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Abstract: This paper presents a stiffness-oriented structure topology optimization (TO) method
for the design of a continuous, hinge-free compliant mechanism (CM). A synthesis formulation
is developed to maximize the mechanism’s mutual potential energy (MPE) to achieve required
structure flexibility while maximizing the desired stiffness to withstand the loads. Different from the
general approach of maximizing the overall stiffness of the structure, the proposed approach can
contribute to guiding the optimization process focus on the desired stiffness in a specified direction by
weighting the related eigen-frequency of the corresponding eigenmode. The benefit from this is that
we can make full use of the material in micro-level compliant mechanism designs. The single-node
connected hinge issue which often happened in optimized design can be precluded by introducing
the eigen-frequency constraint into this synthesis formulation. Several obtained hinge-free designs
illustrate the validity and robustness of the presented method and offer an alternative method for
hinge-free compliant mechanism designs.

Keywords: stiffness-oriented; topology optimization; compliant mechanisms; hinge-free

1. Introduction

Distributed or hinge-free compliant mechanisms are continuous, monolithic (one-
piece) and flexible mechanisms, which can transfer displacement and force from input
port to output port in other directions by elastic deformation and have enough stiffness to
withstand the external loads as well [1]. Compared with traditional rigid multi-part mecha-
nisms, compliant mechanisms efficiently reduce the size, material usage, displacement loss,
backlash loss, noise, and vibration [2,3]. Therefore, it shows considerable promise applica-
tion in micro-scale and nano-scale mechanical systems such as biomedical devices, semicon-
ductor industry, micro-electromechanical systems (MEMS), and many other applications.
To obtain the compliant mechanisms, there are mainly two kinds of approaches, namely,
the kinematics-based method and the structure topology optimization-based method.

Structure topology optimization has been successfully employed to achieve optimal
topology design through various topology optimization algorithms, such as the homog-
enization algorithm [4], solid isotropic material with penalization (SIMP) algorithm [5],
evolutionary structural optimization (ESO) algorithm [6,7], non-uniform rational basis
spline (NURBS) based hyper-surfaces theory [8–10], and level-set [11] and phase-field
approaches [12]. Numerical engineering examples for topology optimization validate its
advantages in terms of systematism and high efficiency, compared with the kinematics-
based approach. Therefore, the application of this technology has been further expanded
to other fields over the last decades, such as compliant mechanisms design.

Compliant mechanisms are expected to achieve designated flexibility in the specified
directions and to satisfy enough structure stiffness requirements to sustain external loads
simultaneously. Accordingly, compliant mechanisms optimization can be categorized
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to the multi-objectives problem using the topology optimization method. As a multi-
objectives problem, one of the main difficulties in compliant mechanisms design is the
provided formulation should properly tradeoff between flexibility and stiffness since
there’re conflicting design objectives with different fundamental units [13,14]. Shield and
Prager [15] were the pioneers and proposed an energy-based formulation to unify these
fundamental units by introducing mutual potential energy (MPE) to define flexibility
requirement and strain energy (SE) to represent stiffness requirement. To maximize MPE
and minimize SE simultaneously, Ananthasuresh et al. [16] presented a multi-criteria
objective using a weighted linear combination of these two objectives. The difficulty is that
the order of these two objectives is often not comparable and easy to result in one objective
dominated by the other. A later approach by Frecker et al. [1] solved this problem using
another multi-criteria formulation by maximizing the ratio of MPE and SE. Benefiting
from that, the formulation successfully balanced the kinematics and structural stiffness. A
further approach is presented by Saxena and Ananthasuresh [17,18] using a more general
objective formulation by the ratio of MPEm and SEn. Recently, Z. Luo et al. [19] proposed
a new multi-objective formulation for topology optimization of compliant mechanisms
which considers to maximum the MPE and minimum the mean compliance simultaneously.

