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Abstract: Smart seaside cities can fully exploit the capabilities brought by Internet of Things (IoT) and
artificial intelligence to improve the efficiency of city services in traditional smart city applications:
smart home, smart healthcare, smart transportation, smart surveillance, smart environment, cyber
security, etc. However, smart coastal cities are characterized by their specific application domain,
namely, beach monitoring. Beach attendance prediction is a beach monitoring application of particu-
lar importance for coastal managers to successfully plan beach services in terms of security, rescue,
health and environmental assistance. In this paper, an experimental study that uses IoT data and
deep learning to predict the number of beach visitors at Castelldefels beach (Barcelona, Spain) was
developed. Images of Castelldefels beach were captured by a video monitoring system. An image
recognition software was used to estimate beach attendance. A deep learning algorithm (deep neural
network) to predict beach attendance was developed. The experimental results prove the feasibility
of Deep Neural Networks (DNNs) for beach attendance prediction. For each beach, a classification
of occupancy was estimated, depending on the number of beach visitors. The proposed model
outperforms other machine learning models (decision tree, k-nearest neighbors, and random forest)
and can successfully classify seven beach occupancy levels with the Mean Absolute Error (MAE),
accuracy, precision, recall and F1-score of 0.03, 92.7%, 92.9%, 92.7%, and 92.7%, respectively.

Keywords: Internet of Things; network architecture; deep learning; smart cities

1. Introduction

The term smart city was first used in the 1990s for the use of Information and Commu-
nication Technologies (ICT) to develop modern infrastructures within cities [1]. Afterwards,
the smart city concept evolved and is no longer limited to the diffusion of ICT, it is also
related to people and community needs. Smart cities are cities that use ICT to develop
new urban intelligence functions in such a way that community and quality of life are
enhanced [2]. New decision-making paradigms have been developed for optimizing the
continuous, real-time allocation of resources to satisfy demands in large urban environ-
ments [3].

Coastal areas are some of the most active and biologically diverse ecosystems in the
world. Their population is constantly growing; at least 60% of the world’s population lives
within 100 km of the coast [4]. Furthermore, 80% of all tourism takes place in coastal areas,
and beaches are among the most popular destinations [5].

The Internet of Things (IoT) and Artificial Intelligence (AI) are two cornerstone tech-
nologies enabling smart cities. The IoT refers to a world of networked smart devices,
where every day interconnected objects transform into smart objects able to collect and
share data, thanks to the combination of the Internet and powerful technologies such as
Radio-Frequency Identification (RFID), real-time localization, and embedded sensors [6,7].
AI refers to machines working in an intelligent way. Machine learning is a subset of AI that
provides machines with the ability to learn without being explicitly programmed.
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A huge amount of information (Big Data) is extracted from IoT devices. The analysis of
Big Data through Artificial Intelligence (AI) is very helpful to improve the performance of
smart cities’ services. Although AI has been popular since the early 1950s [8], its application
has been slow. The popularity of AI rose from 2014 to 2017 as a result of the growth of Big
Data. The concept of smart city became more popular in the same period [9]; therefore,
there is a correlation between smart cites with Big Data and AI [7].

Smart seaside cities can fully exploit the capabilities brought by IoT and artificial
intelligence to improve the efficiency of city services in traditional smart city applica-
tions [10–12]: smart home, smart healthcare, smart transportation, smart surveillance,
smart environment, cyber-security, etc. However, smart coastal cities are characterized by
their own specific application domain, namely, beach monitoring.

Beach attendance prediction is a beach monitoring application of particular importance
for coastal managers to successfully plan beach services. In this paper, an experimental
study that uses IoT data and deep learning to predict the number of beach visitors at
Castelldefels beach (Barcelona, Spain) was developed. Its purpose is to predict the number
of beach visitors that will go to the beach in the future (e.g., any day during the next prime
swimming season), depending on the month, the weekday, the time, the weather data
(forecast), and if it is a working day or holiday. The dataset of the deep learning algorithm
contains data regarding all the previously mentioned attributes. The number of beachgoers
was estimated using image recognition software from 2016 to 2018.

Econometrics and machine learning aim at building a predictive model for a variable
of interest, using explanatory variables (or features). In econometrics, probabilistic models
are built to describe economic phenomena, while machine learning uses algorithms capable
of learning, usually for classification purposes [13]. In recent years, machine learning
models have been found to be more effective than traditional econometric models [13].

Machine learning overcomes the limitations of econometric models in terms of pre-
diction. With respect to predictions, econometric models are affected by forecasting errors
due to overfitting. This modelling error happens in complex models when the higher the
variance is, the lower the bias is. Machine learning can also be affected by overfitting. In
machine learning overfitting refers to good performance on the training data, but poor
generalization to other data. Nevertheless, in machine learning there exist several tech-
niques to prevent overfitting: early stopping, training with more data, data augmentation,
feature selection, regularization, etc. Machine learning models are able to obtain a high
prediction accuracy with almost any type of data and perform classification efficiently [14].
An important advantage of machine learning models is that their hyperparameters can
be highly tuned to improve the prediction. Furthermore, once the basic machine learning
models are trained, the researcher can identify which is the best one for a particular dataset.
In addition, advanced machine learning models like deep learning algorithms show very
good results with unbalanced datasets and Big Data [14]. Deep learning is a promising
class of machine learning models that has become a popular subject in the field of science.
Deep learning has been used successfully for signal processing, pattern recognition, and
statistical analysis.

Many researchers have shown that neural networks outperform econometrics models
in forecasting accuracy. In [15], tourism data was used to forecast the arrival of tourists
from USA to Durban (South Africa). It was shown that neural networks perform better
than exponential smoothing, ARIMA, multiple regression, and genetic regression models.
In [16], the application of three time-series forecasting techniques, namely exponential
smoothing, univariate ARIMA, and Elman’s Model of Artificial Neural Networks (ANN),
was investigated to predict travel demand (i.e., the number of arrivals) from different
countries to Hong Kong. The results show that neural networks are the best method for
forecasting visitor arrivals, especially those series without obvious patterns.

