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Abstract: COVID-19 has underlined the importance of monitoring indoor air quality (IAQ) to
guarantee safe conditions in enclosed environments. Due to its strict correlation with human
presence, carbon dioxide (CO2) represents one of the pollutants that most affects environmental
health. Therefore, forecasting future indoor CO2 plays a central role in taking preventive measures
to keep CO2 level as low as possible. Unlike other research that aims to maximize the prediction
accuracy, typically using data collected over many days, in this work we propose a practical approach
for predicting indoor CO2 using a limited window of recent environmental data (i.e., temperature;
humidity; CO2 of, e.g., a room, office or shop) for training neural network models, without the need
for any kind of model pre-training. After just a week of data collection, the error of predictions was
around 15 parts per million (ppm), which should enable the system to regulate heating, ventilation
and air conditioning (HVAC) systems accurately. After a month of data we reduced the error to about
10 ppm, thereby achieving a high prediction accuracy in a short time from the beginning of the data
collection. Once the desired mobile window size is reached, the model can be continuously updated
by sliding the window over time, in order to guarantee long-term performance.

Keywords: indoor air quality; carbon dioxide; air pollution; artificial intelligence; deep learning

1. Introduction

Due to the recent COVID-19 pandemic, indoor air quality (IAQ) has drawn particu-
lar attention worldwide, highlighting the importance of guaranteeing safe and comfort
conditions to people. One of the main pollutants that most impacts IAQ is carbon diox-
ide (CO2), which is highly correlated with human presence. Medical and scientific studies
have underlined how high levels of CO2 not only affect the cognition [1] and well-being
of people, significantly reducing comfort perception within an enclosed environment, but
could contribute to COVID-19 infection [2]. Although National and European regulations
outline specific levels to keep—e.g., the Joint Research Center (JRC) of the European Com-
mission [3] defines the limit of 1000 ppm as the threshold before the indoor comfort starts
to deteriorate significantly—keeping the CO2 level as low as possible is fundamental from
a pandemic point of view [2].

In this regard, the deployment of a data collection system to monitor indoor CO2 and
IAQ represents a priority, especially in crowded environments such as tertiary buildings
(i.e., retail stores, supermarkets and bank branches). A common approach to this consists
of smart Internet of Things (IoT) sensors sensing the environment and communicating
(through a wide range of possible protocols, e.g., Modbus [4], Wi-Fi [5] and EnOcean [6])
with an edge device which collects and processes the data. Moreover, in complex architec-
tures the edge node could also play the role of gateway towards the network infrastructure.
A typical scenario is that of retail stores, depicted in Figure 1, where managers aim to
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guarantee the best possible environmental conditions within their sites to make customers
feel comfortable, hence encouraging them to shop.
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Figure 1. A typical data collection scenario for retail stores.

Although the monitoring of real-time CO2 through smart IoT sensors can give impor-
tant benefits in this direction, such an approach does not provide any information on the
future behavior of CO2. This is a major limitation, as forecasting CO2 is crucial for applying
preventive actions, e.g., by means of intelligent systems capable of automatically regulating
HVAC devices in advance. Thanks to the increasing interest for IAQ, over the last decade
a number of studies regarding the forecast of indoor CO2 have been published [7–14]. The
proposed solutions mainly focus on maximizing the CO2 prediction accuracy by means of
different artificial intelligence (AI) techniques.

Despite the promising results, a pure performance-oriented approach (i.e., which
mainly focuses on prediction accuracy) might limit the applicability of such solutions in
real-world scenarios. Indeed, the maximization of the performance is typically achieved by
using a significant amount of data collected over a long time period [7–10] or by leveraging
on complex input variables from expensive cutting-edge sensors [9,11]. In this regard, such
a scenario requires data collection for many days, even months, for training the artificial
intelligence models. As a result, managers of retail stores have to wait a long time before
the full deployment of the system, making it unattractive from a business point of view.
Moreover, to the best of our knowledge, none of the state-of-the-art solutions tackle the
challenges of periodically updating the model to deal with the changes of the monitored
environment (e.g., unusual behaviors of CO2 due to changes in human activity).

