
applied
sciences

Article

Staircase Detection, Characterization and Approach Pipeline for
Search and Rescue Robots

José Armando Sánchez-Rojas 1 , José Aníbal Arias-Aguilar 1 , Hiroshi Takemura 2

and Alberto Elías Petrilli-Barceló 2,∗

����������
�������

Citation: Sánchez-Rojas, J.A.;

Arias-Aguilar, J.A.; Takemura, H.;

Petrilli-Barceló, A.E. Staircase

Detection, Characterization and

Approach Pipeline for Search and

Rescue Robots. Appl. Sci. 2021, 11,

10736. https://doi.org/10.3390/

app112210736

Academic Editor: Luca Bruzzone

Received: 30 September 2021

Accepted: 11 November 2021

Published: 14 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate Studies Division, Technological University of the Mixteca, Km. 2.5 Carretera a Acatlima,
Huajuapan de León 69000, Oaxaca, Mexico; asanchez7714@gmail.com (J.A.S.-R.);
anibal@mixteco.utm.mx (J.A.A.-A.)

2 Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science,
2641 Yamazaki, Noda, Chiba 278-8510, Japan; takemura@rs.tus.ac.jp

* Correspondence: petrilli@rs.tus.ac.jp

Abstract: Currently, most rescue robots are mainly teleoperated and integrate some level of autonomy
to reduce the operator’s workload, allowing them to focus on the primary mission tasks. One of the
main causes of mission failure are human errors and increasing the robot’s autonomy can increase the
probability of success. For this reason, in this work, a stair detection and characterization pipeline is
presented. The pipeline is tested on a differential drive robot using the ROS middleware, YOLOv4-tiny
and a region growing based clustering algorithm. The pipeline’s staircase detector was implemented
using the Neural Compute Engines (NCEs) of the OpenCV AI Kit with Depth (OAK-D) RGB-D camera,
which allowed the implementation using the robot’s computer without a GPU and, thus, could be
implemented in similar robots to increase autonomy. Furthermore, by using this pipeline we were able
to implement a Fuzzy controller that allows the robot to align itself, autonomously, with the staircase.
Our work can be used in different robots running the ROS middleware and can increase autonomy,
allowing the operator to focus on the primary mission tasks. Furthermore, due to the design of the
pipeline, it can be used with different types of RGB-D cameras, including those that generate noisy
point clouds from low disparity depth images.

Keywords: object detection; point cloud segmentation; ROS; fuzzy control system

1. Introduction

Search and rescue robots allow first responders and emergency professionals to per-
ceive and act at a distance from a disaster site [1]. These robots can be used after natural
disasters such as earthquakes, hurricanes, floods and after accidents or terrorism on man-
made structures and facilities. Some examples of the tasks that a robot can execute include
search of victims, reconnaissance and mapping, rubble removal and structural inspection.
To successfully complete these tasks, ground search and rescue robots must be able to
navigate in complex environments with surfaces covered in rubble and debris and cross
obstacles such as ramps and staircases. These obstacles require a careful inspection by the
teleoperator to determine whether or not it can be crossed and the types of maneuvers
the robot must execute to safely cross it. Unfortunately, it is often difficult for humans to
gain enough information of the robot’s surroundings to allow them to teleoperate the robot
safely and efficiently and a simple miscalculation of the obstacle’s properties can cause the
robot to become stuck and result in a failed mission. For this reason, pure teleoperation is
often undesirable [2].

Obstacle detection and characterization plays an important role in the robot’s auton-
omy by allowing the implementation of obstacle crossing algorithms and traversability
analysis. One of the most common and difficult obstacles in disaster areas include staircases.
The difficulty of crossing staircases arises from the fact that a robot has a low contact area

Appl. Sci. 2021, 11, 10736. https://doi.org/10.3390/app112210736 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3248-2652
https://orcid.org/0000-0002-8838-877X
https://orcid.org/0000-0003-0434-3142
https://orcid.org/0000-0002-2766-7599
https://doi.org/10.3390/app112210736
https://doi.org/10.3390/app112210736
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210736
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210736?type=check_update&version=3

Appl. Sci. 2021, 11, 10736 2 of 17

with the outer edges of the staircase and thus slippage can occur, causing abrupt changes
in direction, which are difficult to control. For this reason, this work focuses on imple-
menting a staircase detection, characterization and approach pipeline that would allow the
teleoperator to gain useful information about the size and orientation of the staircase and
also allow the robot to align itself with the staircase. This information obtained can also
help determine whether or not the staircase is traversable or could be used to implement
an autonomous staircase crossing algorithm. The implementation of the pipeline in this
work consists of three main parts: the detection of the staircase in the RGB image and
the characterization of the staircase using the point cloud corresponding to the region of
interest and the design of the fuzzy controller for the approach and alignment.

The related works in this area have focused mainly on the detection of the staircase
using data from RGB images, depth images or point clouds. For RGB images, the work
presented in [3–7] first apply a filtering stage to reduce noise and lighting effects and later
apply edge detection algorithms, such as a Canny operator, to obtain the edges present in
the image. After edge extraction, non-candidate stair edges are eliminated and a linking
algorithm is used to determine the lines corresponding to the staircase’s parallel edges.
Using these lines, certain staircase characteristics can be extracted, such as orientation with
respect to the camera.

Additionally, some state of the art staircase localization systems have been imple-
mented using RGB images, deep learning and point clouds. Deep learning methods to
detect staircases use neuronal networks such as YOLOv3-tiny [8,9], YOLOv4 [8] and
SSD [10,11] or implement a stair step detection using YOLOv3-tiny [12] and staircase seg-
mentation using AlbuNet [13]. The use of CNNs to detect an object in an image allows
further processing in the detected area or region of interest (ROI). In [9], they fit lines to
the stair edges by using an edge detector and Hough Transform. With these lines, a PID
controller is implemented that allows the robot to align with the stairs. On the other hand,
in [11] they present a complete pipeline where SSD is used to detect the staircase and later,
using a 3D point cloud, obtain the planes within the detected region. By doing so they are
able to estimate the orientation of the stairs in a simulated environment.