Besides energy-based formulation, other approaches to design compliant mecha-
nisms using topology optimization are studied to balance flexibility and stiffness require-
ments. An early study on topology synthesis of compliant mechanisms was carried out by
Sigmund et al. [20] who introduced a formulation to maximize mechanical advantage (MA)
with the volume and input displacement constraints. Along similar lines, Lau et al. [21]
proposed a functional specification method by the ratio of geometry advantage (GA), MA
to optimize the design of compliant mechanisms. To address the convex issue which may
occur when regarding the maximum MA or GA as the objective function, Lau et al. [22]
proposed a non-convex objective formulation and verified it with numerical examples.
Pedersen et al. [23] introduced a material path-generating method and formulated an
objective function for the synthesis design of large-displacement compliant mechanisms
which was built by a global Lagrangian finite element formulation. In addition, Rubén
Ansola et al. [24] introduced the ESO method to compliant mechanisms design by incor-
porating the elastic SE and MA into the objective function. Programing in this line of
work, Rubén Ansola et al. [25] extended this method to the design of a 3D-compliant
mechanism with a finite element addition scheme and introduced the elastic strain energy
of the mechanism into the proposed objective function.

Apart from the difficulty to balance the flexibility and stiffness requirement in com-
pliant mechanisms optimization formulation, the single-node hinge feature is another
difficulty which frequently encounters in the design of compliant mechanisms using topol-
ogy optimization, often leading to the optimized result close to a rigid-body mechanism [26].
The undesirable hinge feature is unfeasible in most practical application since it is very
difficult to fabricate and easy to break due to its high-stress concentration; in other words,
the single-node hinge feature often result in potential reliability issue. The optimization
algorithm and formulation naturally lead to a single-node hinge feature, because it can
generate large displacement under a given force while not increasing strain energy [27],
therefore, worse local optima or non-optimal may occur in the topology optimization
process. To achieve the design of hinge-free compliant mechanisms, Poulsen [28] cited a
minimum length scale constraint in topology optimization and successfully generated dis-
tributed flexible compliant mechanisms. Furthermore, S. Rahmatalla et al. [29] developed
a continuum structural topology optimization with hinge-free compliant mechanisms by
attaching artificial springs to the input and output point of the optimization model and
the single-node hinge zone was eliminated with an increase in the relative stiffness of the
artificial springs. Recently, Y. Li et al. [2] introduced a new BESO algorithm to maximize the
ratio of GA/SE, and the hinge zone was precluded by introducing the total strain energy
of the structure.
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In addition, the stiffness objective in general optimization formation is always an
overall stiffness of the structure which is often achieved by the introduction of minimizing
the SE into the formulation, but the actual applications are often required to focus on the
stiffness in an interesting direction for optimizing the usage of material. Inspired by daily
work on compliance mechanisms design, the method presented in this paper focuses on
the stiffness in an interesting direction using eigenmodes by weighting its corresponding
eigen-frequency. Because eigenmode is always related to specifically oriented stiffness
and each eigenmode has its corresponding eigen-frequency, the optimization process will
focus on the specified eigen-frequency when properly added into the objective formulation.
Therefore, this paper develops a stiffness-oriented structure topological synthesis method
to design a hinge-free compliant mechanism in which flexibility and stiffness requirements
are considered. Based on the topology optimization and sensitivity analysis, a systematic
formulation is deduced to tradeoffs between flexibility controlled by mutual potential and
stiffness represented by eigen-frequency. Moreover, it will be shown that the unwanted
single-node hinge connection issue has been successfully addressed by introducing the
eigen-frequency constraints into the optimization formulation. This approach can provide
an alternative method for hinge-free compliant design. Due to the output displacement
and eigen-frequency can be efficiently monitored both in topology optimization results and
practical industrial applications, the optimized design result can be easily reviewed. The
presented topology optimization is based on SIMP interpolation and has been incorporated
into a general finite element analysis software Hyperworks. Several examples are given to
validate the effectiveness and robustness of the presented method.