In this work, we propose a practical approach for predicting indoor CO2 using a
limited window of indoor environmental data (i.e., temperature, humidity and CO2)
collected over a short time frame to train neural network models. It achieves comparable
accuracy of predictions with state-of-the-art solutions. The designed approach not only
enables the CO2 predictions to be made very shortly after the beginning of the data
collection (i.e., after just one day), but in the first period of the system’s deployment, the
model can progressively learn new features by increasing the window of data day by
day. As a result, the model is constantly updated and the performance is improved as
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soon as possible. Once the window achieves the optimal size to guarantee high prediction
accuracy, it can be moved at a certain rate over time to update the model, effectively
becoming a mobile window. As the training can be directly performed on site, the result is
a potential zero-touch approach for predicting indoor CO2, enabling the edge device to
work independently. Starting from a prediction error between 40 and 50 ppm after one day
of data collection, the proposed approach improves the accuracy day by day. In particular,
after just a week of data for training the model, the prediction error is more than halved,
making it around 15 ppm, and predictions could be effectively used to regulate HVAC
systems accurately. The performance improves until a window of past 30 days is used:
in this case, an error of predictions of around 10 ppm is achieved. Further increasing the
mobile window does not improve the accuracy and requires more computational resources.

Combining the practical constraints of real-world deployments with the requirement
of accurate CO2 predictions, this work makes the following contributions:

• A deep learning solution for indoor CO2 prediction that can be trained with just a
small amount of recent environmental data (i.e., temperature, humidity and CO2)
collected over a short time frame, thereby guaranteeing a high prediction accuracy
after few days from the beginning of the data collection with no model pre-training.

• An updating mechanism based on a mobile window that keeps the CO2 predictions
consistent with any environmental changes. As a result, the CO2 predictions can be
effectively used to regulate HVAC systems, guaranteeing IAQ comfort to occupants.

The rest of the paper is organized as follows. Section 2 provides a detailed overview of
the relevant literature. Section 3 introduces the dataset used for the experimental evaluation.
Section 4 describes the proposed methodology and the AI architecture. Section 5 illustrates
the simulation setup. Section 6 describes and discusses the results of the proposed approach.
Finally, Section 7 concludes the paper and provides future directions for predicting IAQ.

2. Related Work

In [14], the authors evaluated the use of relative humidity and temperature for model-
ing indoor CO2 by means of a multilayer perceptron (MLP), aiming to avoid deploying
expensive CO2 sensors. Although data collected over six months were considered and
advanced statistical features (e.g., kurtosis, skewness) were extracted from data to get
as much information as possible to train the model, the performance was poor, and the
same authors underlined the need for additional input variables. As a result, the following
studies focused on adding new input variables. For example, in [7] the outdoor temper-
ature and humidity—and other different parameters, such as the date and time—were
introduced to predict CO2 using random forest, taking into account different training
dataset sizes and numbers of trees. In this case, better performance was achieved, but a
large dataset covering more than a year was used for training.

Unlike the previous studies, the historical data of CO2 and time parameters, such as
weekday, hour and minute, were integrated within the study provided by [8]. Two different
scenarios were analyzed using an ANN with three hidden layers: the first case considered
all input variables, including the time information, and the second case only focused on the
historical data of CO2. The results show that the time and date variables do not contribute
to improving the accuracy of predictions. Moreover, the chosen approach relies on a large
amount of data (corresponding to a time window of 242 days) to train the model. The
evaluation was limited to just 10 h of the day after the training time window. A similar
scenario considering only CO2 data as the input variable was evaluated in [12]. In this
case, the authors took into account CO2 values with a time granularity equal to one hour,
bounding the analysis to only working hours. The proposed neural network was trained
using the data of a week (from Monday to Friday, excluding the night period), and CO2
values of next Monday and Tuesday were predicted. Although the results proved a good
correlation between the true and predicted values using a small amount of data for training
the neural network, this study was affected by clear limitations: only a couple of days
were considered for the test, thereby restricting the performance overview of the proposed
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method, and a large time granularity (i.e., 1 h) of data was used. A deep analysis regarding
the benefits of using CO2 as an input variable was provided by Khazaei et al. [13]. Three
different approaches were considered: the first case included CO2 as the input variable;
the second case only took into account humidity and indoor temperature; and the third
case partially used CO2 as the input variable to evaluate predictions five time-steps in the
future. All these cases correspond to different ways of training the neural network (in this
case, MLP). Similarly to in [14], the authors highlighted the importance of collecting CO2
data through sensors to be used in the model training. Despite the use of a small amount
of data for training the model and the good prediction accuracy, a limited scenario given
by just a week of data was evaluated as in [8,12]. Furthermore, all the above studies did
not consider updating of the models over time.