We selected a machine learning algorithm to predict beach attendance due to the
efficiency of these algorithms for classification purposes. Particularly, a deep learning
algorithm (deep neural network) was selected due to the higher performance of neural
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networks for prediction compared to econometrics and its promising results in the field
of science.

The contributions of this paper are summarized as follows:

• We propose to use IoT data and deep learning to estimate beach attendance.
• A deep learning (fully connected deep neural network) algorithm was developed for

beach attendance prediction.
• Beach attendance is predicted based on the following attributes: the time of day, the

day of the week, the season, and the weather conditions. We use these attributes as the
seven input variables for training our proposed deep neural network (DNN) model.

• The last attribute (number of beach visitors), the output variable, is taken as the ground-
truth of the target attribute for model training. Images from cameras are analyzed
to estimate the number of beach visitors using an image recognition software. This
output is used to train the deep neural network during the training phase (using the
training set); it is also used later to test the model (using the testing set) in terms of
accuracy and mean absolute error (MAE).

• Our proposed deep learning classifier outperforms other machine learning models (de-
cision tree, k-nearest neighbors, and random forest) and can successfully differentiate
between seven beach occupancy levels, with the Mean Absolute Error (MAE), accuracy,
precision, recall and F1-score of 0.03, 92.7%, 92.9%, 92.7%, and 92.7%, respectively.

To the best of our knowledge, our proposal is the first deep learning algorithm for
beach attendance prediction. The experimental results prove its feasibility.

The paper is structured as follows. Section 2 discusses the related work. Section 3
introduces the proposed deep neural network model and the dataset. In Section 4, we
present the experimental settings and the evaluation metrics and show the results. In
Section 5, the results are discussed. Finally, the paper is concluded in Section 6.

2. Related Work

It has always been extremely important to maintain the quality of beaches, since sand
and water conditions can affect human health. Furthermore, most overcrowded beaches
are seriously affected by pollution and traffic congestion. Therefore, the physical and
social carrying capacities are essential factors to estimate the comfort of most crowded
beaches [17]; the physical carrying capacity refers to the maximum number of individuals
that can physically fit on a beach, whereas the social carrying capacity is associated with
crowding perception in the presence of a large amount of beach visitors.

Several studies [18–22] recognize the importance of evaluating beach attendance to
maintain the recreational capacity of the beaches. It is an essential factor to plan different
beach services in terms of security, rescue, health and environmental assistance. These
studies analyze how beach attendance is affected by weather conditions and other aspects
such as time, season, etc. In [18], the authors quantify the number and location of beach
visitors during 2012 using video images at the Lido of Sète beach, France. An automatic
counting algorithm in Matlab is used to estimate beach attendance; they also study beach
users’ behavior. In [19], video images are analyzed using an algorithm developed in Matlab;
the purpose is to quantify visitors to two city beaches of Barcelona from November 2001
to December 2005 and to predict beach occupation. They tried to find a mathematical
expression to model beach attendance. The observed mean number of daily users is
adjusted to a time-dependent Fourier polynomial for the two beaches in Barcelona. The
occupation data for 2002–2004 are averaged to obtain an estimation of the occupation trend
for a typical year. This averaged function is projected into a 14-term Fourier polynomial.
The Fourier fit obtained and the original time series of the average occupation in a typical
year adjusted 74% and 69% of the absolute value of the original time series for the two
beaches, respectively. In [20], images from the Argus video monitoring system that belongs
to ten beaches from the Spanish Mediterranean coast are selected from 1 July to 20 October
2009; beach occupancy is estimated based on certain density levels. In [21], web cameras are
used to count the number of beach visitors of three well-known Australian beaches using a
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people counting computer program. The authors also analyzed how the number of beach
visitors is affected by certain weather and ocean conditions. In [22], a monitoring system
consisting of sensors, cameras, and smartphones is used to evaluate the occupational state
of a beach in Cagliary (Italy) using the collected environmental and crowding data. The
beach crowd density is evaluated based on beach images, with a support vector machine
(SVM) classifier that distinguishes between three levels of crowd density: low, medium,
and high.

All these studies [18–22] confirm that there is a relationship between beach attendance
and certain attributes, such as time of day, day of week, season, and weather conditions.

Smart seaside cities can benefit from machine learning and Internet of Things (IoT)
to fight against public health crises such as COVID-19. IoT devices (cameras, drones,
etc.) on beaches can be used to control crowd density. It has been analyzed how COVID-
19 transmission is affected by the beachgoer behavior [23]. UAV imagery and publicly
available beachcam video data collected during the summer of 2020 at the recreational
beach oceanfront in Virginia Beach, USA, were analyzed [23]. It was found that beach
users are concentrated in approximately 43% of the total beach surface area, whereas
approximately one-third of landward beach surface is left vacant. Static webcam images
of the boardwalk also indicated relatively consistent use throughout the day, high use at
beach access points and points of interest (i.e., King Neptune statue), and low use of face
coverings for observed northbound boardwalk users (8.7%) [23]. These data are useful
for authorities to supervise beach areas in real-time and make decisions regarding social
distancing, use of masks, and other measures to contain the pandemic.

