amplitudes of the twelve-pole system versus f , and (c,d) the corresponding bifurcation diagrams
at σ = 0.0, d = 0.005 when p = 1.22 and 1.5.
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Figure 21. (a,b) Oscillation amplitudes of the twelve-pole system versus , and (c,d) the corresponding bifurcation dia-
grams at = 0.025, = 0.005 when = 1.22 and 1.5. 
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trated, which agrees with the stability chart in Figure 22a. In addition, Figure 24 simulates 
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Figure 21. (a,b) Oscillation amplitudes of the twelve-pole system versus f , and (c,d) the corresponding bifurcation diagrams
at σ = 0.025, d = 0.005 when p = 1.22 and 1.5.

As the detuning parameter σ has a great influence on the critical value of the eccentric-
ity at which the system may lose its stability as depicted in Figures 19–21, the stability chart
of the twelve-pole system has been constructed in the f − σ plane, as shown in Figure 22a,b,
when p = 1.22 and p = 1.5, respectively. It is clear from Figure 22a that the twelve-pole
system may lose its stability at small eccentricity values when σ = 0.0. However, increasing
or decreasing σ beyond zero increases the stability margin of the system. On the other
hand, the stability chart in Figure 22b depicted that the system is stable for all values of
the eccentricity regardless of the detuning parameter magnitude when setting p = 1.5.
Comparing Figures 19–21 with Figure 22, we can deduce that Figure 22 is a full picture
for Figures 19–21 regarding the stability boundaries of f at the different values of σ either
when p = 1.22 or p = 1.5.
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Figure 22. Stability chart of the twelve-pole system: (a) f − σ plane when p = 1.22 and d = 0.005, and (b) f − σ plane when
p = 1.5 and d = 0.005.

Numerical confirmation for the stability charts shown in Figure 22, according to the
marked points p1 and p2, is illustrated in Figures 23 and 24 by solving Equations (8) and (9)
using MATLAB ode45. Figure 23 illustrates the twelve-pole system temporal oscillations
according to the point p1 (i.e., f = 0.05, σ = 0.0, p = 1.22, d = 0.005) that is marked in
Figure 22a within the unstable solutions region. Figure 23d–g depict that the twelve-pole
rotor performs chaotic motion as the Poincare map and frequency spectrum illustrated,
which agrees with the stability chart in Figure 22a. In addition, Figure 24 simulates the
twelve-pole system temporal oscillation and the corresponding orbital motion according
to the point p2 (i.e., f = 0.05, σ = 0.0, p = 1.5, d = 0.005) that is marked in Figure 22b
within the stable solutions region. It is noticed that the rotor system exhibits stable periodic
oscillation that is agreed with the stability chart in Figure 22b.
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Figure 23. Numerical simulation for the twelve-pole system according to the marked point  in Figure 21a (i.e., when = 0.05, = 0.0, = 1.22): (a,b) temporal oscillation, (c) orbital 
motion, (d,e) Poincaré return map, and (f,g) frequency spectrum. 
Figure 23. Numerical simulation for the twelve-pole system according to the marked point p1 in Figure 21a (i.e., when f = 0.05, σ = 0.0, p = 1.22): (a,b) temporal oscillation, (c) orbital
motion, (d,e) Poincaré return map, and (f,g) frequency spectrum.
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Figure 24. Numerical simulation for the twelve-pole system according to the marked point  in Figure 21b (i.e., when = 0.05, = 0.0, = 1.5): (a,b) temporal oscillation, and (c) 
orbital motion. 

 

Figure 24. Numerical simulation for the twelve-pole system according to the marked point p2 in Figure 21b (i.e., when f = 0.05, σ = 0.0, p = 1.5): (a,b) temporal oscillation, and
(c) orbital motion.
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5. Comparison between the System Dynamics at p = 1.22 and p = 1.5

Within this section, the efficiency of the proposed controller in both reducing the oscil-
lation amplitudes and stabilizing the system motions is compared when the proportional
gain p = 1.22 and p = 1.5. Figure 25a,b shows the steady-state vibration amplitudes at
f = 0.01, while Figure 25c,d depicts the steady-state vibration amplitudes at f = 0.015. It is
noticed from Figure 25a,b that the twelve-pole system vibration amplitudes at p = 1.22 are
always smaller than the oscillation amplitudes when p = 1.5 along the σ axis. However,
one of the drawbacks of the small proportional gain (i.e., when p = 1.22) is the complex
bifurcation of the system motion. On the other hand, the figures show simple bifurcation
behaviors at p = 1.5, but the system may suffer from high oscillation amplitudes.
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Additionally, Figure 25c,d shows the vibration characteristics of the system when
f = 0.015 at p = 1.22 and p = 1.5. The figure demonstrates the control system has vibration
mitigation efficiency at p = 1.22 higher than that p = 1.5. However, the system may lose
its stability at the large eccentricities at p = 1.22. Therefore, the optimal design of the
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control variables (p and d) is a compromising process that depends on the magnitudes of
the system parameters (i.e., the eccentricity and angular speed), and the control objectives.