In the literature, some studies included the prediction of CO2 as a part of the forecast of
IAQ in general. Unlike the previous works, they also considered different neural network
architectures for forecasting IAQ. For example, in [11] the authors estimated and predicted
CO2 and particulate matter (PM) 2.5 in some university classrooms through an optimized
long short term memory (LSTM) model. Despite the good prediction accuracy, they took
into account detailed variables (e.g., indoor NO2, wind speed, wind direction and number
of students) which need cutting-edge sensors, making the whole data collection system
to predict indoor CO2 expensive. Similarly, in [9], the authors used a gated recurrent unit
(GRU) network as deep learning technique to predict fine dust, light amount, volatile
organic compound (VOC), CO2, temperature and humidity by giving the past values of
the same variables as input to the neural network. However, the architecture proved to be
very heavy: it requires more than a day and a half to be trained, resulting in an inefficient
solution to be used on edge devices. Moreover, data collected over more than six months
and complex variables were considered.

In this work we mainly refer to [10]. Unlike all the above studies, it provides a detailed
overview of the prediction of indoor CO2, starting from the data collection architecture to
the forecast results of the models, taking into account the challenges of using edge devices
in such a problem. In this work, different artificial intelligence techniques (ridge, decision
tree, random forest, multilayer perceptron) were analyzed from both a computational load
and a prediction accuracy point of view. Moreover, the impacts of the input variables
and the number of past values to use, along with the number of future values to predict,
were evaluated. Due to their computational load, the authors underlined the infeasibility
of applying neural networks on edge devices to address this issue. As a result, a less
computationally demanding technique, such as a decision tree, was suggested. Despite the
detailed analysis, the proposed approach may be difficult to be applied in a real scenario.
Indeed, a large amount of data collected over a whole year from different rooms was taken
into account to train models for predicting CO2 within the monitored rooms in the so-called
“hard sections” (i.e., when CO2 has a significant variation). As a result, it is necessary to
collect data for a long time period before training the AI models.

Table 1 highlights the key points of each work presented in this Section. Compared
to them, a major benefit of our approach is the automated updating mechanism, which is
necessary to keep up with the changes in the environmental conditions, and hence to cope
with the dynamics of real-world application scenarios.
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Table 1. Summary of the SoA.

Related Work Dataset Size Input Variables AI Architecture Automated Model
Update

This Work Adaptive (Max 30 days) Temperature, Humidity, CO2 1D CNN Yes

Vanus et al. [7] One year Temperature, humidity, time, date Random Forest No

Khorram et al. [8] 242 days CO2, weekday, hour, minute ANN No

Ahn et al. [9] Six months Fine dust, light amount, VOC, CO2, temperature
and humidity GRU No

Kallio et al. [10] One year CO2, PIR, temperature and humidity Ridge, Decision Tree,
Random Forest, MLP No

Sharma et al. [11] One week Indoor NO2, wind speed, wind direction,
number of student LSTM No

Putra et al. [12] One week CO2 ANN No

Khazaei et al. [13] One week CO2, humidity, temperature MLP No

Skön et al. [14] Six months Temperature, humidity MLP No

3. Dataset

In this work we used the data provided and published by Kallio J. et al. [10]. As
reported by the authors, this dataset has been published for further analysis of CO2 predic-
tions; thus, it is suitable for our objectives. It consists of data collected from 13 different
rooms, including offices and meeting rooms, by means of different commercial sensors at
Technical Research Center of Finland (VTT) in 2019. The monitored variables are:

• Temperature [°C];
• Relative humidity [%];
• Air pressure [hPa];
• Carbon dioxide concentration [ppm];
• Activity level.