The paper is outlined as follows. Section 2 presents a formulation named minimum
synthesis weighting index (MSWI) in the framework of the SIMP-based method, moreover,
checkerboard and minimum member size control are introduced as well. A sensitivity
analysis of solutions to the MSWI has been derived in Section 3. The effectiveness of the
proposed approach is proven through both 2D and 3D meaningful benchmarks in Section 4.
Finally, a discussion on conclusions and future developments can be found in Section 5.

2. Complaint Mechanism Optimization Problem and Formulation

This section introduces a new topology optimization formulation that combines
flexibility and stiffness requirement, conflicting design objectives of compliant mechanisms,
into a single design objective.

2.1. Complaint Mechanism Optimization Problem

Consider a general compliance mechanism design example with design domain Ω

under given loads and constraints conditions shown in Figure 1a where applied input
force FA is the loading at the input port and results in a displacement ∆A. To achieve the
flexibility requirement of compliant mechanisms, ∆B is the expected output displacement
at output port with a workpiece simulated by a spring with constant stiffness. Considering
the stiffness requirement, the optimized design should be strong enough to withstand the
input force FA and output reaction force FB from the workpiece.
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To cater to the flexibility requirement, the compliant mechanism design is expected to
be flexible enough to generate the required kinematic motion under the applied loads and
reaction force from the workpiece. Generally, the structure flexibility can be represented by
output displacement. Maximizing output displacement ∆B at port B can be expressed in
terms of maximizing mutual potential energy(MPE), just as shown in Figure 1b, which can
be formulated as follows [1].

max
(

fT
BuA

)
= max

(
vT

B K1uA

)
= max(MPE) (1)

Subject to:
K1uA = fA

K1vB = fB

where uA is the nodal displacement vector due to fA, vB is the nodal displacement vector
due to the dummy load fB, and K1 is the symmetric global stiffness matrix.

On some occasions, optimized design layout often turns out to be connected with
some single-node hinges which are very difficult to fabricate and easy to break due to
their high-stress concentration and may result in potential reliability issues. The topology
optimization algorithms prefer them because they can generate large displacements without
increasing total strain energy. To deal with the hinge pivot issue in topology optimization,
a general approach is introducing stiffness requirement into optimization formation as
objective or constraint. Mostly, the structure stiffness is formulated in terms of the mean
compliance or total strain energy [1,8,24]. In other words, maximizing the stiffness is
equivalent to minimizing the mean compliance or total strain energy (SE).

However, the current optimization formulation cannot specifically focus on the stiff-
ness in an interesting direction or eigenmode, because both mean compliance and total
strain energy are scalar and cannot specify the direction. Generally, the mechanical struc-
tural stiffness can be characterized in terms of eigenfrequencies and their corresponding
eigenmodes. It is a wise choice if the optimization process can focus on the interesting
eigen-frequency and its corresponding eigenmodes. Another advantage of this approach is
that eigen-frequency can be easily measured by various measurement methods, such as
the sine sweeping-frequency vibration method and the hammering method. In addition,
the single-node connected hinge can be precluded in compliant mechanism design by
introducing the scheme of maximizing the required eigen-frequency. The reason is that
material will be added to the hinge region to achieve the stiffness requirement.

The general eigenvalue problem can be formulated as follows,

KΦj = ω2
j MΦj = λjMΦj (2)

where λj = ω2
j is the jth eigenvalue,ωj is the jth eigen-frequency, K and M are the global

stiffness and mass matrix respectively, Φj is the corresponding eigenmode normalized with
respect to the kinetic energy.