6. Conclusions

The twelve-pole AMBS system vibrational behaviors are extensively analyzed within
this article. The classical mechanics principle is applied to derive the system’s equations
of motion. Then, the derived mathematical model is solved analytically by utilizing the
perturbation analysis to obtain the amplitude-phase modulating equations. Based on the
extracted amplitude-phase equations, the steady-state oscillations are explored in terms
of all system parameters. The stability charts are established in two-parameter space
to investigate the stability margin of the different system parameters. In addition, the
obtained results are validated numerically via plotting the system temporal oscillations,
orbital motion, Poincaré-map, frequency spectrum, and the bifurcation diagram. According
to the presented study, we can conclude with the following important remarks:

1. The proportional gain has a great influence on the twelve-pole system’s dynamical
behaviors, solution bifurcations, and stability conditions;

2. At the small values of the proportional gain (i.e., 1.1 < p < 1.34), the rotor system
responds with a small oscillation amplitude with complex bifurcation behaviors at the
small eccentricity magnitude f . However, the system may lose its stability to perform
a quasiperiodic or chaotic oscillation when increasing the rotor eccentricity beyond a
critical value;

3. At the large values of the proportional gain (i.e., when 1.34 < p < 1.65), the twelve-
pole rotor exhibits simple bifurcation behaviors and relatively large vibration ampli-
tudes at the small disc eccentricities. In addition, the system responds periodically in
the case of the strong values of the eccentricity f without losing its stability;

4. Regardless of the proportional gain magnitude, the rotor system vibrations ampli-
tudes are a monotonic decreasing function of the derivative gain, where increasing d
decreases the oscillation amplitudes and eliminate the motion bifurcations;

5. The stability margin of the rotor eccentricity f depends on the system angular speed
Ω at the small values of the proportional gain (i.e., when 1.1 < p < 1.34). However,
the rotor system performs a stable periodic motion regardless of the eccentricity
magnitude and rotor angular speed at the large values of the proportional gain (i.e.,
when 1.34 < p < 1.65);

6. The optimal design of the control variables (p and d) is a compromising process that
depends on the system parameters and the control objectives;

7. It is recommended to investigate different advanced control methodologies for the
twelve-pole system in future works.
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Nomenclature

A cos(ϕ) Effective cross-sectional area of each electromagnetic pole.
a, b Steady-state vibration amplitudes of the twelve-pole system in X and Y

directions, respectively.
d Dimensionless derivative control gain.
c0 Nominal air gap size.
e Disc eccentricity of the twelve-pole system.
f Dimensionless disc eccentricity of the twelve-pole system.
I0 Permanentized electrical current.
Ij, j = 1, 2, . . . , 6 Control current in the jth electromagnetic pole.
k1 Proportional control gain.
k2 Derivative control gain.
m The rotor mass.
N Number of turns of each coil of the twelve poles system.
p Dimensionless proportional control gain.
x,

.
x,

..
x Displacement, velocity, and acceleration of the twelve-pole system in

X direction.
y,

.
y,

..
y Displacement, velocity, and acceleration of the twelve-pole system in

Y direction
α The angle between every successive two poles.
δj, j = 1, 2, . . . , 6 Instantaneous air gap of the jth electromagnetic pole.
ε Small perturbation parameter.
µ Dimensionless damping coefficient of the twelve-pole system in X and

Y directions.
µ0 Free space permeability.
σ Detuning parameter, where Ω = ω + σ.
ϕ1, ϕ2 Steady-state phase angles of the twelve-pole systemin X and Y directions,

respectively.
ψ Angular speed of the twelve-pole rotor system.
ω Dimensionless natural frequency of the twelve-pole system in X and

Y directions.
Ω Dimensionless angular speed of the twelve-pole rotor system.
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Appendix B

µ = d cos(α) + 1
2 d, ω2 = 2p cos(α) + p− 3

α1 = −6p cos3(α)− 3p + 2p2 cos2(α) + 6 + p2 − 8 cos2(α) sin2(α)
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α3 = −3d + 2pd + 4pd cos2(α)− 6d cos3(α)
α4 = 6d cos3(α)− 6d cos(α)
α5 = 2d2 − 2d2 cos2(α)
α6 = 2d2 cos2(α) + d2

α7 = 12d cos3(α)− 12d cos(α) + 4pd− 4pd cos2(α)
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