We pre-processed the data by using a script developed by Kallio J. et al. [10], which
automatically aligns the timestamps of sensor data collected from the same room. As
underlined by Kallio J. et al. in their paper, the sensors of five rooms were affected by
communication issues during the data collection, leading to more than 10% of samples
being incomplete (i.e., missing at least one between T, H or CO2). The script fixed that
issue by filling each gap with the mean between the previous value and next value. The
script also implements methods to split the dataset into training and testing data. We did
not use this functionality, as we found out that during the split process the script excludes
the periods of time with slow variations of CO2. This would prevent the validation of
our solution in every condition. Instead, we implemented a custom method to split the
data within a given mobile window into a training set (70%) and validation set (30%) (as
indicated in Section 5). As described in Section 4, we tested the prediction on the first day
after the time window.

4. Methodology
4.1. Neural Network Architecture

A 1-dimensional convolutional neural network (CNN) was used as the deep learning
architecture. 1D CNNs, which find applications in natural language processing (NLP) [15],
in network security [16] and in other domains, are able to automatically analyze and
extract features from a single spatial dimension (in our case, time) by means of convolution
operations [17], hence learning in-depth patterns among data. From a computational point
of view, they guarantee good performance by using a shallow structure and advanced
features, such as weight sharing, and have the possibility of using a small amount of data
for training the model [18] without significantly impacting the accuracy. Unlike other types
of neural networks (e.g., recurrent neural networks) proposed in the literature [9,11], 1D
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CNNs are less computationally demanding [19], making them suitable for limited-power
and resource-constrained devices.

The neural network architecture was developed using Keras [20], the framework
built on TensorFlow platform (version 2.4.0), and Python (version 3.7.3), following specific
guidelines to adapt 1D CNN for time-series forecasting [21].

The proposed CNN architecture, depicted in Figure 2, consists of the following layers:

• Input layer. A sample consists of the values of the input environmental variables
(i.e., temperature, humidity and CO2) covering a window of n quarters of an hour.
Basically, a sample is a data matrix of size n × f , where n is the number of quarters
of an hour and f is the number of features. This kind of approach is possible due to
the temporal nature of environmental variables. Indeed, the values of temperature,
humidity or CO2 at close time intervals are correlated with each other. Before feeding
the neural network, the input values are normalized by defining a maximum and
minimum value for each variable.

• 1D Convolutional Layer. It is devoted to analyzing and extracting features along
the time-dimensional axis of the input data. This layer outputs a matrix of size
(n − h + 1)× k in which each column is a feature vector extracted through so-called
convolutional filters or kernels. Each of these k kernels slides over the input matrix
with a step equal to 1 and performs a convolution operation to extract the most
significant local information. The common rectified linear activation function (i.e.,
ReLU(x) = max{0,x}) is used to extract non-linearity patterns from data.

• Max Pooling layer. It aims to learn most valuable information from extracted feature
vectors by applying a subsampling operation to the output matrix from the CNN
layer. This operation involves a filter that slides along each feature map according to
a step given by the stride parameter and applies a maximum operation to a number of
elements equal to the pool size parameter. In this case, the stride is set equal to pool size.
A matrix of [(n − h + 1)/pool_size]× k is obtained as output.

• Flatten layer. It reshapes the input matrix to provide a one-dimensional feature vector
which can be used to make predictions by the output layer.

• Output layer. This linear fully connected layer, whose output consists of a single
neuron, predicts the CO2 value for the next quarter hour.