Other algorithms that use depth cameras or LIDARs detect the horizontal and vertical
planes of the staircase by either clustering points in a point cloud [14] or by finding planes
using algorithms such as RANSAC [15–17]. In [14] they first start by computing surface
normals using a two stage approach. In the first stage, the normal of a point is calculated
using tangential vectors computed on a sparse multi-scale neighbourhood. In the second
stage, these normals are analyzed in a filtering kernel and normals in a neighborhood are
combined into a final result. The direction of the normal vectors obtained are modified based
on the orientation data provided by an IMU. They then extract normal surfaces using an
edge detector that has as inputs both the the depth and normal map and use patch filtering
to eliminate non-candidate regions. The remaining regions are used to decide whether
a region contains a staircase or not. In comparison, in [15] an improvised plane fitting
algorithm, based on RANSAC, is implemented to calculate the staircase plane and its slope.
Once this is done, the staircase bottom mid-point is calculated. Finally in [18], they present
a complete pipeline to detect, localize and estimate the characteristics of the staircase using
point cloud data obtained from a LIDAR. For detection, they use a plane-based approach
and later estimate the staircase parameters with an error of only 2.5 mm.

While most of the works have focused mainly on the staircase detection and character-
ization, some of them offer solutions that are not robust enough to use in noisy sensors and
only a few offer information on the implementation of the algorithm in physical robots.
This is a big concern due to the fact that some rescue robots have constraints on energy
consumption, computational resources, or communication to the teleoperator’s computer.
For this reason, this work focuses on providing a robust pipeline using the OAK-D camera
that would allow for a quick implementation on robots running ROS and also would allow
the robot to keep its autonomy by running all algorithms on board.

Appl. Sci. 2021, 11, 10736 3 of 17

2. Materials and Methods

To implement the staircase detection and characterization pipeline we begin by gath-
ering images from different sources, which allows the deep learning model to be trained.
Later, we used this dataset to train the YOLOv4-tiny model necessary to obtain the bound-
ing box for the characterization step. To implement the staircase characterization we make
use of the region of interest (ROI), defined by the bounding box size and coordinates,
and extract the main parameters needed by the fuzzy controller. Figure 1 shows the steps
involved in the pipeline.

Staircase detection

Depth image

ROI extraction

Point cloud generation

Normal estimation of
each point in the ROI

Extraction of smooth
regions using region
growing algorithm

Fit planes to each cluster
using RANSAC

Fit planes to smooth
regions using RANSAC

Clustering of smooth
regions to obtain the points

corresponding to each stair riser

Calculation of staircase
orientation, distance and

size

Figure 1. Staircase detection and characterization pipeline used for the OAK-D camera.

2.1. Dataset

One of the drawbacks of training deep neural networks is the amount of data needed
to obtain aceptable results. Nevertheless, in this work, we were able to obtain sufficient
images by using two available datasets and an image scraping script. The two datasets
used were Open Images V6 [19] and MCIndoor20000 [20], and an image scraping script that
automatically downloaded images from Google Images [21]. The complete dataset used in
this work contains a total of 5826 labeled images with staircases and 4288 non labeled images.
The non labeled images were used during training to improve the staircase detector. A total
of 4668 previously labeled images were downloaded from the Open Images V6 dataset.
The images in this dataset were obtained through image scraping from Flickr (Image and
video hosting service, flickr.com) and were manually labeled by professionals [19]. On the
other hand, 573 staircase images were obtained from the MCIndoor20000 dataset, which
were taken inside the Marshfield Clinic in Wisconsin, US in the summer of 2017. Finally,
the images downloaded using Google Images were obtained using a script made for image
scraping. None of the images from the last two datasets were labeled, thus the labeling was
done using LabelImg [22]. The complete labeled set was split into 70% for training, 20% for
validation and 10% for testing. The negative image set (images not labeled and without
staircases) were obtained from Open Images V6 and it contained images of objects that
could be confused as staircases such as doors, shelves, windows, buildings, bookcases, etc.

2.2. YOLOv4

YOLOv4 is a state-of-the-art object detector that proves to be faster (in terms of frames
per second) and more accurate (MS COCO AP50...90 and AP50) than the currently available
alternatives [23]. This object detector is made up of three parts, a backbone, a neck and a
head. YOLOv4 uses a CSPDarknet53 [24] backbone, SSP [25] and PAN [26] as a neck and
YOLOv3 [27] for the head.

In this work, the compressed version of YOLOv4, YOLOv4-tiny, was used. This version
consists of only 45 layers in total, with just 3 being YOLO (detection) layers. The network
uses a 416× 416 RGB image as input and outputs the predicted class and a bounding box

flickr.com

Appl. Sci. 2021, 11, 10736 4 of 17

width, height and position within the image. This bounding box is needed to determine the
ROI in the organized point cloud data that will be used to obtain the planes corresponding
to the staircase’s tread and riser.

2.3. Staircase Plane Extraction and Characterization

Using the bounding box obtained during the detection step, a segmentation and
characterization algorithm is applied to the ROI of the organized point cloud to extract the
planes corresponding to riser and calculate the distance and the orientation with respect
to the camera’s reference frame (shown in Figure 2). Taking into account the fact that a
bounding box may contain background information and other objects (such as handrails),
we implement a ROI extraction algorithm to eliminate points that do not belong to the
staircase’s thread and riser. A simple but efficient implementation is to shrink the width
of the bounding box by a scaling factor BB f that varies linearly with the distance to the
staircase. The coefficients of the linear function that determines the scaling factor were
obtained experimentally and must be changed for each different camera. To obtain the
linear function that determines the value of the scaling factor, we first place the robot at a
distance d1 from the staircase and vary the size of detected bounding box by a factor BB f 1
until its size is equal to the width of the first stair riser. Afterwards, we position the robot
at a distance d2 < d1 and perform the same steps to obtain a factor BB f 2. Finally, we obtain
the function of the line that passes through the points (d1, BB f 1) and (d2, BB f 2). By doing
this we can determine the scaling factor BB f for different distances from the staircase. This
procedure is simple and more than two points can be used by fitting a line through them
using linear regression.

X

Y

Z

Figure 2. Reference frame used to calculate the staircase parameters.