Beach attendance is also an essential factor to plan different beach services in terms of
security, rescue, health, and environmental assistance. Beach access conditions, number and
size of parking areas, and other services (restaurants, leisure activities, public restrooms,
etc.) are affected as well. The emergence of COVID-19 has brought new implications for
beach access. There is a need to implement and enforce additional mitigation strategies
(physical distancing, limiting gatherings, supporting hygiene, etc.) so that there is no
widespread community transmission of the virus. Beach attendance estimation is essential
to plan the reopening of beaches and offer beach services safely. Real-time occupation was
analyzed in 14 beaches of the coast of Guipuzcoa (Basque Country, Northern Spain) [24].
Video images from 12 stations located along 50 km of coastline were processed. A machine
learning algorithm (AdaBoost, SVM and Quadratic Regression) was used to count beach
users. The occupancy level (full, high, medium, or low) of every beach was sent to
local authorities through a web/mobile app as well as special warnings under particular
circumstances to allow them to take action in cases where carrying capacity limits were
about to be reached [25].

In this paper we describe a deployment to predict beach attendance using machine
learning at Castelldefels beach (Barcelona, Spain).

3. Materials and Methods

In this paper, experimental research that uses IoT data and deep learning to suc-
cessfully predict the number of beach visitors at Castelldefels beach (Barcelona, Spain)
was developed.

Cameras on beaches can be used to control crowd density. Images can also be analyzed
together with other attributes (such as weather conditions determined by IoT sensors at
the weather station) for beach attendance prediction.

Our dataset is based on the images from the video monitoring system of Castelldefels
beach (Barcelona, Spain) and on the weather data from a weather station. The images and
weather data were obtained using IoT devices.

One of the major obstacles to build a real intelligent system [26] is dealing with random
disturbances, processing a huge amount of imprecise data, interacting with a dynamically
changing environment, and coping with uncertainty. Neural networks make it possible to
solve particular problems by using a customer developed algorithm with an intelligent
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behavior. Therefore, our proposed application for beach attendance prediction will be
based on these.

3.1. Deep Neural Network Model

Deep learning has been used to predict beach attendance based on certain weather
conditions and other attributes. Deep learning is a promising approach to extract data
from IoT devices, even in complex environments where other machine learning techniques
are confused [27]. Therefore, we propose to use a fully connected DNN to predict beach
attendance. The IoT data about the required attributes is fed as inputs to the DNN algorithm
so that the output layer can estimate the number of beach visitors (beach occupancy).

A DNN is a neural network with more than two layers (including just the hidden
layers and the output layer). DNNs can model complex non-linear relationships.

The DNN takes the input data and extracts automatically appropriate representa-
tions for detection or classification purposes [28]. Each layer extracts and amplifies those
features that are more relevant for decision making, whereas irrelevant features are sup-
pressed. Each layer is connected to neighboring layers, with different weights attached to
the connection.

Weights and biases are both learnable parameters inside neural networks. The weights
determine how each feature affects the prediction. Bias represents how far off the predic-
tions are from their intended value.

The weight for the connection from the kth neuron in the (l − 1)th layer to the jth
neuron in the lth layer is expressed as wl

jk. The bias of the jth neuron in the lth layer is

defined as bl
j. Therefore, the activation of the jth neuron in the lth layer, al

j, is given by

al
j = g

(
∑
k

wl
jkal−1

k + bl
j

)
(1)

where the sum is over all neurons k in the (l − 1)th layer.
The rectified linear unit (ReLU) was used as the activation function

g(z) = max(0, z) (2)

The weights and bias are estimated by minimizing a loss function [29].
Next, we describe our dataset.

3.2. Videometry

Our dataset is based on the images from the video monitoring system of Castelldefels
beach [30] (Barcelona, Spain) and on the weather data from a weather station of Meteocat
(Meteorological Service of Catalonia) [31].

The Castelldefels beach is a 5 km long strip of sand located in Spain around 18 km
away from the south of Barcelona, between the delta of Llobregat river and the Garraf
Massif. People usually visit the beach to swim in the calm waters of the Mediterranean
Sea, sunbathe, do water sports or activities with children, or just walk along the shoreline.
In Castelldefels, the prime bathing season is from 1 June to 31 August. Castelldefels is
a popular destination for Spanish holidaymakers; it has an excellent location, close to
Barcelona City, which is considered within the world ranking among the 20 most visited
cities by foreign tourists [32] and among the 10 most visited cities in Europe [33]. The
Barcelona metropolitan area, with a population of over 5 million, is the most populous
urban area on the Mediterranean coast and one of the largest in Europe. The beaches of
the Barcelona metropolitan area are visited each year by 10 million people, who spend
(directly or indirectly) almost 60 million euros during the prime summer season [34]. The
most visited beaches during the summer for the north metropolitan area of Barcelona
are Sant Adria, Badalona, and Montgat, and for the south metropolitan area are Gava
and Castelldefels. We selected Castelldefels beach due to its popularity, the presence
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of a video monitoring system that has operated at Castelldefels beach since 5 October
2010, and the location of our campus, the Castelldefels School of Telecommunications
and Aerospace Engineering (EETAC-UPC) (Barcelona-Tech University), 10 min away from
Castelldefels beach.

Coastal ecosystems require continuous observation, which is achieved by means of
coastal video monitoring. Remote sensing techniques offer cost-efficient, long-term data
collection, with high resolution in time and space. Shore-based video systems enable
automated data collection, encompassing a much greater range of time and spatial scales
than previously possible. Video systems are very useful for automatic shoreline detection
and data analysis [35] and intertidal [36] and subtidal bathymetry. Shore-based video
monitoring systems are also very useful for breaking-wave height estimation from digital
images [37]. In our case, the video monitoring system of Castelldefels beach consists of
five video cameras located at the tower in Plaza de las Palmeres, 30 m away from Pineda
beach in Castelldefels (see Figure 1). An example of the images captured by the five video
cameras is displayed in Figure 2.
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Images have been collected since April 2010 using SIRENA software developed at
IMEDEA (CSIC), and they are publicly available on their website [30]. The scientific
exploitation of the images is a joint agreement between the Coastal Ocean Observatory [38]
of the Institut de Ciències del Mar [39] ICM-CSIC and the Coastal Morphodynamics group
(UPC-Barcelona Tech University). Every daylight hour, the cameras take one picture per
second for a ten minute period; in our work, a snapshot image was used to count the
number of beach visitors per hour from 9:00 to 19:00 h during June, July, and August
(prime bathing season) from 2016 to 2018 using an image recognition software named
“CountThings” [40].