Dense LinearFlattenMax Pooling1D Convolution
ReLU

h

k

n-h+1

n

f

k

(n-h+1)/

pool_size

k*[(n-h+1)/

pool_size]

Figure 2. The designed neural network architecture.
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4.2. Proposed Approach

The proposed approach is based on the use of a small amount of data collected over
a short time frame for training the neural network models. As a result, the proposed
system is able to be operative and provide accurate predictions a short time after its initial
deployment, without the need for collecting large amounts of data over many days or from
other environments to achieve high accuracy of predictions. In this regard, we introduce the
concept of the mobile window, which refers to the amount of recent data used to train and
update the model over time. It relies on the idea that only the recent data involve valuable
information with which to model the local environment in the future. On the contrary,
including old data collected during far in the past would likely degrade the accuracy
of the predictions, as data might include behaviors related, e.g., to a another season of
the year. As a result, the mobile window represents a dynamic mechanism to keep the
model up to date upon recent environmental changes. The mobile window size is tuned to
achieve a prediction accuracy in the range of 10–20 ppm to guarantee accurate regulation
of the HVAC, according to the results of previous studies [10]. The proposed approach
can be easily integrated among the typical data collection operations for monitoring IAQ.
Moreover, thanks to the use of a small amount of data and the design of a lightweight
neural network architecture (i.e., 1D CNN), such an approach can be effectively applied
on edge devices to forecast the local CO2 level with complete autonomy, resulting in a
potential zero-touch indoor CO2 prediction approach.

The main operations of our approach can be summarized as follows (Figure 3):

• Every quarter of an hour of the day t0, t1, . . ., t95, the environmental data (i.e., tem-
perature, humidity, CO2) are collected on the edge device through smart IoT sensors.
Indeed, collecting data every 15 min guarantees a good trade-off among the accuracy
of analysis, battery lifetime of sensors and storage capabilities of the edge device.
Moreover, some industrial protocols, such as Modbus, keep the channel busy during
their reading operations. A quarter-hour granularity avoids occupying the physi-
cal channel at a high rate as well, enabling the edge device to perform other local
operations (e.g., actuation and energy data monitoring) without potential interference.

• Immediately after the data collection, every quarter of an hour, t0, t1, . . ., t95, the
system handles the collected data as samples. In particular, the sample, including the
values of the environmental variables of the last n quarters of an hour, is given to the
convolutional neural network to predict the CO2 level of the next quarter hour. In
this way, the forecast value of CO2 for the next future is regularly provided, taking
into account the behavior of the environmental variables in the last short period. The
predicted value can be effectively used to regulate HVAC systems in advance in order
to keep the CO2 level under control.

• Every N days, a window of data collected over the last few days is used to update the
neural network model. In the first period of the deployment, this window progres-
sively increases to account for a larger amount of information to improve the modeling
of the environmental variables. As a result, the proposed approach guarantees the
improvement of the performance as soon as possible. Once the window achieves
its optimal size as the trade-off between the prediction accuracy and computational
demand, it slides over time to update the models, effectively becoming a mobile
window. From a processing point of view, the data are handled as samples, which are
then used to feed the 1D convolutional neural network for training the model. This
operation can be properly scheduled after the last data collection operation of the day
(before t0).
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Figure 3. The sequence of operations at different quarters of an hour (t0, t1, . . ., t95) during a day.

5. Simulation Setup

Table 2 reports the values of the main parameters used in the simulations.

Table 2. Simulation parameters.

Parameter Value

Environmental variables in input Temperature, humidity, CO2
Time granularity of data 15 min

Quarters of an hour in a sample 8
Number of kernel filters—Convolutional layer 64

Kernel size—Convolutional layer 3
Pool size—Max Pooling layer 2

Learning rate 0.001
Batch size 32
Optimizer Adam

Loss function Mean squared error
Validation split 0.3

Maximum number of epochs 5000
Patience 25
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Temperature, humidity and CO2 of the dataset were used as input variables to predict
future CO2 levels. They are the most relevant variables required to be monitored by
managers to have an overview of IAQ. Additional cutting-edge sensors to monitor complex
air pollutants, such as particulate matter (PM1, PM2.5 or PM10) or VOC, make the cost
of a data collection system increase significantly. Moreover, these variables depend not
only on human activity but also on other agents, which can be considered of minor interest
in a scenario such as that of retail sites. As a result, we optimized the choice of the input
variables, coherently with the rest of the proposed system. Their value ranges are reported
in Table 3.

Table 3. Range of the input variables.

Parameter Range

Temperature 0–40 °C
Humidity 0–80 %

CO2 350–5000 ppm

In [10], the data were characterized by a time granularity equal to one minute. How-
ever, the original values of the dataset were aggregated every 15 min in order to simulate a
typical data collection scenario.