To segment the staircase’s risers, we begin by applying a well known region growing
segmentation algorithm [28] to the point cloud corresponding to the detected staircase. This
algorithm consists of two main steps, normal estimation and region growing. The normal
estimation algorithm fits a plane, using least squares, through the k nearest neighbors of
each point in the point cloud and determines the plane normal parameters. By using least
squares, the algorithm is able to determine areas of high curvature using the residuals of
plane fitting. The region growing step uses the normals and the curvature, along with
local connectivity and surface smoothness constraints, to cluster points belonging to the
same region. Once the input point cloud has been segmented into smooth regions, we
iterate through each region to find its centroid and a best fitting plane using the RANSAC
algorithm [29]. By doing this last step, the coefficients corresponding to the Hessian Normal
Form defined by ax + by + cz + d = 0 and the location of the centroid with respect to the
cameras’s reference frame are obtained.

With the regions obtained and the planes fitted to each region we apply a clustering
algorithm to obtain the points corresponding to the staircase’s riser. The clustering takes
into account three constraints:

• The angle between planes fitted to each region.

Appl. Sci. 2021, 11, 10736 5 of 17

• The vertical distance between the centroid of each region.
• The lateral distance between the centroid of each region.

The algorithm uses the region centroids (represented as a point cloud) {Pc}, the
coefficients of each plane normal {N}, the clusters corresponding to each smooth region
{Cp} and the total directions, from the initial seed, it will search for Dtotal as inputs and
outputs new clusters corresponding to each staircase riser {Cr}. To do this, we start by
using the camera’s reference frame origin as a seed and find the k nearest neighbors using
a neighbor finding function Ω that only considers the points available in {Pc}. For each
neighbor, we calculate the angle between the planes corresponding to each centroid and
the vertical and horizontal distance between them. If the angle is below a threshold θth
and the distances are below thresholds dvt and dht respectively, then we have obtained
two regions belonging to the same staircase riser. After joining these two regions, we
remove the neighbor that met the criteria from {Pc} and use it as the next seed point and
execute the mentioned steps. The above process continues until no more smooth regions
(corresponding to the seed point neighbors) meet the criteria. When this state is reached
during the joining process, we return to the initial seed point and now begin to search and
join neighboring smooth surfaces. By returning to the initial seed point, we are able to
search in Dtotal different directions from the initial seed point, and thus joining all the valid
regions for each riser. The complete process continues until all of the points in {Pc} have
been used as seed points. The steps mentioned above are shown in Algorithm 1.

Once the points corresponding to each staircase riser have been joined we use a
RANSAC algorithm to find a best fitting plane and obtain the corresponding coefficients. To
determine the staircase orientation with respect to the camera frame, we project each plane
normal into the y = 0 plane in the camera’s reference frame (XZ plane). The orthogonal
projection of a vector ~v into a subspace H of Rn with an orthonormal base {~u1,~u2, . . . ,~uk}
is given by Equation (1) [30].

proyHv = (~v · ~u1)~u1 + (~v · ~u2)~u2 + · · ·+ (~v · ~uk)~uk (1)

For the plane given by the equation y = 0, the orthonormal base is given by:

1
0
0

and

0
0
1

. Therefore, the projection of any plane normal~v into plane π =

x

y
z

 : y = 0

is given by:

proyπ~v =

~v ·
1

0
0

1
0
0

+

~v ·
0

0
1

0
0
1

 (2)

Finally, the angle θ between normal ~v and the unit vector ~x =

1
0
0

 (representing the

right direction in the camera’s reference frame) is given by:

θ = atan2((~x× proyπ~v) ·~y,~x · proyπ~v) (3)

where atan2 is the four-quadrant inverse tangent and ~y =

0
1
0

 is the vector perpendicular

to ~x and proyπ~v. Through this process we are able to determine the orientation of the
staircase even when the risers do not have a completely flat surface or when part of the
riser is missing. The angle θ gives the angle, with respect to the camera frame. Furthermore,
the segmentation of the staircase into planes allowed the measurement of thread and riser

Appl. Sci. 2021, 11, 10736 6 of 17

size by measuring the vertical and horizontal distance between the centroid of each cluster
of points (represented by planes). With this information, stair angle can also be determined.

Algorithm 1 Algorithm to cluster smooth surfaces
Inputs: Point cloud of centroids = {Pc}, point normals = {N},
clusters of smooth regions = {Cp}, neighbor finding function Ω(.),
number of directions from initial seed to search for Dtotal
Outputs: Clusters of stair risers {Cr}

r ← 0
while size({Pc}) > 1 do

Nearest neighbors of reference seed {K} ← Ω((0, 0, 0))
current seed ps ← K{0}
initial p0 ← ps

Pc
remove−−−→ p0 . remove seed from initial point cloud

Indexes of nearest neighbors of current seed {K} ← Ω(ps)
i← 0
d← 1
while i < size({K}) do

θ ← angle between N{ps} and N{K{i}}
dz ← distance between ps and K{i} in z direction
dy ← distance between ps and K{i} in y direction
if | dz |< dht and | dy |< dvt and 0 ≤ θ ≤ θth then

Ccurrent
insert←−−− points of Cp{ps}

Cr{r}
insert←−−− points of Ccurrent

current seed ps ← K{i}
Pc

remove−−−→ ps . remove seed from initial point cloud
Indexes of nearest neighbors of current seed {K} ← Ω(ps)
i← 0

else
i← i + 1
if i = size({K}) and d < Dtotal then
{K} ← Ω(p0)
d← d + 1
i← 0

end if
end if

end while
if size(Cr{r}) > 0 then

r ← r + 1
end if

end while

2.4. Fuzzy Controller for Alignment

To implement the staircase approach and alignment algorithm, a fuzzy controller was
used. To do this, 45 rules (shown in Table A1 in Appendix A) were implemented using
3 inputs: the position within the image of the detected staircase, the distance to the staircase
and the orientation of the riser with respect to the robot. The logic behind this controller is
to use the staircase’s position within the image frame and the distance to the staircase to
approach the obstacle slowly until it can determine the staircase’s orientation. The fuzzy
controller executes the initial approach in such way that the staircase bounding box is
always centered in the image. The robot moves slowly towards the staircase until it can
segment at least two risers and determine the orientation of the staircase with respect to the
robot. Once this is achieved, the fuzzy controller enters into a second phase where the robot
will try to move parallel to the risers and at the same time keep moving towards them, but
without losing the obstacle from the image frame. Once the robot has gotten closer to the

Appl. Sci. 2021, 11, 10736 7 of 17

staircase, it inters the third phase of alignment where it will now use the orientation of the
staircase to align itself with the staircase, in such way that the robot will end up centered in
front of it. The fuzzy variables and fuzzy sets are the following:

• Fuzzy variables and fuzzy sets:

– Input variables:

* Center of the bounding box with the detected staircase (bb_center_xcentroid_pos).