3.3. Image Recognition Software

The image recognition software “CountThings” [40] is being used professionally to
count objects in many different fields, such as medicine and construction. The number of
beachgoers derived from manual counting was compared with automated counts in the
snapshots of five days in the summer from 2016 to 2018 (see Figure 3).
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Figure 3. Comparison between manual and automated count of beach visitors.

We compared the counts using a linear regression analysis. The comparison showed
an R2 of 0.927 and a p-value < 0.001. Therefore, we verified that the automated count is not
significantly different from the manual count, the error is acceptable, and this methodology
is suitable for counting the number of beach visitors.

Figure 4 shows an example of the computer vision algorithm results at Castelldefels
beach. The circles indicate the beach visitors that were detected by the algorithm. The
algorithm correctly identified 106 beachgoers (true positives, TP), whereas it returned false
negatives (FN) for cyclists, beachgoers covered by umbrellas, and beachgoers surrounded
by a darker background.

The detection algorithm has a high level of accuracy (R2 of 0.9270), but it also failed
at times, with cloudy or rainy weather or producing blurry images, as shown in Figure 5.
In these cases, the number of beachgoers was counted manually. The cases where the
detection algorithm does not work well are uncommon (e.g., it rains only very seldom),
and overall, the use of the detection algorithm saved time and provided good results.
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Next, we present our results for beach attendance detection. The total average beach
attendance per day for the summer from 2016 to 2018 is shown in Figure 6.

Beach attendance was calculated for June, July, and August for mornings and after-
noons and was very similar for all the years studied. The year with the highest beach
attendance was 2017, although the weather was similar when compared to 2016 and 2018,
with 2 rainy days in 2016, 5 in 2017, and 6 in 2018. Beachgoers prefer going to the beach in
the mornings for all the months, and in most cases beach attendance during the morning
was double than that in the afternoon. June showed a lower beach attendance because the
weather was worse for most of the month. The daily distribution of beach users is analyzed
in Figure 7 for working days (Tuesdays) and weekends (Saturdays and Sundays) during
the summer (June, July, and August) from 2016 to 2018. The number of beachgoers was
already significant at 9:00 h and kept increasing to reach a maximum at 11:00 h; afterwards,
it decreased progressively. Beach attendance was higher during the weekends (especially
on Sundays), which suggests that, apart from tourists, a significant number of local people
go to the beach on weekends when they are not working. The number of beach visitors
was similar, independent of the day, from 17:00 h to 19:00 h.
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3.4. Dataset

In total, there are 19,984 data samples in our dataset, and the attributes associated
with the data samples are grouped into the following categories.

(1) Datetime Attributes: To facilitate the data processing, datetime is digitalized into
three attributes, including the integer-based month, weekday, and time.

(2) Outdoor Attributes: The three outdoor attributes available in the dataset are the
temperature (in Celsius), accumulated rainfall (in mm), and air velocity (in m/s).

(3) Calendar Attribute: We also consider the attribute of working day or holiday (Satur-
day, Sunday, or local holiday).

(4) Number of Beach Visitors Attribute: This attribute refers to the counted number of
beach visitors (beach occupancy).

We use the datetime, outdoor, and calendar attributes as the 7 input variables for
training our proposed DNN model. The last attribute (number of beach visitors), output
variable, is taken as the ground-truth of the target attribute for model training. This output
is used to train the deep neural network during the training phase (using the training set);
it is also used later to test the model (using the testing set) in terms of accuracy and mean
absolute error (MAE).

There are 2498 rows, and each row corresponds to a given record of the data set.
Every column represents one variable. There are 7 input variables: month, weekday,
time, temperature, accumulated rainfall, air velocity, working day/holiday, and an output
variable: resulting number of beachgoers for a particular month, weekday, etc. Therefore,
there are 2498 records ∗ (7 input + 1 output) variables = 19,984 data samples in our
dataset. The number of beachgoers is obtained using an image recognition software named
CountThings and not the proposed deep learning algorithm. The number of beachgoers is
counted by the image recognition software, counting the number of beachgoers from each
of the 5 snapshots (each one of the 5 video cameras captures a snapshot). The number of
images analyzed by the image recognition software is 2498 ∗ 5 = 12,490 images.

In terms of spatial distribution, changes are observed between pre-COVID-19 and
pandemic years, as shown in Figure 8. An example of this change can be observed in the
heat maps of two high attendance days, 9 August 2018 (left) and 19 August 2020 (pandemic
year) (right), at 11:00 h. Before COVID-19, there was a higher concentration of people near
the shore (non-uniform distribution). During COVID-19, pandemic beach users are located
following a uniform distribution, trying to respect social distance recommendations.
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4. Experiments and Results

Next, we present the experimental settings and the evaluation metrics and show
the results.

4.1. Experimental Settings

The proposed deep learning algorithm was implemented in Python 3.7.3.
A neural network can learn something different from what its trainer had in mind [41].

A case of useless learning is when the neural network memorizes the training examples
without learning what they have in common. A trained network is able to generalize when
it can classify data from the same class as the learning data but that it has never seen before.
This ability requires that the network is tested with an independent dataset. Therefore,
the data samples were divided as follows: 70% of the samples were used for the training
dataset (70% of 2498 records = 1748 records for the training phase) and 30% for the testing
dataset (30% of 2498 records = 750 for the testing phase).