Assuming that damping can be neglected, the problem of maximizing a single eigen-
frequencyω is equivalent to minimizing 1/λ, which can be formulated as follows [30]:

Min
1
λj

(3)

Subject to:
KΦj = λjMΦj, j = 1, . . . , N,

ΦT
j MΦj = δjk, j, k = 1, . . . , N,

Ne

∑
e=1

ρeVe −V∗ ≤ 0, V∗ = aV0
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0 < ρmin < ρe < 1, e = 1, . . . , Ne

where N is the total number of eigenmodes related to the topology optimization and Ne
is the number of elements. The symbol α is the volume fraction V*/V0, where V0is the
admissible volume of the design domain and V* is the given available volume of design
material. j and k are the eigenmode number. The density ρe is the design variable, to avoid
singularity happening, the minimal value of the design variable ρmin = 10−3. ke and me
are the stiffness and the mass matrices with penalization factors p and q, respectively.

The globe stiffness matrix K which is assembled by the element stiffness matrix with
design variables in the finite element structural analysis can be calculated as:

K =
Ne

∑
e=1

ke =
Ne

∑
e=1

ρ
p
e K0

e (4)

where K0
e is the element stiffness matrix with fully solid material and penalization factor p

≥ 1. In this paper, all the examples p = 3.
Similarly, the globe mass matrix M can be presented as follows:

M =
Ne

∑
e=1

me =
Ne

∑
e=1

ρ
q
e M0

e (5)

where M0
e is the element mass matrix with fully solid material and penalization factor

q ≥ 1. In this paper, all the examples q = 1.

2.2. Optimization Formulation

In this work, we can mathematically formulate an optimization problem by finding
the design of a hinge-free optimal compliant mechanism by combining these two objectives,
minimum of the -MPE and minimum 1/λ, for different physical characters, while satisfying
the above-mentioned constraints.

Min synthesis weighting index (MSWI):

SWI =
−∑n

i=1 WiMPEi

MPEmax
+ λmin ∑n

i=1
Wi

λi
, i = 1, . . . , n (6)

Subject to:
K1uA = fA

K1vB = fB

KΦj = λjMΦj, j = 1, . . . , N,

ΦT
j MΦj = δjk, j, k = 1, . . . , N,

Ne

∑
e=1

ρeVe −V∗ ≤ 0, V∗ = aV0

0 < ρmin < ρe < 1, e = 1, . . . , Ne

where n is the total case number, Wi is the weighting coefficient of the ith case, MPEmax is
the maximum MPE and λmin is the minimum λ, respectively.

The weighting of MPEi can be defined by ∑n
i=1 WiMPEi and the weighting of 1/λ. can

be defined by ∑n
i=1 Wi/λ, respectively.

The formulation can handle multi-load cases by introducing the weighting ∑n
i=1 WiMPEi.

For most of the compliant mechanisms, there’re one or two load cases. Simultaneously, the
formulation can focus the optimization process on the eigen-frequency and its correspond-
ing eigenmodes by weighting the required eigen-frequency in formulation ∑n

i=1 Wi/λ.
Furthermore, by introducing the weighting coefficient, the formulation can balance

these two different physical characters MPEi and 1/λ, because their values may differ



Appl. Sci. 2021, 11, 10831 6 of 16

by several orders of magnitude. In other words, the difficulty that one objective often
dominates in the optimization process can be tackled, which often occurs when using a
weighted linear combination of the two objectives in a multi-criteria optimization approach.

2.3. Checkerboard and Minimum Member Size Control

A well-known problem that often happened in continuum topology optimization
results is the so-called checkerboard phenomenon. Diaz and Sigmund [31] introduced
that the stiffness of the checkerboard pattern is overestimated and stiffer than any real
material. As a result, the checkerboard pattern is artificially preferred by the optimization
algorithm. Different approaches have been developed to overcome the checkerboard issue,
Sigmund and Peterson [32] have given a review of the regularization methods as perimeter
constraint, sensitivity filtering, and density gradient constraints.

Based on the understanding that the reason for the checkerboard pattern is due to
bad numerical modeling that overestimates the stiffness of checkerboards, Petersson and
Sigmund [33] introduced a constraint on the local gradient of the slope of element densities
for guaranteeing the accuracy of the finite element formulation. However, these additional
linear constraints make this approach computationally prohibitive for practical applications.
Based on the basic concept of a slope constraint, Zhou et al. [34] enforced the formula by an
adaptive constraint strategy in the optimization algorithm that is similar to adding move
limits and does not require any extra computational effort. In the meantime, this algorithm
is given an opportunity that can control the minimum member size.