· Fuzzy sets: left, left_center, center, right_center and right.

* Distance to the centroid of the staircase (centroid_dist).

· Fuzzy sets: closer, close, far.

* Staircase orientation (riser_angle).

· Fuzzy sets: left, center and right.

– Output variables:

* Linear velocity (linear_vel).

· Fuzzy sets: fast, slow and stopstop and go.

* Angular velocity (angular_vel).

· Fuzzy sets: left, center and right.

The membership functions of the variables are shown in Figures 3 and 4. Figure 3a
shows the membership functions used for the centroid_pos input. The universe of discourse
is the width of the RGB image and each fuzzy set represents a zone within this image. On
the other hand, in Figure 3b shows the fuzzy sets corresponding to the three distances con-
sidered in this controller. For this variable, the universe of discourse was kept between 0 and
4 m and three fuzzy sets were used. When the staircase is far from the robot, it is impossible
to obtain the staircase orientation due to camera limitations, but once the robot gets close or
closer, the staircase orientation can be obtained. Finally, Figure 3c shows the fuzzy sets that
represent the orientations considered. Considering the way the orientation is measured, the
universe of discourse for the riser_angle variable is between 0 and 180 degrees, where values
below 90 degrees represent a staircase rotated to the left, values above 90 degrees represent a
staircase rotated to the right and values equal to 90 degrees represent a staircase completely
parallel to the camera’s frontal plane (XY plane in Figure 2). Finally, for the outputs, we
used single value constants or singletons. For the linear velocity, the universe of discourse
is kept between 0 and 0.5, but we only use values at 0 (zero velocity) and 0.1 (see Figure 4).
For the angular velocity, the universe of discourse is keep between −0.5 and 0.5, where
negative numbers represent a rotation to the right and a positive value a rotation to the left.
For both output variables, large velocities are not required and they can be unfavorable due
to the rate at which the staircase parameters are published.

0 200 400 600 800 1000 1200
centroid_pos

0

0.2

0.4

0.6

0.8

1

D
e
g
r
e
e

o
f

m
e
m
b
e
r
s
h
i
p

left left_center center right_center right

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
centroid_dist

0

0.2

0.4

0.6

0.8

1

D
e
g
r
e
e

o
f

m
e
m
b
e
r
s
h
i
p

farclosecloser

(b)

0 20 40 60 80 100 120 140 160 180
riser_angle

0

0.2

0.4

0.6

0.8

1

D
e
g
r
e
e

o
f

m
e
m
b
e
r
s
h
i
p

left center right

(c)
Figure 3. Membership functions for the input variables: (a) center of bounding box within the image, (b) distance to the centroid of the
staircase, (c) riser orientation with respect to the camera frame.

Appl. Sci. 2021, 11, 10736 8 of 17

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

linear_vel

0

0.2

0.4

0.6

0.8

1
D
e
g
r
e
e

o
f

m
e
m
b
e
r
s
h
i
p

stop go

(a)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

angular_vel

0

0.2

0.4

0.6

0.8

1

D
e
g
r
e
e

o
f

m
e
m
b
e
r
s
h
i
p

leftcenterright

(b)
Figure 4. Membership functions for the output variables: (a) linear velocity, (b) angular velocity.

Due to the ongoing development of the Fuzzy Controller ROS package, only triangular
and trapezoidal shapes were available for the input fuzzy sets and singletons for the outputs
sets. Furthermore, the package only supports Mamdani Inference Systems. The package
limitations did not inhibit our primary goal of proving that the proposed pipeline works
for staircase approach and alignment.

2.5. Description of the Cameras Used

In this work, we tested the proposed pipeline with two different low cost RGD-D
cameras, the Intel® RealSense™ D435i and the OpenCV AI Kit with Depth (OAK-D) from
Luxonis Holding Corporation. The RealSense™ D435i contains a stereo camera system, an
RGB camera and an Intel™ RealSense D4 Vision Processor Unit (VPU). The RGB camera
can obtain video with a resolution up to 1920 × 1080 and at 30 Frames per Second (FPS).
On the other hand, the stereo system uses an infrared pattern projector and the VPU to
acquire depth images with a resolution up to 1280 × 720 and up to 90 FPS. In comparison,
the OAK-D camera uses a Myriad X VPU, which contains two Neural Compute Engines
(NCEs) which are capable of executing 4 Tera Operations per Second (TOPs). By being able
to perform neuronal inference on the camera. This camera is also capable of obtaining RGB
images at a resolution of 4K and 30 FPS and depth images at a resolution of 1280 × 720 and
30 FPS.

The proposed pipeline was designed to increase autonomy in rescue robots robots, and
for this reason, communication to the teleoperator computer should only be for monitoring
purposes. The RealSense™ D435i pipeline requires additional hardware to perform the
detections, and the OAK-D does not. For this reason, the OAK-D camera is the best option
for robots are limited not only in computing resources, but also in space inside their chassis
and energy consumption (for example for prebuilt rescue robots). Unfortunately, one of
the disadvantages of this camera are the low disparity levels it produces. Due to this, the
clustering Algorithm 1 was implemented and it allowed for better comparisons between
the two cameras used.

To implement the pipeline using the D435i camera, a teleoperator computer with
an Nvidia® RTX 2070 with Max-Q Design was used. This allowed a detection of over
100 FPS, but increased the implementation cost of the pipeline and it required a continuous
communication to the teleoperator computer. In comparison, the OAK-D camera can be
obtained for about the same price as a D435i camera and it includes NCEs that allows
neural inference on the camera. This benefit outweighs the drawbacks of using this camera
(for example the low disparity levels).