The input attributes were normalized. The proposed DNN consists of one input layer
with 7 neurons that match the 7 input attributes, 6 hidden layers each with 300 neurons,
and one output layer with one neuron for the modeling target.

Our proposed DNN was trained for the beach visitors classification task. In the dataset,
the number of beach visitors was assigned to one of the 7 classes (or beach occupancy
levels): 0–49, 50–99, 100–149, 150–199, 200–249, 250–299, and 300+. The class distribution is
shown in Table 1. The total number of records (1748) refers to the training phase.

Table 1. Class distribution of beach visitors.

Classes
(Beach Visitors) Number of Samples Percentage of Total Samples

0–49 272 15.56
50–99 685 39.19

100–149 372 21.28
150–199 280 16.02
200–249 17 0.97
250–299 91 5.20

300+ 31 1.77

Overfitting refers to a deep learning model that has a small loss function on the
training data, and the prediction accuracy is high; however, on the test data, the loss
function is relatively large and the prediction accuracy is low. To overcome the overfitting
constraint, a grid search was conducted to find the best hyperparameters of the deep neural
network using 10-fold cross validation. In a 10-fold cross validation scheme, the dataset
is divided into 10 blocks of approximately equal size. In this case, 90% or 9 blocks of the
data are used for training, and 10% or 1 block of the data is used for testing. This process is
repeated 10 times, with a different data block used for testing each time. Table 2 shows
the number of training and testing instances in each partition scheme. The total number of
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records for the training (1748) and testing (750) phases is specified. The resulting values for
the hyperparameters of the neural network training are presented in Table 3. In order to
solve the overfitting problem, we also introduced the dropout parameter (dropout value of
0.1), which achieved the regularization effect.

Table 2. Class distribution of beach visitors.

Training-Testing Partition (%) Total Training Records Total Testing Records

70–30 1748 750
10-fold cross validation 2248 250

Table 3. Hyperparameters.

Hyperparameter Specification

Number of hidden layers 6
Number of neurons per hidden layer 300

Optimizer Adam
Learning rate 0.001

Activation function ReLU

We evaluated the SGD, RMSprop, Adam, Adagrad, Adamax, and Nadam optimizers
using the grid search technique. The Adaptive Moment Estimation (Adam) optimizer was
selected to minimize the loss function and speed up the training process because it obtains
the best results.

The Adam optimizer is one of the most popular gradient descent optimization algo-
rithms since it is computationally efficient and has very little memory requirement. This
method calculates the individual adaptive learning rate for each parameter from estimates
of first and second moments of the gradients.

The Adam algorithm (see Algorithm 1) first updates the exponential moving averages
of the gradient (mt) and the squared gradient (vt), which is the estimate of the first and
second moment. The hyperparameters β1, β2 ∈ [0, 1) control the exponential decay rates of
these moving averages, as shown in the following equations:

mt = β1mt−1 + (1− β1)gt (3)

vt = β2vt−1 + (1− β2)g2
t (4)

where g is the current gradient value of error function for the neural network training.

Algorithm 1 Adam, our proposed algorithm for the training process.

1: Declare the parameters Objective function f (θ), hyperparameter learning rate α, exponential
decay rates β1, β2 for moment estimates, tolerance parameter ε > 0 for numerical stability
2: Initialize first moment vector m0 = 0, second moment vector v0 = 0 and timestep t = 0
3: while θt has not converged do
3.1 update timestep t = t + 1
3.2 compute gradient of objective using gt = 5θ ft(θt − 1)
3.3 update first moment estimate and second moment estimate using Equations (3) and (4),
respectively.
3.4 compute unbiased first and second moment estimate using Equations (5) and (6), respectively.
3.5 update objective parameters using Equation (7).
end while
4: return final parameter θt
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Moving averages are initialized as 0. The moment estimates are biased around 0,
especially during the initial timesteps. This initialization bias can be easily counteracted
resulting in bias-corrected estimate.

m̂t =
mt

1− βt
1

(5)

v̂t =
vt

1− βt
2

(6)

Finally, we update the parameter θt as shown below:

θt = θt−1 −
αm̂t√
v̂t + ε

(7)

We used in our experiments for the Adam optimizer a learning rate α = 10−3 and two
decay parameters β1= 0.9 and β2 = 0.999 [42].

Experiments were carried out on a laptop running 64-bit Windows 10 Home on an
Intel Core i5-8265U and using 8 GB of memory.

4.2. Evaluation Metrics

Five different metrics were used to evaluate the performance of the proposed scheme:
Mean Absolute Error (MAE), accuracy, precision, recall, and F1-score. F1-score is the
harmonic mean of precision and recall.

The selected metrics can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

where TP represents true positives, TN represents true negatives, FP represents false
positives, and FN represents false negatives.

MAE =
1
K

K

∑
k=1
|gk − g′k| (9)

where gk and g′k represent the real and predicted number of beach visitors, respectively,
and K denotes the total number of testing samples.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1− score =
2× Precision× Recall

Precision + Recall
(12)

4.3. Performance Evaluation

Figures 9 and 10 illustrate the loss function convergence curve and accuracy curve
of the neural network training and testing phases for beach occupancy prediction, re-
spectively. The decreasing loss and the increasing accuracy curves in Figures 9 and 10,
respectively, generally suggest that the neural network model is learning to generalize on
the target problem.
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exception of class 200–249 for July, since there are very few training samples for this class. 
No sample of class 300+ can be predicted for August, because during this month, the res-
idents in Spain have holidays; they tend to travel far away from the cities, and Castellde-
fels beach is located very close to the city of Barcelona. All classes are well predicted for 
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To figure out the performance of the developed DNN, Figure 11 shows the confusion
matrices on the test set (1) only for June, (2) only for July, (3) only for August, and (4) for
the whole dataset (June, July, and August). The classification error for June (see Figure 11a)
came mainly from the prediction of classes 150–199, 200–249, 250–299, and 300+. The reason
is that there are fewer training samples for these classes, since the prime bathing season
starts in June, and during this month, fewer people come to the beach. In July (Figure 11b)
and August (Figure 11c), beach visitors of all classes are well predicted, with the exception
of class 200–249 for July, since there are very few training samples for this class. No sample
of class 300+ can be predicted for August, because during this month, the residents in
Spain have holidays; they tend to travel far away from the cities, and Castelldefels beach
is located very close to the city of Barcelona. All classes are well predicted for the whole
dataset (Figure 11d).
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300+ 1 0.92 1 0.96 12 