For achieving a half predetermine minimum member size of the radius rmin = Dmin/2,
Dmin denotes the minimum member size, the slope constraint can be formulated for a
general irregular finite element mesh as follows:

|ρi − ρk| ≤
(1.0− ρmin)dist(i, k)

rmin
(7)

where dist(i, k) is the distance between adjacent elements i and k, and k ∈ Ωi with
Ωi denoting the set of elements adjacent to element i. However, the above formulation still
adds additional linear constraints and result in computationally prohibitive as well. The
density slope constraints in (7) can be improved through enforcement of adaptive lower
bounds on the density as follows:

ρi ≥ max
[
µ, ρj − (1.0− ρmin)dist(i, k)/rmin

]
(8)

where µ is the lower limit of density (in this paper, all examples µ = 0.6) and ρj is the
density of element j at previous iteration that has the highest density among all elements
that are adjacent to element i

ρj = max(ρk
∣∣k ∈ Ωi) (9)

Formula (8) shows that the only works with the values of the box-constraints on the
density ρj, which at the (i + 1)th iteration step are modified to restrict the variations in
the design. It is easy to see that except for the negligible computation associated with the
adjustment of the side constraints of the design variables.

3. Sensitivity Analysis

To guide the iteration process of the optimization algorithm, sensitivity analysis is
necessary to determine which elements should be removed or kept to the next iteration.
Sensitivity analysis can be achieved by deriving the objective formulation f(ρe) with respect
to the design variable. For most topology optimization algorithms, the design variable is
material density ρe. Based on the SIMP material model, the finite element elasticity matrix
can be expressed by material density ρe(0 ≤ ρe ≤ 1) with a power p(p ≥ 1), as below

Ee(ρe) = ρ
p
e E0

e (10)
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where E0
e is the element elasticity matrix with fully solid material. The introduction of

penalization power p is to penalize the elements with intermediate density so that only the
element with the density close to 1 will be left in the optimization result, benefitting from
that, the optimization result becomes easy to interpret.

The sensitivity of MPE variables can be deduced by:

∂K
∂ρe

uA + vT
BK

∂uA

∂ρe
(11)

Differentiating both sides of K1vB = fB, then substituting the result into the above
equation, the sensitivity of MPE with respect to ρe can be rewritten as:

∂MPE
∂ρe

= vT
B

∂K
∂ρe

uA = pρ
(P−1)
e vT

BK0
euA (12)

Similarly, the sensitivity of λ can be deduced by differentiating the equation with
respect to ρe and we obtain [35]:

∂λ

∂ρe
= ϕT

j

(
pρ

(p−1)
e K0

e − λjqρ
(q−1)
e M0

e

)
ϕj (13)

E = 1, 2, 3 . . . , NE.

Finally, the sensitivity of synthesis weighting index (SWI) with respect to ρe can be
assembled and formulated as:

∂SWI
∂ρE

= −
pρ

(P−1)
e ∑n

i=1 WivT
BK0

euA

MPEmax
− λmin

n

∑
i=1

Wi ϕ
T
j

(
pρ

(P−1)
e K0

e − λjqρ
(q−1)
e M0

e

)
ϕj

λ2
i

(14)

i = 1, . . . , n

4. Numerical Results

In this section, three typical compliant mechanisms benchmark examples are presented
to demonstrate the validity and robustness of the introduced methodology. The first two
compliant mechanisms also can be found in other literature. It will be shown that the
proposed method can be employed to solve the difficult tradeoffs between flexibility and
stiffness and to solve the single node hinge issue as well.

The first two examples are 2D problems and the first eigenmode is swing modal in
the thickness direction. Optimization results often turn out to be connected with the single
node hinge, therefore, for the first two examples, the synthesis weighting index (SWI)
formulation in Section 3 is employed to obtain a hinge-free design by weighting the 1st
eigen-frequency with weighting coefficient 10 and 100, respectively.