2.6. ROS Pipeline

To evaluate our proposal we implemented two different ROS pipelines using the two
different cameras previously described. The main difference between the two were in the
image acquiring and detection steps and also in the necessary steps for plane extraction.
fixed minor labeling mistakes in the Figures 5 and 6 show the two pipelines and the

Appl. Sci. 2021, 11, 10736 9 of 17

different nodes used for the image acquisition and staircase detection. For the D435i
camera we used a pipeline that needed access to a GPU to implement the model, and to
obtain the detections. Furthermore, communication with the teleoperator’s computer was
needed at all times. In comparison, the OAK-D camera pipeline was processed on the robot
and the communication with the teleoperator’s computer was mainly for monitoring and
launching nodes. Another important different is that the RealSense has more disparity
levels than the OAK-D and, for this reason, only the region growing based segmentation
was needed. In comparison, the OAK-D camera required an extra clustering step (outlined
in Algorithm 1), to perform the segmentation.

ROI extraction and staircase characterization node

Point cloud

generation nodelets

On-Board Computer Nodes and Nodelets

point cloud staircase parameters

Fuzzy logic

controller node

RGB camera and

stereo system

Darknet ROS node

depth image

and color image

color image

Teleoperator computer with GPU

bounding box

RealSense Camera

realsense_ros

nodes and nodelets

depth image

Figure 5. ROS pipeline using the RealSense™ D435i camera.

Staircase detection

and stereo system

depth image

and bounding box

bounding box

depth image

ROI extraction and staircase characterization node

Point cloud

generation nodelets

oakd interface node

using depthai-ros

OAK-D Camera On-Board Computer Nodes and Nodelets

point cloud staircase parameters

Fuzzy logic

controller node

Figure 6. ROS pipeline using the OAK-D camera.

The D435i pipeline uses the realsense_ros nodes and nodelets to adquire the RGB and
depth images at a resolution of 848 × 480 and they were published at 30 FPS. The RGB
image was sent to the detection node (darknet_ros) which published the bounding boxes
at approximately 100 FPS. For the OAK-D camera we used the depthai-ros wrapper [31],
which allowed the use of the depthAI library. Using this wrapper, we implemented the
node required to obtain the RGB and depth images and the spatial detection from the
camera. The node configured the RGB camera with a 1920 × 1080 resolution and at 30 FPS,
and it was compressed to 416 × 416 for the neural network. Additionally, the stereo
cameras were configured with a resolution of 1280 × 720 and at 30 FPS, and the depth
image was synchronized with the detections obtained on the RGB image.

The generation of the point cloud from the depth images was done using the
depth_img_proc [32] nodelets and, for both cameras, a reasonable amount of noise is gener-
ated. To decrease the effect of noise, we downsampled the point clouds generated using
Voxel filters with a leaf size of 0.11× 0.11× 0.11. Furthermore, we only used the points that
were in the range of 0 to 5 m and eliminated the ground points. Also, for both pipelines, the
bounding box and the point cloud were synchronized before starting the ROI extraction
and characterization algorithm. The point cloud handling and processing was done using
the Point Cloud Library [33].

The staircase and characterization node published the staircase parameters and the
node with the fuzzy logic controller used these parameters to determine the linear and
angular velocity commands necessary for the staircase approach and alignment. Addition-
ally, to adjust the membership function values, we first used a simulation of our pipeline

Appl. Sci. 2021, 11, 10736 10 of 17

in Gazebo [34] and later performed minimal adjustments on the physical differential
drive robot.

3. Results

Multiple YOLOv4 configurations were trained and evaluated on the test images and
using these results the best model for the pipeline was chosen. The complete pipeline
was first tested in simulation using Gazebo and later was implemented on a physical
robot running the Robot Operating System (ROS) and tested with two cameras previously
described.

Training of the Detector

The configurations used and the results on the test set are shown in Tables 1 and 2.
Seven different YOLOv4-tiny configurations were trained and for comparison purposes,
YOLOv4 (test 2) and YOLOv3-tiny (test 3) were also trained. In the tables, each test shows
the configurations and evaluation metrics obtained for the best detector in that specific run.
Google Colaboratory Hosted Jupyter notebook service (colab.research.google.com) was
used for training and evaluation of the models.

Table 1. Configurations of YOLOv4-tiny used and mAP@0.5IoU obtained.

No. Total Iterations Subdivisions Total Layers Detection Layers Random Flag Negative Images mAP@0.5

1 2000 24 38 2 1 NO 59.25%

2 2000 24 127 3 0 NO 76.74%

3 4000 24 31 3 1 NO 45.24%

4 4000 24 38 2 0 NO 66.20%

5 2000 24 38 2 0 NO 63.08%

6 4000 24 38 2 0 YES 65.53%

7 10,000 8 38 2 0 YES 70.93%

8 10,000 4 45 3 0 YES 68.17%

9 10,000 8 45 3 0 YES 65.32%

Table 2. Test results of the different YOLOv4-tiny configurations used.

No. Approximate Training
Time [min]

Approximate Inference
Time [ms] Precision Recall F1 Score Avg. IoU mAP@0.5

1 40 5.3 0.76 0.49 0.59 55.09% 59.25%

2 186 44.1 0.80 0.69 0.74 63.62% 76.74%

3 104 5.6 0.85 0.17 0.29 61.86% 45.24%

4 100 5.2 0.73 0.62 0.67 52.76 % 66.20%

5 60 5.2 0.74 0.56 0.64 53.62% 63.08%

6 75 5.47 0.73 0.62 0.67 54.00 % 65.53%

7 175 5.4 0.81 0.62 0.70 61.36% 70.93%

8 160 6.1 0.88 0.52 0.65 67.57 % 68.17%

9 154 6.2 0.77 0.57 0.65 58.22% 65.32%

Test number 1 was used to obtain an initial detector and, in order to improve it, in
each test there was a change in parameters or data used. According to [35], detection may
be improved by:

• Selecting the appropriate number of iterations and subdivisions of the batch.

colab.research.google.com

Appl. Sci. 2021, 11, 10736 11 of 17

• Setting random flag = 1 in config file will increase precision by training YOLO for
different resolutions.

• To detect both large and small objects use modified YOLO versions, which include
more detection stages (more YOLO layers).

• Use non-labeled images during training.