As we can see in Table 4, the accuracy is extremely high (0.99 or 1), even when the model 
fails to identify some samples of minority classes (such as classes 200–249, 250–299, and 300+). 
Since accuracy gives biased results with unbalanced data, it is not a good metric to use. There-
fore, we selected precision and recall, together with F1-score, as more reliable measures. 

Table 5 reports the results of our analysis for every category in the test set using the 
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(4) for the whole dataset. 
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whole dataset 0.03059 0.9269333 0.929422 0.926933 0.927114 

Figure 11. Confusion matrixes for (a) June, (b) July, (c) August, and (d) the whole dataset.

The accuracy, precision, recall, and F1-score for all the classes and the whole data set
were computed using the confusion matrix. The results as well as the number of instances
per class for the test set are shown in Table 4. Accuracy is not a very good measure of
performance when dealing with unbalanced datasets (like our case) because it counts the
number of correct predictions regardless of the type of class. For this reason, it is biased
towards the majority classes.

Table 4. Comparison of accuracy and F1-score for all classes.

Classes
(Beach Visitors) Accuracy Precision Recall F1-Score Number of Samples

per Class for the Test Set

0–49 0.99 0.98 0.99 0.99 121
50–99 0.94 0.94 0.90 0.92 302

100–149 0.96 0.88 0.92 0.90 159
150–199 0.98 0.93 0.93 0.93 110
200–249 1 1 0.90 0.95 10
250–299 0.99 0.83 0.97 0.90 36

300+ 1 0.92 1 0.96 12

As we can see in Table 4, the accuracy is extremely high (0.99 or 1), even when the
model fails to identify some samples of minority classes (such as classes 200–249, 250–299,
and 300+). Since accuracy gives biased results with unbalanced data, it is not a good
metric to use. Therefore, we selected precision and recall, together with F1-score, as more
reliable measures.

Table 5 reports the results of our analysis for every category in the test set using the
MAE, accuracy, precision, recall, and F1-score. The results of 10 independent runs are
shown. We present the results (1) only for June, (2) only for July, (3) only for August, and
(4) for the whole dataset.

The DNN achieves the highest F1-score, with a value of 94.3866%, for August and a
high F1-score of 92.7114% for the whole data set. The lowest results in terms of F1-score are
obtained when the DNN is trained just for June, since the video cameras were unavailable
during several days, and these days were essential to train the DNN. This fact suggests
that training with more images would improve the classification. Furthermore, from the
confusion matrixes, it can be observed that in June (when the beach attendance is lower)
there are fewer samples to train categories with a high number of beach visitors, and
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this causes the DNN to fail in the prediction. Nevertheless, the F1-scores for all months
maintain a high level, which proves the feasibility of the DNN. Precision and recall have
similar values. A higher F1-score is caused by higher precision and recall values, and vice
versa. The accuracy values are also high and similar to the F1-score values. Finally, we
notice that for the whole dataset, the best MAE of 0.03059 is obtained.

Table 5. MAE, accuracy, precision, recall, and F1-score.

Dataset Size MAE Accuracy Precision Recall F1-Score

June 0.0553 0.84298 0.844526 0.836719 0.837623
July 0.03069 0.94219 0.935523 0.935185 0.934539

August 0.04055 0.94801 0.946325 0.944 0.943866
whole dataset 0.03059 0.9269333 0.929422 0.926933 0.927114

Table 6 presents the evaluation of the DNN in every category using the precision,
recall, and F1-scores for 10 independent runs. The DNN performs well in the classification
task for all categories.

Table 6. Per-class precision, recall, and F1-scores for the time period 2016–2018.

Classes
(Beach Visitors) Precision Recall F1-Score

0–49 0.981 0.981 0.982
50–99 0.943 0.898 0.919

100–149 0.865 0.925 0.892
150–199 0.92 0.956 0.9323
200–249 0.925 0.849 0.879
250–299 0.939 0.914 0.926

300+ 0.93 0.97 0.949

The best per-class F1-scores are obtained for different types of categories: a very
reduced number of beach visitors (0–49), a very high number (300+), and a medium
number (150–199). The categories 50–99 and 200–249 show the worst results for the F1-
score due to the increase of false negatives (recall). The category 100–149 has an F1-score of
89.2% due to the increase of the false positives (precision). Nevertheless, the precision rate,
recall, and F1-score are relatively stable for all categories.

The performance of the proposed DNN for the whole dataset was investigated with
different batch sizes. The results of 10 independent runs are shown in Table 7. With a batch
size of 64, the best F1-score of 92.3412% is achieved.

Table 7. F1-score for different batch sizes.