4.1. Gripper Mechanism

The first example demonstrated here is one of the gripper mechanisms design. The
mechanism is to achieve the functionality that two opposite points at the output side
move in the vertical direction to grip a workpiece or a cell when a horizontal force or
displacement is applied at the input point. The gripper design domain Ω as shown in
Figure 2a is a 400 mm × 400 mm rectangle with a 120 mm× 120 mm gap at the output side.
It is discretized into 3600 4-node quadrilateral elements. Partial fixed support is defined
at both top and bottom corners on the left edge. The input load fin = 100 N is exerted in
the left direction at the input point. The objective is to synthesize the design so that the
mechanism can produce the expected gripping force fout or output displacement ∆out to grip
the workpiece which is simulated by a spring with constant stiffness kout = 500 N/mm,
furthermore, the design should be stiff enough to sustain the applied load and reaction
force from workpieces as well. The material considered here is Aluminum with Young’s
modulus E = 73 GPa, Poisson’s ratio v = 0.3, and density ρ = 2750 kg/m3.
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Figure 2. (a) Design domain and boundary of the gripper mechanism; (b) optimized topology
solutions obtained by minimizing synthesis weighting index (SWI) with weighting coefficient 10
of the 1st eigen-frequency; (c) optimized topology solutions obtained by minimizing synthesis
weighting index (SWI) with weighting coefficient 100 of the 1st eigen-frequency.

Figure 2b,c provides different optimized topology solutions which are well-distributed
compliant designs with different weighting coefficients of the 1st eigen-frequency and the
volume fraction constraint restricted to be 30%. The optimized topology design shows in
Figure 2b a continuous, monolithic, flexible, and free of single-node hinge feature. When
further increase the weighting coefficient of the 1st eigen-frequency, as Figure 2c shows the
optimization process will switch to enhance the structural stiffness. Compared with the
topology optimization result of References [19,29], the optimization result of Figure 2b,c
basically shares a similar topology layout, but the topology layouts of Figure 2b,c are
simpler and the load transmission paths are more concise and clear, which means these two
designs will be easier to fabricate. The set of design results shown in Table 1 demonstrate
that the weighting coefficient has a significant effect on the optimized topology design. The
benefit of this is that the designer can conveniently obtain the expected optimized topology
layout based on actual design requirements by weighting interested eigen-frequency.

Table 1. Two types of optimized result with different weighting coefficient of the 1st eigen-frequency.

Case
Weighting Coefficient

of the 1st
Eigen-Frequency

Weighting
Coefficient of the

MPE

Output Stroke
(µm)

The 1st
Eigen-Frequency

(Hz)

The 2nd
Eigen-Frequency

(Hz)

1 10 1 10.6 733 2310
2 100 1 7.5 856 2581

Figure 3 illustrates the convergence history of output displacement and interested
eigen-frequency of the gripper mechanism of case 1. Notice that the maximum displace-
ment of 10.5 µm is achieved after iteration 35 with a table iteration process. Both 1st and 2nd
eigen-frequency gradually increased until iteration 55 to achieve their maximum value. It
shows that the optimization procedure focuses on the maximum interested eigen-frequency
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after achieving the maximum MPE. The optimization results indicate that the proposed
method works correctly.
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4.2. Inverter Mechanism

The second example demonstrates the design of a force or displacement inverter
mechanism which outputs the displacement in an opposite direction to that of the input
force. The design domain of the inverter is a 250 mm × 250 mm rectangle as shown in
Figure 4a. It is discretized into 100× 100 4-node bilinear quadrilateral elements. The design
domain bears Fin = 50 N at the center of the left edge and is partially fixed at the top and
bottom corners on the left edge. A linear spring with constant stiffness kout = 2000 N/mm
is attached to the output point to simulate the workpiece. The material is assumed to
be Aluminum with Young’s modulus E = 73 GPa, Poisson’s ratio v = 0.3, and density
ρ = 2750 kg/m3. The horizontal displacement ∆out of the output point is expected to be
generated in the left direction and the design should be stiff enough to sustain the applied
load and resistance force as well.