From the results obtained after training, it can be seen that the YOLOv4-tiny versions
trained in this work were not able to match the performance (in terms of mAP) of the full
size YOLOv4 version, but they were clearly increased through the use of negative images,
and also by choosing the appropriate parameters for training. Furthermore, even though
it is recommended to train YOLO at different resolutions (setting random flag = 1), our
results showed that disabling this flag resulted in a better mAP on the test set.

Considering the results in Table 2, the detectors 7, 8 and 9 (obtained in tests 7, 8 and 9,
respectively) were chosen to be implemented in the different pipelines. The main differences
between theses detectors is the fact that detectors 8 and 9 contain 3 detection layers and
detector 7 only contains 2. Furthermore, for detector 8, a recalculation of the anchor boxes
was done using the labeled dataset. On the other hand, detector 9 used the original bounding
boxes specified by [35]. The three detectors were tested in the two pipelines, and it was
found that the 3 YOLO layers in detectors 8 and 9 helped to detect staircases that were far
from the robot, meaning that the staircase in the RGB image was small and other objects
were also present. Additionally, the recalculated bounding boxes improved mAP@0.5, but
decreased recall. Considering the results obtained, detector 9 was chosen to be used in our
proposed pipeline.

The images in Figure 7 show the predictions obtained using the detector in test 9 using
images taken from the test set. From the images, it can be seen that the detector can make
correct predictions for ascending and descending staircases with different textures and
viewing angles and even staircases whose step edges are not completely parallel. Figure 7
also shows that multiple staircases in an image can be detected and staircases that are
partially occluded by fences or handrails.

Figure 7. Results obtained using detector 9 in images taken from test set.

Before testing the complete pipeline on a physical robot, we implemented it in simu-
lation, mainly to adjust the clustering parameters and to obtain initial parameters for the
membership functions that represent each fuzzy set. The use of simulation in this work

Appl. Sci. 2021, 11, 10736 12 of 17

also allowed us to test different fuzzy rules and helped us obtain the fuzzy controller im-
plemented on the physical robot. Figure 8 shows the staircase detection and segmentation
of smooth regions on a simulated point cloud and the path the robot takes to arrive at the
first step of the staircase.

(a) (b) (c)
Figure 8. Pipeline test in simulation: (a) detection, (b) smooth region segmentation, (c) approach and alignment using Fuzzy
controller.

Using the deep learning model obtained in test 9, we proceeded to test both of the
pipelines described. For both tests we mounted the camera on top of the differential drive
robot and placed it in front of a staircase. The results obtained with the D435i pipeline are
shown in Figure 9. From Figure 9b it is possible to observe that the pipeline is able to detect
the staircase in the RGB image, obtained from the D435i camera, and using the bounding
box we extract the points, from the initial point cloud (points in white), corresponding to
the ROI (points in green). Due to the quality of the point cloud, mainly dependent on the
disparity levels and the use of an infrared pattern projector, the segmentation was done
using only region growing and Figure 9b shows the planes extracted (red polygons).

(a) (b)
Figure 9. Results obtained using the D435i camera pipeline: (a) staircase detection, (b) smooth region
segmentation.

Figure 10 shows the results obtained using the OAK-D camera pipeline. Figure 10a
shows the detection obtained using the NCEs of the OAK-D camera and Figure 10b shows
the initial point cloud (white points), the points corresponding to the ROI (green points)
and the smooth regions obtained after the region growing algorithm (yellow polygons).
Compared to the D435i camera, the point cloud is rather noisy and has less levels of disparity,
making it necessary to implement the smooth region clustering algorithm. Figure 10c shows
the clustered smooth regions (red polygons) and, therefore, the segmented staircase risers.

Considering all the components in the staircase detection and characterization pipeline,
the staircase parameters were published at a rate of approximately 2 Hz for both the D435i
and OAK-D camera. Also, taking into account the low computing resources available in
the test robot (it only contains a second generation Intel® Core™ i5 CPU @ 2.60 GHz), it
was decided to use the OAK-D pipeline to test the fuzzy logic controller. The fuzzy logic
controller used the staircase parameters to perform fuzzy inference and publish linear and

Appl. Sci. 2021, 11, 10736 13 of 17

angular velocity commands, needed by the differential drive robot to approach and align
with the staircase. To test the controller, the robot was placed in different positions, with
respect to the staircase and at different distances from the staircase. Then, the complete
pipeline was executed using the teleoperator computer and the robot moved, autonomously,
towards the staircase until the orientation could be obtained (at approximately 1.5 m) and
then it aligned itself with the staircase. The robot stopped moving when the staircase
centroid is at 90 cm and the camera’s front plane is parallel to the planes of the staircase
risers. The fuzzy controller was tested using two different staircases.

(a) (b) (c)
Figure 10. Results obtained using the OAK-D camera pipeline: (a) staircase detection, (b) smooth
region segmentation, (c) clustering of smooth regions.

Figure 11 shows examples of the tests done using staircase 1 and staircase 2. In each
figure, the path the robot takes to reach the staircase are shown with a red dashed line.
Additionally, Figure 12 shows the trajectories obtained in 13 different tests using the staircases
shown in Figure 11. From Figure 12, we determined that the pipeline struggles to align
the robot when the staircase risers have no texture (as is the case for staircase 2). This
is due to the fact that the camera depends on texture to obtain the disparity map, and
consequently the point cloud. Without an acceptable point cloud, the staircase orientation
cannot be determined. In comparison, the texture of the risers of staircase 1 allow the robot
to determine its orientation and therefore better align itself with the obstacle. The tests also
show that the fuzzy controller struggles to position the robot correctly when it is placed a
a distance greater than 1.5 m to the left or to the right of the staircase’s center line. When
this happens, the robot cannot center itself completely with the staircase. Considering this,
a better way to implement the staircase approach and alignment would be to use a path
planning algorithm that uses the staircase parameters. By doing so, it would not be necessary
to keep the staircase inside the camera image at all times. This would allow a significant
improvement to the staircase alignment phase of the algorithm.

(a) (b) (c)
Figure 11. Staircase approach and alignment paths obtained using Fuzzy Logic: (a) positioned to
the left of staircase 1, (b) robot positioned to the left of staircase 2, (c) robot positioned to the right of
staircase 2.