We evaluated the main hyper-parameters of the 1D CNN in order to find the values to
guarantee a good trade-off between the accuracy of the model and its computational require-
ments. In this regard, we used root mean squared error (RMSE) as the performance metric:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (1)

where yi is the real CO2, ŷi is the predicted CO2 and N is the total number of quarters of
an hour.

We evaluated the performance of the system by varying the number of quarters of an
hour per sample. We experimented by considering other relevant parameters—such as pool
size, kernel size and number of convolutional filters—and report the results in Figure 4:

• Pool size is important to extract the most relevant information from the feature vectors
provided by the convolutional layer. According to Figure 4, we set it equal to 2, as
global max pooling impacted the accuracy significantly.

• Kernel size has a central role in extracting valuable information along the time dimen-
sion. The simulation results reported in Figure 4 show similar performances between
different kernel sizes. Thus, we set it equal to 3, which is one of the standard values
for CNNs.

• Number of convolutional filters was set to 64. Indeed, as reported in Figure 4, we
noticed that higher values (e.g., 128 and 256) guaranteed similar performances, especially
when samples included a few quarter-hour measurements. In this way, we provide more
compact and lightweight models, reducing their memory footprints and guaranteeing
faster computation, especially on limited-power and resource-constrained devices.
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Figure 4. Behavior of the model with different numbers of quarters of an hour per sample, with a focus
on the pool size value (top), kernel size value (center) and number of convolutional filters (bottom).

Other parameters were:

• The learning rate was set to 0.001, a value used in many complex and non-linear prob-
lems, which guarantees a good trade-off between convergence and computational time.

• The batch size was set to 32 to guarantee stability, and to limit the memory footprints
of the models.

• Adam optimizer [22] was used as the optimization algorithm.
• RMSE was used as the loss function during the training.
• The validation split was set to 0.3, as per common practice in studies on CO2 predic-

tion. Before the split, we shuffled the samples so that both training and validation sets
contained samples which were spread across the whole time window. Please note that
we did not shuffle the time series within a single sample, as we wanted to preserve
the chronological order of the consecutive quarters of hour.

• The maximum number of epochs was set to 5000, alongside an early stopping pa-
tience parameter set to 25 epochs.
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6. Results and Discussion

In order to evaluate our proposed system, we defined a couple of experiments,
in particular:

1. The first experiment aimed to understand the impact of the mobile window, aiming
to highlight the practical and adaptive features of the proposed approach;

2. The second test evaluated the performance when more days in the future were
predicted in order to simulate a model update after N days.

6.1. Mobile Window

The most important hyper-parameter of the proposed approach is the mobile window,
i.e., the amount of data used to train the models, which needs to be deeply investigated in
order to understand how its size affects the accuracy of the predictions.

For this analysis, we used the simulation setup analyzed in the previous section. Given
a certain mobile window of N days, for each of the 13 rooms of the dataset, we picked
one random day per month to predict using the previous N days for training. Finally, we
averaged all the results to get the overall performance for a certain size of mobile window.
This experimental approach enabled us to simulate our methodology while taking into
account any possible period of the year (i.e., the deployment of the proposed system at any
time of the year) and environments with different physical characteristics (i.e., volume and
area), thereby providing a detailed overview of the performance of the proposed approach,
unlike previous research (e.g., [8,12,13]). As reported in Section 3, the dataset is affected
by some missing values due to communication failures during the data collection. As
this issue could have impacted the correctness of the predictions, we excluded from our
experiments those days with holes in their data, and those days that would have otherwise
been included in the previous N days used for training.

The experiment was executed on Raspberry Pi 4 Model B with 4 GB of memory, which
played the role of edge device.

Figure 5 outlines the results of this experiment, demonstrating the benefits of the
proposed approach. In the first place, it underlines the feasibility of deploying the system
after just one day of data collection, without the need for any pre-training or gathering of a
large amount of data. Despite poor performance in the first days due to a low correlation
between the days included in the mobile window and the day to predict, the accuracy
dramatically improved in a few days. Indeed, the model was able to progressively learn
complex features, improving the modeling of the indoor environmental behavior. In terms
of numerical results, after just a week, the RMSE became about 15 ppm, guaranteeing high
accuracy for regulating HVAC systems. As a result, in the first period of deployment, the
model can be regularly updated, progressively increasing the mobile window used for the
training in order to improve the performance as soon as possible from the beginning of
data collection.