To highlight the effect of the varying weighting coefficient on optimized topology
results. The problem was solved with different weighting coefficients of the 1st eigen-
frequency as shown in Table 2. Figure 4b,c shows optimized designs for the inverter
mechanism, clearly, the optimized layouts indicate that the optimized results are different
but are continuous without any single-node hinge connection issue.
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Table 2. Two types of optimized result with different weighting coefficient of the 1st eigen-frequency.

Case
Weighting Coefficient

of the 1st
Eigen-Frequency

Weighting
Coefficient of the

MPE

Output Stroke
(µm)

The 1st
Eigen-Frequency

(Hz)

The 2nd
Eigen-Frequency

(Hz)

1 10 1 49.8 927 2480
2 100 1 32.4 1157 2613
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To further investigate the invert mechanism design, Figure 5 shows the convergence
history of output displacement and interested eigen-frequency of the inverter mechanism
of case 1. It clearly shows that the required output port moves in the desired direction and
finally maximized the output stroke and the 1st eigenfrequencies, simultaneously.

4.3. Three-Dimensional Steering Mechanism

In this section, we consider the design of a 3D steering complaint mechanism using
topology optimization to illustrate how to focus the optimization progress on interested
eigen-frequency and its corresponding eigenmodes by proposed formulation and how to
balance the flexibility and stiffness requirement by using weighting coefficient as well.

The mechanisms introduced here achieve the functionality that changes the input
stroke in the horizontal direction, generated by PZT, to the output stroke in the vertical
direction and amplify the input stroke simultaneously. The design domain Ω as shown
in Figure 6a, a 40 mm × 25 mm × 15 mm block and another three blocks with gray color
are non-design domains. The upper two small gray blocks attached on the upper surface
are the adaptors of PZT and a bottom gray block regarded as a support beam. The whole
design domain is discretized into 15,300 eight-node cubic elements. Partially fixed supports
are defined at left two non-design blocks on the left side surfaces. The PZT, simulated as a
spring with constant stiffness 20,000 N/mm, generated force fin = 200 N is applied in the
horizontal direction at the center of two PZT mounting surfaces. Similar to a cantilever
mechanism, the first two eigenmodes are swing modal in the vertical and horizontal
direction, respectively, as shown in Figure 6b,c. The first eigen-frequency requires more
than 1500 Hz to achieve the required bandwidth for system motion control. The output
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stroke should not be less than 50 um to achieve the flexibility requirement. Accordingly,
the objective is to balance these contradictory requirements, the output stroke, and the 1st
eigenfrequencies, simultaneously with a 20% volume constraint. For the elastic workpiece
which is simulated as a spring, the constant stiffness of 500 N/mm is assigned. The material
considered here is aluminum with Young’s modulus E = 73 GPa, Poisson’s ratio v = 0.3,
and density ρ = 2750 kg/m3.

Figure 5. Convergence history of output displacement and eigen-frequency for the invent mechanism.
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Clearly, the direction of the first eigenmode of the steering mechanism, swinging in the
vertical direction, is the same as the required output stroke direction, as shown in Figure 6b.
To fulfill the required the 1st eigen-frequency, not less than 1500 Hz, and output stroke,
more than 50 µm, requirement simultaneously, the desired optimal result should properly
balance the stiffness and flexibility requirements. Furthermore, to focus the optimization
iteration process on the stiffness in the first eigenmode in the vertical direction to make full
use of material, different weighting coefficients of the 1st eigen-frequency are employed as
shown in Table 3.

Table 3. Four types of optimized result with different weighting coefficient of the 1st eigen-frequency.