Appl. Sci. 2021, 11, 10736 14 of 17

STAIRCASE

0

0

1

1

2

2

Y
 p

o
si

ti
o

n
 [

m
]

X position [m]

3

3 4

test 1

test 2

test 3

test 4

test 5

test 6

(a)

test 6

test 5
test 4

test 3

test 2

test 1

STAIRCASE

Y
 p

o
si

ti
o

n
 [

m
]

0

1

2

3

0 1 2
X position [m]

3 4

test 7

(b)
Figure 12. Staircase approach and alignment paths obtained using the Fuzzy Logic Controller:
(a) tests done with staircase 1, (b) tests done with staircase 2.

4. Conclusions

The results prove that the proposed staircase detection and characterization works
with different cameras and can be used to implement an approach and alignment algorithm.
By using downsampling, region growing and clustering algorithms we were able to reduce
the effects of noise in the plane segmentation process and also increase the execution speed.
Due to this, the algorithm can be used in point clouds obtained from cameras with low
disparity levels or with a large amount of noise and it can be used to implement a fuzzy
logic controller. The staircase approach algorithm can be improved by implementing a
path planning algorithm that would allow the robot to reach the staircase without the need
to have the staircase inside the image frame at all times.

Our proposal can significantly improve the teleoperatibiliy and autonomy of a search
and rescue robot or other robots requiring staircase detection and characterization. For this
reason, for future work we intend to detect and characterize more objects, such as ramps or
rubble, that the robot could encounter and traverse during its mission.

The empty at the end of this page is eliminated once the changes are accepted and the
marked changes, and the corresponding footnotes, are removed.

Author Contributions: Conceptualization, J.A.S.-R. and A.E.P.-B.; methodology, J.A.S.-R. and A.E.P.-
B.; software, J.A.S.-R.; validation, J.A.S.-R., J.A.A.-A., H.T. and A.E.P.-B.; formal analysis, J.A.S.-R.,
J.A.A.-A., H.T. and A.E.P.-B.; investigation, J.A.S.-R. and A.E.P.-B.; resources, J.A.S.-R., J.A.A.-A.,
H.T. and A.E.P.-B.; data curation, J.A.S.-R.; writing—original draft preparation, J.A.S.-R.; writing—
review and editing, J.A.A.-A., H.T. and A.E.P.-B.; visualization, J.A.S.-R., J.A.A.-A., H.T. and A.E.P.-B.;
supervision, J.A.A.-A., H.T. and A.E.P.-B.; project administration, J.A.A.-A. and A.E.P.-B.; funding
acquisition, J.A.A.-A. and A.E.P.-B. All authors have read and agreed to the published version of the
manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Acknowledgments: The authors would like to thank the Technological University of the Mixteca
for providing its facilities for this research project. We would also like to thank CONACYT and the
Tokyo University of Science for their financial support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The 45 fuzzy rules used for the approach and alignment algorithm are shown in
Table A1.

Appl. Sci. 2021, 11, 10736 15 of 17

Table A1. Fuzzy rules used for the staircase alignment.

Rule
IF THEN

Centroid_pos AND Centroid_dist AND Riser_angle Linear_vel AND Angular_vel

1 left far left go left

2 left far center go left

3 left far right go left

4 left close left go left

5 left close center go left

6 left close right go left

7 left closer left stop left

8 left closer center stop left

9 left closer right stop left

10 left_center far left go left

11 left_center far center go left

12 left_center far right go left

13 left_center close left go right

14 left_center close center go left

15 left_center close right go left

16 left_center closer left stop left

17 left_center closer center stop left

18 left_center closer right stop left

19 center far left go center

20 center far center go center

21 center far right go center

22 center close left go right

23 center close center go center

24 center close right go left

25 center closer left stop left

26 center closer center stop center

27 center closer right stop right

28 right_center far left go right

29 right_center far center go right

30 right_center far right go right

31 right_center close left go right

32 right_center close center go right

33 right_center close right go left

34 right_center closer left stop right

35 right_center closer center stop right

36 right_center closer right stop right

37 right far left go right

38 right far center go right

39 right far right go right

40 right close left go right

41 right close center go right

42 right close right go right

43 right closer left stop right

44 right closer center stop right

45 right closer right stop right

Appl. Sci. 2021, 11, 10736 16 of 17

References
1. Murphy, R.R. Disaster Robotics; MIT Press: Cambridge, MA, USA, 2014.
2. Tadokoro, S. Disaster Robotics: Results from the ImPACT Tough Robotics Challenge; Springer: Cham, Switzerland, 2019; Volume 128.
3. Cong, Y.; Li, X.; Liu, J.; Tang, Y. A stairway detection algorithm based on vision for ugv stair climbing. In Proceedings of the 2008

IEEE International Conference on Networking, Sensing and Control, Sanya, China, 6–8 April 2008; pp. 1806–1811.
4. Hernández, D.C.; Jo, K.H. Stairway tracking based on automatic target selection using directional filters. In Proceedings of the

2011 17th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), Ulsan, Korea, 9–11 Febuary 2011; pp. 1–6.
5. Huang, X.; Tang, Z. Staircase Detection Algorithm Based on Projection-Histogram. In Proceedings of the 2018 2nd IEEE Advanced

Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 25–27 May
2018; pp. 1130–1133.

6. Lee, H.W.; Wang, C.; Lu, B.Y. Study on the Computer Vision of the Biped Robot for Stable Walking on the Stairs. In Proceedings
of the 2019 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Yilan, Taiwan, 20–22 May 2019; pp. 1–2.

7. Zhong, C.; Zhuang, Y.; Wang, W. Stairway detection using Gabor filter and FFPG. In Proceedings of the 2011 International
Conference of Soft Computing and Pattern Recognition (SoCPaR), Dalian, China, 14–16 October 2011; pp. 578–582.

8. Kajabad, E.N.; Begen, P.; Nizomutdinov, B.; Ivanov, S. YOLOv4 for Urban Object Detection: Case of Electronic Inventory in St.
Petersburg. In Proceedings of the 2021 28th Conference of Open Innovations Association (FRUCT), Moscow, Russia, 27–29 January
2021; pp. 316–321.

9. Patil, U.; Gujarathi, A.; Kulkarni, A.; Jain, A.; Malke, L.; Tekade, R.; Paigwar, K.; Chaturvedi, P. Deep learning based stair detection
and statistical image filtering for autonomous stair climbing. In Proceedings of the 2019 Third IEEE International Conference on
Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; pp. 159–166.