Batch Size F1-Score

16 0.88511
32 0.917197
64 0.923412
128 0.917907
256 0.91545

In order to check the robustness of the results, the model was revaluated for the time
periods 2018–2020 and 2019–2021. Tables 8 and 9 present the evaluation of the DNN in
every category using the precision, recall, and F1-scores for the selected time periods and
10 independent runs. The DNN performs well in the classification task for all categories.
In the time period 2018–2020, the best per-class F1-scores are obtained for different types
of categories: a reduced number of beach visitors (50–99) and a high/very high number
(250–299)/(300+). The category 100–149 shows the worst results for the F1-score due to
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the increase of false negatives (recall). The category 200–249 has an F1-score of 90% due
to the increase of the false positives (precision). In the time period 2019–2021, the best
per-class F1-scores are obtained for categories with a high/very high number of beach
visitors (200–249; 250–299)/(300+). The categories 100–149 and 150–199 show the worst
results for the F1-score due to the increase of false negatives (recall). We observe that
for both time periods, the precision rate, recall, and F1-score are relatively stable for all
categories. Therefore, we can conclude that the robustness of the model is not affected by
the time periods chosen.

Table 8. Per-class precision, recall, and F1-scores for the time period 2018–2020.

Classes
(Beach Visitors) Precision Recall F1-Score

0–49 0.891 0.927 0.91
50–99 0.935 0.912 0.923

100–149 0.931 0.856 0.892
150–199 0.941 0.905 0.922
200–249 0.893 0.903 0.90
250–299 0.931 0.981 0.955

300+ 0.945 0.927 0.936

Table 9. Per-class precision, recall, and F1-scores for the time period 2019–2021.

Classes
(Beach Visitors) Precision Recall F1-Score

0–49 0.931 0.917 0.924
50–99 0.915 0.931 0.923

100–149 0.951 0.888 0.918
150–199 0.932 0.861 0.895
200–249 0.934 0.94 0.937
250–299 0.893 0.963 0.927

300+ 0.951 0.936 0.943

4.4. Network Depth

The DNN topology was also investigated in detail to improve the modelling performance.
Two critical DNN topology parameters are the network depth (number of hidden

layers) and width (number of neurons per hidden layer) [43]. We tested different DNN
topologies, where the number of hidden layers varies between 1 and 6 and the number of
neurons per hidden layer varies between 30 and 300.

The performance impact of the network depth is shown in Figure 12. The MAE
of 10 independent runs is shown. The number of neurons per hidden layer is 300, and
the number of layers varies between 1 and 6. It can be observed that when the number
of hidden layers is increased, the modeling performance of the deep neural network is
improved. The median MAE for the number of beach visitors improves from 0.04655 with
one hidden layer to 0.03045 for six hidden layers, with a 34.6% improvement. However,
the improvement slows down when more layers are added. The improvement becomes
insignificant with more than four hidden layers. The median MAE for the number of beach
visitors shows a 34.2% decrease from 0.04655 with one hidden layer to 0.03065 with four
hidden layers; however, when the number of hidden layers is increased to six, only a 0.65%
decreased is achieved, with 0.00036 modeling accuracy variation. We observe that the deep
neural network can maintain a good modelling performance when the number of layers is
increased and does not suffer overfitting. We conclude that the model is not biased with
the training data and keeps improving when the number of neurons raises.
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4.5. Network Width

Next, we study the impact of network width, or the number of neurons per hidden
layer. The performance impact of the network width is shown in Figure 13. The results are
shown with six hidden layers, and the width varies between 25 and 300. We see that the
modeling performance is better when the number of neurons is increased. It can also be
observed that the modeling performance after 175 neurons per hidden layer improves very
slowly when more neurons are added. However, the convergence speed in network width
is faster than that of network depth. Doubling one hidden layer to two layers decreases
the median MAE from 0.04655 to 0.03485, by 25.13%, and further doubling to four layers
improves the MAE to 0.03045, by 12.62%.
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Regarding the network width, doubling the number of neurons per layer from 25 neu-
rons to 50 reduces the MAE from 0.08045 to 0.05025, by 37.54%, and further doubling to
100 neurons achieves a 0.0372 median MAE, with 25.97% improvement. These results
reflect the fact that an increase in the number of hidden layers and the number of neurons
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per hidden layer has a different impact on the deep neural network. In a fully connected
neural network, every neuron in each layer of the network is connected to every other
neuron in the adjacent forward layer. If such a neural network has n neurons per layer and
m hidden layers, the total number of neuron links is O

(
mn2). Since the number of neuron

links scales linearly with network depth but exponentially with network width [43], the
network performance improves more significantly as the network widens.

4.6. Optimal Network Topology

Next, we study the optimal network topology. We consider five different network
topologies that maintain the total number of neurons (1800). The first topology, denoted
as FIRST, consists of a neural network with six hidden layers and 300 neurons evenly
distributed in each layer. The second topology (SECOND) considers fewer hidden layers,
with more neurons per layer than the FIRST case. Specifically, the neural network consists
of three hidden layers, with 600 neurons per layer. The third topology (THIRD) considers
more hidden layers, with fewer neurons per layer than the FIRST case. It consists of
12 layers, with 150 neurons per layer. The fourth topology (FOURTH) assumes there is an
increase in the number of neurons for deeper hidden layers. The number of neurons is
increased for each hidden layer as follows: 200 (for the first hidden layer), 200, 300, 300, 400,
and 400 (for the last hidden layer). The last topology (FIFTH) assumes there is a decrease
in the number of neurons for deeper hidden layers (the reverse order of the proposed
FOURTH topology). The modelling performance using the five topologies is shown in
Figure 14. The fifth topology (FIFTH) achieves the best overall performance, with a median
MAE of 0.02735, which is 9.59, 12.34, 23.82 and 1.26% more accurate than the models FIRST,
SECOND, THIRD and FIFTH, respectively. The FOURTH and FIFTH topologies achieve a
better modeling performance. Therefore, we conclude that a fatter and especially a thinner
topology improves the modeling performance.
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4.7. Comparison to Other Models

Python libraries enable the deployment of many traditional models. Scikit-learn is an
open-source machine learning library that supports supervised and unsupervised learning.
It offers several tools for model fitting, data preprocessing, model selection and evaluation,
and many other utilities.
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We compared our proposal with three well-known models provided by the scikit-learn
library, which support multiclass classification. These classifiers are decision tree, k-nearest
neighbor (kNN), and random forest.