Case 1 2 3 4

Weighting coefficient of the 1st
eigen-frequency 1 100 1000 2250

Weighting coefficient of the MPE 1 1 1 1
Output Stroke (µm) 83 74 58 51

The 1st eigen-frequency (Hz) 1424 1721 2136 2404

Figure 7 shows four kinds of topology optimized results using different weighting
coefficients of the 1st eigen-frequency from 1 to 2550. All of the optimized materials are
well distributed and the topology layouts are continuous, monolithic, and free of single-
node hinge features. The rotation pivots are close to the bottom non-design block and
far away from the output point to achieve flexibility requirements. Based on Table 3, as
the increasing weighting coefficient of the 1st eigen-frequency, the optimization iteration
process will focus more on enhancing the 1st eigen-frequency, from 1424 Hz to 2404 Hz,
by adding more material on rotation pivot while the output stroke reduced from 83 µm
to 51 µm. Clearly, the topology optimized results vary with the weighting coefficient and
the topology process will focus on the interested eigen-frequency with the help of the
weighting coefficient.

Case 4 is chosen for further study of this steering mechanism, as Figure 8 shows, the
optimal topology of this mechanism was obtained after 37 iterations using the proposed
formulation. Figure 7g,h shows two different views of the optimized layout. The optimized
design is a well-distributed compliant design and free of single-point hinge features. It
clearly shows that the input force from PZT directly transmits to the output port to generate
desired vertical stroke via the rotation pivot. There is a slanted bar connected between the
output port and the main body to achieve the mentioned stiffness requirement. Figure 8
shows the convergence history of input/output strokes and the interested eigenfrequen-
cies. The initial output stroke is 11 µm downwards and the final output stroke is 51 µm
downwards which is larger than the required 50 µm requirement with the final GA of
4.6. The desired stiffness related to the first eigenmode swing in the vertical direction
is enhanced and its corresponding eigen-frequency increased from 1252 Hz to 2404 Hz,
which is also larger than the required 1500 Hz. Both of them indicate that the proposed
method works correctly. Compared with the other three cases, case 4 optimized design
added more material to pivot to enhance 1st eigen-frequency with the help of weighting
efficiency. Finally, the 1st eigen-frequency 2404 HZ is achieved and increased the control
bandwidth a lot.
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5. Conclusions
5.1. Conclusions

A stiffness-oriented structure topological synthesis method is proposed to design a
hinge-free compliant mechanism, in which both flexibility and stiffness requirements are
considered. The formulation of the compliant mechanism optimization problem presented
here is to balance these two conflicting objectives simultaneously by combining the mutual
potential energy and eigen-frequency into one objective. Numerically obtained hinge-free
designs show that required output displacements are achieved through structure elastic
deformation; meanwhile, the required stiffness of the specified eigenmode is maximized by
weighting corresponding eigen-frequency, which demonstrates the validity of the presented
method and offers an alternative method for hinge-free compliant mechanisms design.
We notice that the proposed synthesis method can be easily extended to 3D problems or
more complicated compliant problems, for instance, with the integration of a piezoelectric
actuator for an actual compliant application.

5.2. Future Works
5.2.1. Potential Spurious Modes and Mode Switching Problem

Spurious modes and mode switching problems often occur when introduced eigen-
frequency into topology optimization formulation [9]. To overcome the possible spurious
modes issues to achieve a more robust formulation, a more efficient penalization scheme
on stiffness and mass matrix needs consider.

5.2.2. Post-Processing Technology Improvement

To help designers efficiently make full use of optimized topology and easily transfer
it to CAD environment for topology re-building and check the result with other CAE
software, such as ANSYS, post-processing technology requires further improvements. For
example, the use of CAD-compatible topology optimization methods [9–11].
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TO Topology optimization
MPE Mutual potential energy
MEMS Micro-electromechanical systems
SIMP Solid isotropic material with penalization
ESO Evolutionary structural optimization
ME Compliant mechanisms
SE Strain energy
GA Geometry advantage
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