The plot in the figure also shows that mobile windows larger than 30 days did not
bring any major improvements in terms of RMSE. On the other hand, as the training time
grows exponentially, a short time window is preferred to avoid overloading the edge node
and to minimize the impacts on other (critical) processes that might be executed on the
same device.

The results of this experiment highlight the benefits behind the proposed approach:

1. In the first period of the system deployment, the performance can be progressively
improved by introducing more data in the mobile window.

2. After only a month of data collection, the proposed approach guarantees the best
performance in terms of prediction accuracy.

3. A window of data including the last 30 days can be effectively moved over time to
freshen the model at a certain rate, effectively becoming a mobile window.

Moreover, with a time window size of 30 days, the model took about 25 min to
train. Thus, this operation can be scheduled when the device is idle or does not execute
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critical operations (e.g., overnight, when the retail store is closed). Therefore, according to
the above considerations, we can conclude that a 30-day mobile window allows a good
trade-off between computational demand and accuracy.

Nevertheless, the proposed approach is affected by some limitations. First, the RMSE
during the first week was above the target threshold of 10–20 ppm. Although the per-
formance of the system improved quickly, this warm-up phase could possibly lead to
non-optimal regulations of HVAC systems. Second, the current version of the system is not
resilient to missing values, as it requires a robust data collection system to work properly.
This means that in cases of holes in the data (because of, e.g., communication issues or
sensor failures), the future level of CO2 cannot be predicted. In this regard, for further
improvement of the system, we plan to solve this issue by implementing a mechanism
that finds the largest time window with no holes in the past data, which would be used
to perform the predictions of the CO2 level. Here the challenge will be to find a trade-off
between the size and the age of the old window. Thus, we need a sufficiently large time
window for a good prediction, but we do not want to go too far into the past to find such a
large time window.
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Figure 5. Behavior of RMSE and training time as the mobile window increases.

6.2. Model Update Rate

According to the previous analysis, the model can be effectively updated every day.
However, it is reasonable to wonder whether the model update rate can be softened once
the size of the mobile window achieves the desired size, and thus how often the model
should be re-trained to maintain the desired level of accuracy. To that end, we set the
window size to a given value, and we evaluated the prediction error of our model when
increasing the number of forecast days.

Figure 6 reports the results of this experiment. They outline how the prediction error
increased very slowly as the number of future days to predict increased. This means that the
indoor environmental behavior did not change in a significant way over the weeks, proving
once again that using large amounts of data over many days do not provide significant
benefits for predicting indoor CO2. Such a result enables the system to potentially update the
model at a slower rate with respect to every day. For example, the model could be effectively
refreshed once a week in a retail store, during the weekend when the store may be closed,
and the edge device would be idle most of the time. However, the best performance in terms
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of accuracy is guaranteed with daily updating of the model, which can be properly scheduled
for the end of the day, as defined by the previous experiment of the mobile window, when all
the data of the previous N days are collected on the edge device.
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Figure 6. RMSE as a function of the forecast days.

7. Conclusions

In this paper, we have presented a practical approach for indoor CO2 prediction.
In particular, we have introduced a deep learning solution based on a dynamic mobile
window that allows system deployment with no pre-training of the AI model, and an
adaptive mechanism to keep the model up to date upon environmental changes. The
proposed approach guarantees high performance in a short time frame after the initial
deployment and automatically tunes the size of the mobile window until the best settings
are reached. The predictions can be effectively used to regulate HVAC systems in advance
in order to avoid high levels of CO2, hence guaranteeing high levels of comfort on site.

Evaluation results show that the proposed system can be effectively executed on edge
devices, resulting in a potential zero-touch approach for indoor CO2 prediction. It is worth
noting that with our solution, each edge device relies only on its own collected data to
update the model and to predict the future CO2 level, making the system setup and its
general operation more practical in a real-world scenario.
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