10. Ilyas, M.; Lakshmanan, A.K.; Le, A.V.; Mohan, R.E. Staircase recognition and localization using convolution neural network (cnn)
for cleaning robot application. Preprints 2018. [CrossRef]

11. Miyakawa, K.; Kanda, T.; Ohya, J.; Ogata, H.; Hashimoto, K.; Takanishi, A. Automatic estimation of the position and orientation
of stairs to be reached and climbed by a disaster response robot by analyzing 2D image and 3D point cloud. Int. J. Mech. Eng.
Robot. Res. 2020, 9, 1312–1321. [CrossRef]

12. Choi, Y.J.; Rahim, T.; Ramatryana, I.N.A.; Shin, S.Y. Improved CNN-Based Path Planning for Stairs Climbing in Autonomous
UAV with LiDAR Sensor. In Proceedings of the 2021 International Conference on Electronics, Information, and Communication
(ICEIC), Jeju, Korea, 31 January–3 Febuary 2021; pp. 1–7.

13. Panchi, N.; Agrawal, K.; Patil, U.; Gujarathi, A.; Jain, A.; Namdeo, H.; Chiddarwar, S.S. Deep Learning-Based Stair Segmentation
and Behavioral Cloning for Autonomous Stair Climbing. Int. J. Semant. Comput. 2019, 13, 497–512. [CrossRef]

14. Ciobanu, A.; Morar, A.; Moldoveanu, F.; Petrescu, L.; Ferche, O.; Moldoveanu, A. Real-time indoor staircase detection on mobile
devices. In Proceedings of the 2017 21st International Conference on Control Systems and Computer Science (CSCS), Bucharest,
Romania, 29–31 May 2017; pp. 287–293.

15. Sharma, B.; Syed, I.A. Where to begin climbing? Computing start-of-stair position for robotic platforms. In Proceedings of the
2019 11th International Conference on Computational Intelligence and Communication Networks (CICN), Honolulu, HI, USA,
3–4 January 2019; pp. 110–116.

16. Souto, L.A.; Castro, A.; Gonçalves, L.M.G.; Nascimento, T.P. Stairs and doors recognition as natural landmarks based on clouds
of 3D edge-points from RGB-D sensors for mobile robot localization. Sensors 2017, 17, 1824. [CrossRef] [PubMed]

17. Woo, S.; Shin, J.; Lee, Y.H.; Lee, Y.H.; Lee, H.; Kang, H.; Choi, H.R.; Moon, H. Stair-mapping with point-cloud data and
stair-modeling for quadruped robot. In Proceedings of the 2019 16th International Conference on Ubiquitous Robots (UR), Jeju,
Korea, 24–27 June 2019; pp. 81–86.

18. Westfechtel, T.; Ohno, K.; Mertsching, B.; Hamada, R.; Nickchen, D.; Kojima, S.; Tadokoro, S. Robust stairway-detection and
localization method for mobile robots using a graph-based model and competing initializations. Int. J. Robot. Res. 2018, 37,
1463–1483. [CrossRef]

19. Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.; Kolesnikov, A.; et al.
The open images dataset v4. Int. J. Comput. Vis. 2020, 128, 1956–1981. [CrossRef]

20. Bashiri, F.S.; LaRose, E.; Peissig, P.; Tafti, A.P. MCIndoor20000: A fully-labeled image dataset to advance indoor objects detection.
Data Brief 2018, 17, 71–75. [CrossRef] [PubMed]

21. Google. Google Images. Available online: https://www.google.com/imghp?hl=en (accessed on 10 December 2020).
22. Tzutalin. LabelImg. Git code. Available online: https://github.com/tzutalin/labelImg (accessed on 7 January 2021).
23. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
24. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning

capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle,
WA, USA, 14–19 June 2020; pp. 390–391.

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

26. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.

27. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.

http://doi.org/10.20944/preprints201812.0296.v1
http://dx.doi.org/10.18178/ijmerr.9.9.1312-1321
http://dx.doi.org/10.1142/S1793351X1940021X
http://dx.doi.org/10.3390/s17081824
http://www.ncbi.nlm.nih.gov/pubmed/28786925
http://dx.doi.org/10.1177/0278364918798039
http://dx.doi.org/10.1007/s11263-020-01316-z
http://dx.doi.org/10.1016/j.dib.2017.12.047
http://www.ncbi.nlm.nih.gov/pubmed/29876376
https://www.google.com/imghp?hl=en
https://github.com/tzutalin/labelImg
http://dx.doi.org/10.1109/TPAMI.2015.2389824

Appl. Sci. 2021, 11, 10736 17 of 17

28. Rabbani, T.; Van Den Heuvel, F.; Vosselmann, G. Segmentation of point clouds using smoothness constraint. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2006, 36, 248–253.

29. Fischler, M.A.; Bolles, R.C. Random sample consensus: a paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

30. Grossman, S.I. Álgebra Lineal, 7th ed.; McGraw Hill/Interamericana Editores, S.A. de C.V.: Mexico City, Mexico, 2012.
31. Luxonis. Depthai-Ros. Git Code. Available online: https://github.com/luxonis/depthai-ros (accessed on 1 August 2021).
32. ROS. Depth_img_proc. Package Summary. Available online: http://wiki.ros.org/depth_image_proc (accessed on 17 July 2021).
33. Rusu, R.B.; Cousins, S. 3d is here: Point cloud library (pcl). In Proceedings of the 2011 IEEE International Conference on Robotics

and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4.
34. Gazebo. Robot Simulation Made Easy. Available online: http://gazebosim.org/ (accessed on 1 September 2021).
35. AlexeyAB. Darknet. Git Code. Available online: https://github.com/AlexeyAB/darknet (accessed on 15 August 2021).

http://dx.doi.org/10.1145/358669.358692
https://github.com/luxonis/depthai-ros
http://wiki.ros.org/depth_image_proc
http://gazebosim.org/
https://github.com/AlexeyAB/darknet

	Introduction
	Materials and Methods
	Dataset
	YOLOv4
	Staircase Plane Extraction and Characterization
	Fuzzy Controller for Alignment
	Description of the Cameras Used
	ROS Pipeline

	Results
	Conclusions
	
	References