We also employed 10-fold cross validation for the evaluation and comparison of these
machine learning algorithms. Table 10 shows the results achieved by our deep neural
network model and these traditional models.

Table 10. Per-class precision, recall, and F1-scores. Comparison between our proposed DNN and
other traditional machine learning models.

Accuracy Precision Recall F1-Score

Our DNN 0.927 0.929 0.927 0.927
Decision tree 0.892 0.87 0.88 0.875

K-nearest
neighbor 0.593 0.65 0.68 0.664

Random forest 0.412 0.61 0.56 0.584

The analysis shows that our proposed DNN model achieves the highest accuracy,
precision, recall, and F1-score of 92.7%, 92.9%, 92.7%, and 92.7%, respectively, compared
to traditional machine learning models. We also observe that, of the traditional models,
decision tree achieves the highest accuracy, precision, recall, and F1-score of 89.2%, 87%,
88%, and 87.5%, respectively, followed by k-nearest neighbor, with an accuracy, precision,
recall, and F1-score of 59.3%, 65%, 68%, and 66.4%, respectively. We can conclude that our
proposed algorithm outperforms other traditional machine learning algorithms and is able
to perform beach attendance predictions adequately.

5. Discussion

Several authors [18–22,24] have analyzed how beach attendance is affected by weather
conditions and other aspects such as time, season, etc. The results indicate that beach
attendance is affected by the season, day, hour, and meteorological conditions. Our results
confirm the same trend.

Our results regarding the daily temporal distribution of beachgoers are consistent
with other beaches along the Mediterranean Sea [18–20].

Other authors have used classical econometric models to simulate the seasonality and
cyclicality of the processes. In [18], the authors modelled the number of beachgoers as a
function of temperature, for temperatures lower than 30 ◦C, using the regression coefficient
R2 = 0.87 at the Lido of Sète Beach, France. In [21], regression methods are used to determine
how the number of beachgoers is affected by the season, day, weather, and ocean conditions
(maximum significant wave height, water temperature) in Australian beaches. The authors
use ordinal logistic regression to distinguish between three categories of beach visitor
numbers: high, moderate, and low. The authors in [19] sought a mathematical expression
to model beach attendance. The observed mean number of daily users was adjusted
to a time-dependent Fourier polynomial for two beaches in Barcelona. The occupation
data for 2002–2004 were averaged to obtain an estimation of the occupation trend for a
typical year. This averaged function was projected into a 14-term Fourier polynomial. The
Fourier fit obtained and the original time series of the average occupation in a typical year
adjusted 74% and 69% of the absolute value of the original time series for the two beaches,
respectively. In contrast, our proposed DNN improves these results. It can predict well the
number of beach visitors assigned to any of the seven classes or beach occupancy levels
and obtains a good performance, with an accuracy of 92.7%.

6. Conclusions

In this paper, experimental research that uses IoT data and deep learning to estimate
beach attendance at Castelldefels beach (Barcelona, Spain) was developed, and beach
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attendance was predicted. Images of Castelldefels beach were captured by a video moni-
toring system.

An image recognition software was used to estimate the number of beachgoers per
hour from 9:00 to 19:00 h during June, July, and August (prime swimming season) from 2016
to 2018. It was verified that the automated count was not significantly different from the
manual count, and thus this methodology is suitable for the evaluation of beach attendance.
The detection algorithm was not able to estimate the number of beachgoers with cloudy,
rainy weather or blurry images. To solve this problem, the number of beach visitors was
counted manually. However, the detection algorithm saved time and provided good results
for a huge number of images. It would also be necessary to perform additional training
of the detection algorithm to improve its accuracy in distinguishing special cases: beach
goers riding their bicycles, beach goers covered partially by umbrellas at the beach, etc.

It was shown that weather, time, season, and working day/holiday have significant
effects on the number of beachgoers. More resources (e.g., lifeguards, police officers that
patrol the beaches, etc.) will be required during weekends or public holidays to protect
beach visitors, especially during prime seasons.

Furthermore, a deep learning algorithm was trained for the first time for beach
attendance prediction. The experimental results prove the feasibility of DNNs for beach
attendance prediction. The confusion matrices on the test set were shown for June, July, and
August. All classes are well predicted for the whole dataset. In our testing experiments, the
proposed DNN yields a very good performance with an MAE, accuracy, precision, recall,
and F1-score of 0.03, 92.7%, 92.9%, 92.7%, and 92.7%, respectively. Our proposed deep
learning classifier outperforms other machine learning models (decision tree, k-nearest
neighbor, and random forest) and can successfully differentiate between seven beach
occupancy levels. The best F1-scores are obtained for a very reduced number of beach
visitors (0–49), a very high number (300+), and a medium number (150–199), with values
of 98.2%, 93.23%, and 94.9%, respectively. The impact of the DNN topology was also
investigated. The results show that the DNN performance improves when the number
of hidden layers is increased. It also improves with more neurons per hidden layer. The
modeling accuracy benefits from an increase in the number of neurons for deeper hidden
layers (fourth topology), and the best results are obtained when there is a decrease in the
number of neurons for deeper hidden layers (fifth topology).

This research has two limitations. First, only one beach in Castelldefels is considered.
This research could be extended to other beaches in Castelldefels. Second, the weather data
are taken from a weather station of Meteocat (Meteorological Service of Catalonia) that is
located in Viladecans, near but not at the respective beach. However, we expect that these
registered weather conditions are reasonably accurate for our case study.

This work has shown that coastal videometry and image processing are very efficient
tools for beach attendance detection. Furthermore, beach attendance prediction was
successfully developed, and it is of particular importance for coastal managers to plan
beach services in terms of security, rescue, health, and environmental assistance.
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